# Publications

• Nonlinear Laplacian spectral analysis of Rayleighâ€“Benard convection

• Non-local convergence coupling in a simple stochastic convection model

• Enhanced persistence of equatorial waves via convergence coupling in the stochastic multicloud model

# Recent Posts

### Regridding atmospheric datasets

I am currently working with model output from the cloud-resolving model SAM. The full-resolution datasets are often too-large to load into memory because I have over 16000 horizontal grid points, and it is more convenient to work with coarse-grained data. While, I can just boot up python and manually averaged the data, this is pretty unwieldy and there are many packages which already do this. This article contains a nice overview of the different kinds of regridding methods.

### Data archival strategy

At work, my datafiles are split accross several different machines with different filesystems. These are My desktop my laptop NYU HPC NYU Abu Dhabi HPC In this post, I outline a strategy for archiving my data, and tracking where what is on different servers. My previous strategy, which I used on a few projects, was to archive the data individually within each project. This has the advantage of making the data shareable, but does not scale well when multiple different projects share a particular data source.

### Regression splines tutorial

This tutorial describes the spline basis and smoothing techniques which are based on splines. using Plots pyplot() Here is a simple function and noisy data. The object of this tutorial is to estimate the sinuosoidal curve given the noisy observations. x = linspace(0, 2*pi, 100)[1:end-1] y = sin(4*x) yn = y + randn(size(y)) *.2 plot(x,y) scatter!(x,yn) To do this we will use cubic splines. The spline basis with knots at $\xi_i$ is given by $(x-\xi_i)^3_i$ .