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Centre for Atmospheric Science, Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge, United Kingdom

24 January 1997 and 5 December 1997

ABSTRACT

The shallow-water model is used as a testbench for understanding many fundamental dynamical problems
(e.g. certain wave–mean interaction problems). One sometimes wants to allow large-amplitude gravity waves
to propagate significant distances in such models without forming shocks. This paper presents a simple, and
apparently unique, modification of the standard shallow-water model that prevents gravity wave shock formation,
but which, at the same time, introduces only minimal changes in other aspects of the behavior. For instance,
the presented modification is nondissipative as well as nondispersive, and it preserves the linear structure of the
shallow-water equations as well as the nonlinear functional form and material invariance of shallow-water
potential vorticity. The modification is derived theoretically and has been tested numerically in several ways in
one and two dimensions.

1. Introduction

The shallow-water system has a long history of use as
a paradigm for three-dimensional rotating stratified flow.
The restriction to two dimensions not only gives physical
simplification but also offers clear computational advan-
tages. A case in point is the study of interactions between
small-scale gravity waves and large-scale balanced, or
potential-vorticity-controlled, motions in the atmosphere.
The importance of such interactions for chemical, cli-
mate, and weather predictions is well recognized (e.g.
Holton 1982; McIntyre 1993; Holton et al. 1995 and
references therein), and yet, for the foreseeable future, a
direct numerical simulation of these interactions in gen-
eral circulation models lies far beyond the reach of even
the most powerful supercomputers.

Therefore, there is a need to parametrize efficiently
and accurately the influence of gravity waves on the
large-scale flow in general circulation models, and this
in turn demands a firm theoretical understanding of the
underlying wave–mean interactions. This requires the
use, both conceptually and numerically, of a hierarchy
of simplified flow models in order to assess the impor-
tance of different aspects of these interactions and in
order to gain a better understanding of the physical phe-
nomena that are involved.
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There are a number of reasons why it might be de-
sirable to keep dissipation to a minimum in such sim-
plified experiments. For instance, current gravity wave
parametrizations are usually based on the assumption
that all the significant effects are associated with dis-
sipating (including breaking) gravity waves. However,
this assumption is based mainly on idealized models,
involving, for example, zonally symmetric basic states,
and/or small-amplitude, slow-modulation approxima-
tions. So the question whether nondissipative wave–
mean interactions are ever significant needs addressing.

Recently, an attempt was made to investigate this
question on a fundamental level using a combination of
analytical and numerical techniques (Bühler 1996;
Bühler and McIntyre 1998). This necessitated finding a
simple fluid model in which nondissipative wave–mean
interactions can be studied. Bühler and McIntyre took
a two-dimensional model as a first test bench and step-
ping stone toward more complicated three-dimensional
stratified models. The standard shallow-water (SSW)
system suggested itself because of its well-known re-
lation to three-dimensional stratified flow viewed in is-
entropic coordinates (e.g., Andrews et al. 1987).

However, a fundamental problem arises in the SSW
system with very weak dissipation because of the robust
tendency of SSW gravity waves to steepen up and to
form shocks in finite time.1 The formation of shocks,

1 The time for shocks to form is inversely proportional to the wave
amplitude and is generally very short. For instance, an SSW gravity
wave with a moderate amplitude of relative depth disturbance a 5
0.1 will break after just one wavelength of propagation; see also (38).
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in particular the associated development of arbitrarily
small spatial scales, inevitably leads to the importance
of dissipative effects, and in a way that is peculiar to
the SSW system and unlike the ways in which stratified
gravity waves dissipate. In addition to introducing dis-
sipative effects, shock formation also puts a severe strain
on numerical integrations unless highly specialized,
‘‘shock-capturing’’ numerical schemes are used (e.g.,
Hirsch 1990).

This dilemma suggests seeking a modification of the
SSW model that removes gravity wave shock formation,
but which retains the usefulness of the SSW model as
a simple model for quasi-horizontal flow along isen-
tropes. A suitable modification should therefore retain
SSW features such as its linear wave structure; its ma-
terial conservation of a potential vorticity (PV), together
with the functional form of this PV in terms of vorticity
and layer depth; the character of its balanced, PV-con-
trolled flow component; and the simplicity (including
numerical simplicity) of its equations. Furthermore, the
ability to easily adapt existing shallow-water codes to
the modified system would be of great practical im-
portance. It is now shown that there is only one rea-
sonable way to modify the shallow-water model such
that these requirements are met.

2. Modification of the shallow-water equations

Consider the equations of motion of the unforced and
nondissipative SSW system:

Du
21 f ẑ 3 u 1 c =h 5 0 (1)0Dt

Dh
1 h= ·u 5 0, (2)

Dt

where u 5 (u, y) is the two-dimensional velocity vector
and ẑ is a unit vector in the vertical direction; h is the
nondimensional layer depth such that h 5 1 corresponds
to the depth of an undisturbed layer; f is the (possibly
location-dependent) Coriolis parameter associated with
the background rotation; and c0, a constant, is the ab-
solute value of the linear phase speed of high-frequency
gravity waves. The independent variables are the time
t and the space coordinates x and y. The material de-
rivative is defined as

D ] ] ]
[ 1 u 1 y . (3)

Dt ]t ]x ]y

To remove gravity wave steepening many modifica-
tions of these equations are conceivable, but most of
them would not meet the requirements set out in the
last paragraph of section 1. For instance, one could try
to add new terms to the momentum equation (1) that
counteract the steepening of gravity waves. One feasible
additional term is presumably given by the next term
in the formal expansion of the original shallow-water

dynamics in powers of the inverse horizontal length
scale; see, for example, Salmon (1988). Inclusion of this
term allows solitary waves to exist, which is an indi-
cation that the new term adds some stabilizing disper-
sion and nonlinearity to the system.2 However, this term
involves a second material time derivative of the depth
field h, which would require a major reconstruction of
existing numerical codes and which would also intro-
duce second spatial derivatives, which would increase
the complexity of the numerical scheme. Also, inclusion
of this term would change the linear dispersion relations
of the system as well as the definition of PV. Adding
other dispersive terms in an ad hoc manner would suffer
from the same problems and might also lose PV con-
servation altogether.

There is, finally, the possibility of modifying the ir-
rotational pressure term in (1). Specifically, consider a
change in (1),

=h → =F(h),2 2c c0 0 (4)

with a suitably chosen nondimensional function F(h).
It is clear that a modification of the shallow-water sys-
tem that respects mass continuity (2) and the functional
form and material invariance of PV must be of the form
(4), apart from F( · ) being a nonlocal function of h, or
even a function of u, which is considered no further.

The change (4) is very easily effected in existing
shallow-water codes, whether they use (u, y , h) or (=
3 u, = ·u, h) as dependent variables. Because the
change introduces no higher derivatives into the system,
the computational requirements for the modified system
are essentially the same as for the standard system. Also,
the linearized modified shallow-water system can be
made to coincide with the linearized SSW system by
requiring that

F9(1) 5 1, (5)

where the prime indicates differentiation. This is a con-
venient requirement, which also ensures that the change
(4) introduces no linear instabilities into the system. It
is now shown that one and only one form of F(h) elim-
inates gravity wave steepening.

3. One-dimensional simple waves

Consider first the nonrotating case (i.e., f 5 0 in Eq.
1), for which SSW gravity waves exhibit strong steep-
ening. The numerical examples below will allow non-
zero f and hence will provide an independent check on
the importance of background rotation.

2 The presence of nonzero f alone adds some dispersion to the
shallow-water system, and there is evidence that this is enough in
some cases to allow nonlinear gravity waves to propagate large dis-
tances without forming shocks (e.g., Bühler 1993). However, this
particular kind of dispersion acts strongest on the largest scales and
is therefore unlikely to be of much use to prevent the steepening of
small-scale gravity waves.
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The one-dimensional nonrotating shallow-water
equations modified according to (4) are

2u 1 uu 1 c F9(h)h 5 0 (6)t x 0 x

h 1 uh 1 hu 5 0, (7)t x x

where suffixes denote partial differentiation. Adding l
times the second equation to the first results in

2c0u 1 u [u 1 lh] 1 l h 1 h u 1 F9(h) 5 0. (8)t x t x5 6[ ]l

This equation is in characteristic form (e.g., Whitham
1974, p. 161ff ) if the quantities in the two square brack-
ets agree, that is, if

F9(h)
l 5 6c . (9)0! h

If (9) holds, then (8) can be written as

6 6d F9(h) d
u 6 c h 5 0, (10)0!dt h dt

where
6d ] ]

6 6[ 1 C and C [ u 6 c ÏhF9(h) . (11)0dt ]t ]x

The time derivative in (11) gives the change rate fol-
lowing a characteristic with characteristic speed C6.
There are two characteristic speeds and therefore two
families of characteristics, corresponding to whether the
upper or lower sign is taken. It will be assumed that C1

. 0 and C2 , 0, which is true if the magnitude of the
fluid velocity u is everywhere less than the relative non-
linear wave speed c0 hF9(h).Ï

Equation (10) can be formally integrated along the
characteristics,3 which yields

6d
6R 5 0 for (12)

dt

F9(h)
6R [ u 6 c dh. (13)E 0! h

Here (13), the definition of the so-called Riemann in-
variants of the system, determines each of the two R6

up to a constant of integration. Clearly, knowledge of
u and h implies knowledge of R1 and R2, and vice versa.

The invariance R6 along the corresponding charac-
teristic curves allows a complete solution of the equa-
tions in the case of a so-called simple wave, for example,
a wave that is supposed to be generated at x 5 0 and
then to propagate to the right into fluid that was initially
at rest. In this situation, all left-going characteristics

3 It is here where f ± 0 would complicate the situation, because
in that case this formal integration would not be possible.

with speed C2 originate from fluid that was at rest at t
5 0. Hence R2, which is constant following left-going
characteristics, has to have the same value everywhere
and, in particular, has to have the value that corresponds
to fluid at rest. This establishes a relation between u and
h [taking the lower sign in (13)] that holds everywhere
in the fluid, which effectively reduces the number of
dependent variables from two to one. Further, because
R1 is constant following right-going characteristics and
R2 is constant everywhere, the physical state (i.e., u and
h) must be constant on each right-going characteristic.
Hence the characteristic speed C1, which depends on
u and h, must be constant on right-going characteristics
as well, which means, for instance, that right-going char-
acteristics appear as straight lines in an (x, t) diagram.

The steepening of the gravity waves can now be un-
derstood in terms of the dependence of C1 on the phys-
ical state. For simple waves in standard shallow water
F(h) 5 h, and hence [cf. (13) and (11)]

2R 5 u 2 2c Ïh 1 K 5 22c 1 K (14)0 0

⇒ u 5 c (2Ïh 2 2), (15)0

and with (11)

1⇒ C 5 c (3Ïh 2 2). (16)0

The second equality in (14) derives from evaluating R2

at t 5 0, that is, for a fluid at rest, where u 5 0 and h
5 1. Equation (15) is the relation between u and h in
simple waves in the standard shallow-water system, and
(16) shows that the nonlinear wave speed C1 is equal
to c0 only for a fluid at rest and that it grows with h.
This implies that compression regions of gravity waves
travel faster than rarefaction regions and hence that the
gravity wave steepens up and eventually forms a shock.

The task is now to devise a suitable F(h) that allows
compression and rarefaction regions to travel with the
same speed. In general, C1 5 L(R1, R2) for some func-
tion L( · , · ). In a simple wave R2 is constant every-
where, but R1 varies from one right-going characteristic
to another. Hence if C1 is to be constant everywhere
in a simple wave, then it must be independent of R1,
that is,

!
1 2C 5L(R ) (17)

for some function L( · ). Equation (17) is the pivotal
element in this search for a suitable modification of the
standard shallow-water system. Using (11) and (13), one
obtains

F9(h)
1 2C 5 R 1 c ÏhF9(h) 1 dh , (18)0 E[ ]! h

which implies that (17) holds if and only if the quantity
in parentheses is a constant. (It cannot possibly be a
function of R2, because it has no dependence on u.)
Differentiating this quantity with respect to h one ob-
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tains the following second-order ordinary differential
equation for F(h):

9 F9(h)
ÏhF9(h) 1 5 0, (19)[ ] ! h

whose general solution is

B
F(h) 5 A 1 . (20)

2h

The value of the constant B is fixed by (5), that is, by
the requirement that the linearized system be the same
as the standard shallow-water system:

F9(1) 5 1 ⇒ B 5 21/2. (21)

The value of the physically meaningless additive con-
stant A can be fixed, for convenience, by requiring that

F(1) 5 1 ⇒ A 5 3/2, (22)

and therefore

3 1
F(h) 5 2 (23)

22 2h

is obtained as the unique solution to the problem. No
other choice of F(h) will allow nonsteepening gravity
waves to exist while preserving the linear properties of
the shallow-water system (if one discounts physically
meaningless changes of the additive constant 3/2).

Repeating the steps that lead to (14) and (16) in the
case of the SSW system now produces modified shallow
water:

c02R 5 u 1 1 K 5 1c 1 K (24)0h

h 2 1
⇒ u 5 c (25)0 h

c01⇒ C 5 u 1 5 c . (26)0h

Equation (25) is the relation between u and h in simple
waves in the modified shallow-water system, and Eq.
(26) shows that the nonlinear wave speed is constant
and equal to the linear wave speed.4

4 This calculation has shown that simple waves in the modified
shallow-water system have no tendency to form shocks. It can further
be shown, by the standard method of considering the conservation
of mass and momentum across a jump in u and h, that the modified
shallow-water system in general admits no discontinuous solutions
other than those that correspond to a discontinuous simple wave.

4. Modified equations of motion, quasigeostrophic
approximation, and energy conservation

Some aspects of the modified shallow-water (MSW)
equations that result from the choice of F(h) according
to (23) are now discussed. The continuity equation (2)
remains unchanged, but the modified momentum equa-
tion (1) is

Du
21 f ẑ 3 u 5 2c =F(h)0Dt

23 1 c025 2c = 2 5 2 =h. (27)0 2 31 22 2h h

Because the modified pressure term is still irrotational,
the PV is unchanged, that is,

= 3 u [ y 2 u ,x y

Dq
q [ (= 3 u 1 f )/h ⇒ 5 0 (28)

Dt

still holds in the MSW system. In this connection it might
be interesting to note whether or not the MSW system
has the same quasigeostrophic (QG) approximation as
the SSW system. The usual QG approximation can be
understood in terms of (28) by assuming that the velocity
field is approximately described by a streamfunction, C
(i.e., u 5 2Cy and y 5 1Cx), and by using the diver-
gence of the momentum equation to derive an approxi-
mate relationship between the height field h and the
stream function C. This last step results in

 f
1 1 C standard SW

2 c0
h ø (29) 21/2f

1 2 2 C modified SW.
21 2c0

These approximate relationships differ in their nonlinear
terms, but their linearized forms are identical. Because
the usual QG approximation uses only a linear approx-
imation of 1/h in terms of C, this implies that the QG
approximation of the MSW system is identical to that
of the SSW system, which is in accordance with the
fact that by design the two systems have the same lin-
earization.

The energy of the MSW system differs from the SSW
energy in the expression for the nonkinetic (potential)
energy. The standard law of energy conservation is

2d |u|
1 e(h) h dx dy 5 2 p(h)u·n ds, (30)E E R1 2dt 2

where e(h) is the nonkinetic energy density per unit
mass, p(h) is the nonadvective flux of momentum such
that =F 5 h21=p in (27), and the area integral on the2c0

left is taken over an arbitrary material area, that is, an
arbitrary area that moves with flow. The contour integral
on the right is taken around the boundary of that material
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TABLE 1. Nonkinetic energy density e(h) and nonadvective momentum flux p(h) in the SSW and MSW systems.

Standard SW Modified SW

Nonkinetic energy density e(h)
Nonadvective momentum flux p(h)

b 2 a/h 1 c h/22
0

a 1 c h2/22
0

b 2 a/h 1 c /(2h2)2
0

a 2 c /h2
0

area, with n as the outward-pointing unit normal vector
on that contour and ds as its line element. It is straight-
forward to show5 from these definitions that the most
general forms of e(h) and p(h) in SSW and MSW are
as given in Table 1. In these expressions the constants
of integration a and b are arbitrary, although the usual
derivation of the SSW system motivates a choice, a 5
b 5 0, in the SSW system. Finally, it can be shown
that the expressions for e(h) can be used in a derivation
of both SSW and MSW as Hamiltonian systems (see,
e.g., Salmon 1988 for a summary of Hamiltonian fluid
mechanics).

It can be noted in passing that the nonlinear differ-
ences between the respective MSW and SSW forms of
the irrotational pressure term =F 5 h21=p can have2c0

some implications for leading-order wave–mean inter-
action effects. The linear properties of MSW coincide
with SSW and hence O(a2) quantities that can be con-
sistently evaluated from linear, O(a) solutions alone
(e.g., wave action and Stokes drift) are identical in both
systems. Here a is a suitably defined nondimensional
wave amplitude. However, other O(a2) quantities can
be different. For instance, it can be shown (Bühler and
McIntyre 1998) that certain wave-induced changes in
the mean density (which are familiar from analogous
problems in acoustics; e.g., McIntyre 1981) are different
in the two systems.

5. Numerical tests

The modified system is tested here for simple waves
using a one-dimensional finite-difference model of the
shallow-water system, based on the two-dimensional
model of Ford (1994). Further testing using a range of
two-dimensional wave–mean interaction problems was
carried out by Bühler and McIntyre (1998), who found
no unexpected or undesirable behavior of the MSW sys-
tem. The model used here includes constant background
rotation, which allows a useful check on how nonzero

5 One approach notes the formal equivalence of the equations (27)
and (2) and the equations for the two-dimensional evolution of a
notional ideal compressible fluid whose density per unit area is equal
to h, whose enthalpy per unit mass is equal to F(h), and whose2c0

entropy is constant everywhere (cf., e.g., section 2 in Landau and
Lifshitz 1987). As is well known, the SSW system is then analogous
to the flow of a perfect gas with ratio of specific heats equal to 2,
whereas the MSW system in the same analogy has ratio of specific
heats equal to 21. The expressions for e(h) and p(h) in Table 1 then
follow directly from the standard perfect gas formulas.

f influences the simple waves, a question that was not
addressed in the theory. The one-dimensional equations
that were solved here are (subscripts denote partial de-
rivatives):

2u 1 uu 2 f y 1 c F9(h)h 5 G(x, t) (31)t x 0 x

y 1 uy 1 fu 5 0 (32)t x

h 1 uh 1 hu 5 0, (33)t x x

where the body force G(x, t) was applied in a local
forcing region. The model domain spans 10 wavelengths
of a right-going gravity wave that is forced by the body
force G(x, t). The force is centered near the left end of
the domain and extends over 1.4 of a wavelength. The
exact form of the G(x, t) that was used is

22ac d0G(x, t) [ [X(x) cos(kx 2 vt)], (34)
0.7p dx

where the envelope X(x) is given by

0 |x 2 x | $ 0.7l0X(x) [ x 5 3l.0 p x 2 x02cos |x 2 x | , 0.7l 01 22 0.7l
(35)

Here a is the amplitude of the forced wave, l 5 2p /k
its wavelength, k its wavenumber, and v its intrinsic
frequency, which is related to k by the linear dispersion
relation

v2 5 f 2 1 k2.2c0 (36)

Rayleigh damping is applied over the last two wave-
lengths at either end of the domain to mimic a radiation
boundary condition. Spatially there were 21 grid points
for one wavelength, using centered differences for the
evaluation of derivatives. Temporally there were 100
leap-frog time steps per wave period. The integration
started from rest and went up to 10 periods of the gravity
wave.

Two cases were considered. In the first case, the wave-
length l of the gravity wave was chosen such that the
ratio between f and the intrinsic frequency v of the
gravity wave was 0.1; hence the wave had compara-
tively high frequency and background rotation could be
expected to be negligible. In the second case, f/v 5
0.7; hence the wave had comparatively low frequency
and should have been strongly influenced by rotation.
The two cases were integrated for both the standard and
the modified system using four different wave ampli-
tudes. The results are collected in Fig. 1.
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FIG. 1. Propagation of simple right-going gravity waves with different wavelengths l in standard and in modified shallow water. In all
cases the layer depth h is plotted at the end of the integration. The wave amplitude increases from top to bottom, and is given by a 5 (1/
100, 1/20, 1/10, 1/5) in the respective rows. Note the changing vertical scale from row to row, which accommodates the different wave
amplitudes. The two columns on the left contain high-frequency gravity waves, and the two columns on the right contain low-frequency
gravity waves. See text for further details.
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The plots show the depth field h at the end of the
integration. Each row corresponds to a particular wave
amplitude, increasing from top to bottom. The nondi-
mensional wave-forcing amplitudes from top to bottom
[which correspond to max(|h 2 1|) in a linear wave]
were

a 5 (1/100, 1/20, 1/10, 1/5). (37)

Note that the scaling of the vertical axis changes from
row to row to compensate for the different amplitudes
of the waves. For reference, it is useful to note here the
number of wavelengths of propagation before an ini-
tially sinusoidal SSW gravity wave forms a shock,
which is

number of wavelengths before shock forms

2 1
5 ø . (38)

6pa 9a

Cases a1–a4 in the first column show the results for
the high-frequency gravity wave in the SSW system. At
very small amplitude a 5 0.01 (a1) the wave simply
travels down the domain, although even then there is
some discernible evidence for nonlinear steepening to-
ward the right of the domain. The criterion (38) allows
10 wavelengths of propagation before shocks form for
this wave amplitude, which is not reached in this case.
At higher amplitudes (a2–a4), however, shocks do form
and render the integration unphysical, as the used nu-
merical model has no mechanism to resolve the small
spatial scales associated with the shock. The onset of
shock formation is in very good agreement with the
theoretical value in (38).

Cases b1–b4 in the second column show the same
waves, but this time in the MSW system. As expected,
the small-amplitude case (b1) looks very similar to the
SSW integration. However, this similarity vanishes at
larger wave amplitudes. As the higher-amplitude plots
(b2–b4) reveal, there is hardly a change in the appear-
ance of the MSW waves; in particular, there is hardly
a sign of nonlinear steepening, even in the last case
(b4).

The third column shows the low-frequency cases c1–
c4, integrated in the SSW system. The dispersion re-
lation (36) implies reduced group velocity for low-fre-
quency gravity waves, which is why after 10 periods
the wave train has not yet spread across the domain.
There is evidence in c1–c3 that the low-frequency dis-
persion delays the onset of shock formation somewhat.
This can be qualitatively understood on the basis that
shock formation requires assembly of many different
spatial scales at the same location, whereas dispersion
spreads different spatial scales over a wider region.
However, eventually shocks do form, as shown in the
lowest plot (c4).

The fourth column shows the low-frequency wave
integrated in the MSW system. As before, there is hardly
a difference between the various amplitudes, which is

a useful check on the assumption made in section 3 that
nonzero f does not alter the nonlinear steepening in an
essential way.

In summary, these numerical simulations agree very
well with the theoretical predictions about the behavior
of simple waves in both the SSW and the MSW systems,
and they also show that background rotation does not
change the main conclusions: background rotation re-
duces but does not eliminate shock formation in SSW,
and it does not reintroduce shocks in MSW.

6. Concluding remarks

The presented MSW model eliminates gravity wave
steepening while introducing only minimal changes in
other features of the SSW model. In particular, the fun-
damental character of the balanced, PV-controlled flow
component has been retained. As noted before, the
MSW model is apparently the only shallow-water-type
model in which fundamental nondissipative wave–mean
interaction problems of the kind investigated by Bühler
and McIntyre (1998) can be studied numerically.

The MSW model is also potentially useful in flow
studies in which the gravity wave component of the flow
is not the focus of attention (e.g., certain vortex dynam-
ics studies). In the appropriate parameter regime the
MSW and the SSW models would then produce essen-
tially identical results for the dominant balanced flow
component, but the MSW model would prohibit the
shock formation of the inevitably present, but weak,
gravity waves. This may offer some practical advantage
at no extra computational cost.

Another possible application of the MSW model is
the fundamental study of higher-order balanced models.
For instance, in section 4 it was pointed out that the
QG approximations of the MSW and the SSW models
differ nonlinearly, and therefore an intercomparison be-
tween the two models could highlight to what extent
the structure and accuracy of higher-order balanced
models depends on details such as the exact form of
F(h) in (27).
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APPENDIX

Independent Check on Form of F(h)

The main result, that is, that the only modified shal-
low-water system in the form of (6) that admits simple
waves traveling with unchanged shape has F(h) as given
in (23), can be corroborated by a simple independent
check. Assuming that h 5 h(x 2 c0t) and that u 5 f(h),
the equations (6) become
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2 9f
22c f9h9 1 h9 1 c F9h9 5 0 and (A1)0 01 22

2c h9 1 fh9 1 hf9h9 5 0. (A2)0

The factor h9 can be cancelled in both, and the remaining
equations can then be easily integrated to give

2B
2c F(h) 5 A 2 and (A3)0 22h

B
f(h) 5 c 1 . (A4)0 h

Requiring that F9(1) 5 1 and f(1) 5 1 then reproduces
the equations (23) (up to the arbitrary value of the ad-
ditive constant A) and the relation between u and h in
(25).

It can be noted that in this derivation the form of F(h)
arises directly as a consequence of Bernoulli’s law and
the continuity equation when both are applied in a frame
of reference moving with the wave speed c0. Therefore,
the same derivation also applies to the standard prim-
itive equations when written in isentropic coordinates
(e.g. Andrews et al. 1987), in which the Montgomery
streamfunction replaces F and the isentropic density re-
places h. Traveling wave solutions in that system will
hence also be characterized by a relationship between
the Montgomery streamfunction and the isentropic den-
sity, which is of the same functional form as the de-
pendence of F on h in (23).
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