DC Programming: A brief tutorial.

Andres Munoz Medina
Courant Institute of Mathematical Sciences
munoz@cims.nyu.edu
Difference of Convex Functions

• Definition: A function f is said to be DC if there exists g, h convex functions such that $f = g - h$

• Definition: A function is locally DC if for every x there exists a neighborhood U such that $f|_U$ is DC.
Contents

• Motivation.
• DC functions and properties.
• DC programming and DCA.
• CCCP and convergence results.
• Global optimization algorithms.
Motivation

- Not all machine learning problems are convex anymore
- Transductive SVM’s [Wang et. al 2003]
- Kernel learning [Argyriou et. al 2004]
- Structure prediction [Narasinham 2012]
- Auction mechanism design [MM and Muñoz]
Notation

• Let g be a convex function. The conjugate of g is defined as g^*

$$g^*(y) = \sup_{x} \langle y, x \rangle - g(x)$$

• For $\epsilon > 0$, $\partial_\epsilon g(x_0)$ denotes the ϵ subdifferential of g at x_0, i.e.

$$\partial_\epsilon g(x_0) = \{ v \in \mathbb{R}^n | g(x) \geq g(x_0) + \langle x - x_0, v \rangle - \epsilon \}$$

• $\partial g(x_0)$ will denote the exact subdifferential.
DC functions

• A function \(f : \mathbb{R} \to \mathbb{R} \) is DC iff is the integral of a function of bounded variation. [Hartman 59]

• A locally DC function is globally DC. [Hartman 59]

• All twice continuously differentiable functions are DC.

• Closed under sum, negation, supremum and products.
DC programming

• DC programming refers to optimization problems of the form.
 \[
 \min_x g(x) - h(x)
 \]

• More generally, for \(f_i(x) \) DC functions
 \[
 \min_x g(x) - h(x)
 \]
 subject to \(f_i(x) \leq 0 \)
Global optimality conditions.

- A point x^* is a global solution if and only if
 $$\partial_\epsilon h(x^*) \subset \partial_\epsilon g(x^*)$$

- Let $w^* = \inf_x g(x) - h(x)$, then a point x^* is a global solution if and only if
 $$0 = \inf_x \{-h(x) + t \mid g(x) - t \leq w^*\}$$
Global optimality conditions.

- A point x^* is a global solution if and only if $\partial \epsilon h(x^*) \subset \partial \epsilon g(x^*)$

- Let $w^* = \inf \{ g(x) - h(x) \}$, then a point x^* is a global solution if and only if

$$0 = \inf_{x} \{-h(x) + t | g(x) - t \leq w^* \}$$
Global optimality conditions.

• A point x^* is a global solution if and only if
 \[\partial_{\epsilon} h(x^*) \subset \partial_{\epsilon} g(x^*) \]

• Let $w^* = \inf_x g(x) - h(x)$, then a point x^* is a global solution if and only if
 \[0 = \inf_x \left\{ -h(x) + t \mid g(x) - t \leq w^* \right\} \]
Local optimality conditions

- If x^* verifies $\partial h(x^*) \subset \text{int} \partial g(x^*)$, then x^* is a strict local minimizer of $g - h$.
DC duality

- By definition of conjugate function
 \[\inf_x g(x) - h(x) = \inf_x g(x) - (\sup_y \langle x, y \rangle - h^*(y)) \]
 \[= \inf_x \inf_y h^*(y) + g(x) - \langle x, y \rangle \]
 \[= \inf_y h^*(y) - g^*(y) \]

- This is the dual of the original problem
DC algorithm.

- We want to find a sequence x_k that decreases the function at every step.

- Use duality. If $y \in \partial h(x_0)$ then

$$h^*(y) - g^*(y) = \langle x_0, y \rangle - h(x_0) - \sup_x (\langle x, y \rangle - g(x))$$

$$= \inf_x g(x) - h(x) + \langle x_0 - x, y \rangle$$

$$\leq g(x_0) - h(x_0)$$
DC algorithm

• Solve the partial problems

\[S(x^*) = \inf \{ h^*(y) - g^*(y) : y \in \partial h(x^*) \} \]
\[T(y^*) = \inf \{ g(x) - h(x) : x \in \partial g^*(y^*) \} \]

• Choose \(y_k \in S(x_k) \) and \(x_{k+1} \in T(y_k) \).

• Solve concave minimization problems.

• Simplified DCA

\[y_k \in \partial h(x_k) \quad x_k \in \partial g^*(y_k) \]
DCA as CCCP

• If the function is differentiable, the simplified DCA becomes $y_k = \nabla h(x_k)$ and $x_{k+1} \in \partial g^*(y_k)$

• Equivalent to
DCA as CCCP

• If the function is differentiable, the simplified DCA becomes $y_k = \nabla h(x_k)$ and $x_{k+1} \in \partial g^*(y_k)$

• Equivalent to
DCA as CCCP

- If the function is differentiable, the simplified DCA becomes $y_k = \nabla h(x_k)$ and $x_{k+1} \in \partial g^*(y_k)$

 $\rightarrow \quad x_{k+1} \in \text{argmin} \ g(x) - \langle x, \nabla h(x_k) \rangle$

- Equivalent to
DCA as CCCP

• If the function is differentiable, the simplified DCA becomes $y_k = \nabla h(x_k)$ and $x_{k+1} \in \partial g^*(y_k)$

 $\Rightarrow x_{k+1} \in \text{argmin } g(x) - \langle x, \nabla h(x_k) \rangle$

• Equivalent to

 $x_{k+1} \in \text{argmin } g(x) - h(x_k) - \langle x - x_k, \nabla h(x_k) \rangle$
CCCP as a majorization minimization algorithm

• To minimize f, MM algorithms build a majorization function F such that

$$f(x) \leq F(x, y) \forall x, y$$

$$f(x) = F(x, x) \forall x$$

• Do coordinate descent on F

• In our scenario

$$F(x, y) = g(x) - h(y) - \langle x - y, \nabla h(y) \rangle$$
Convergence results

- Unconstrained DC functions: Convergence to a local minimum (no rate of convergence). Bound depends on moduli of convexity. [PD Tao, LT Hoai An 97]

- Unconstrained smooth optimization: Linear or almost quadratic convergence depending on curvature [Roweis et. al 03]

- Constrained smooth optimization: Convergence without rate using Zangwill’s theory. [Lanckriet, Sriperumbudur 09]
Global convergence

• NP-hard in general: Minimizing a quadratic function with one negative eigenvalue with linear constraints. [Pardalos 91]

• Mostly branch and bound methods and cutting plane methods [H. Tuy 03, Horst and Thoai 99]

• Some successful results with low rank functions.
Cutting plane algorithm [H. Tuy 03]

- All limit points of this algorithm are global minimizers.
- Finite convergence for piecewise linear functions (Conjecture).
- Keeps track of exponentially many vertices.
Cutting plane algorithm [H. Tuy 03]

- All limit points of this algorithm are global minimizers
- Finite convergence for piecewise linear functions (Conjecture).
- Keeps track of exponentially many vertices.
Cutting plane algorithm [H. Tuy 03]

- All limit points of this algorithm are global minimizers
- Finite convergence for piecewise linear functions (Conjecture).
- Keeps track of exponentially many vertices.
Cutting plane algorithm \[\text{[H. Tuy 03]} \]

- All limit points of this algorithm are global minimizers
- Finite convergence for piecewise linear functions (Conjecture).
- Keeps track of exponentially many vertices.

\[
(x_0, t_0)
\]
Cutting plane algorithm [H. Tuy 03]

- All limit points of this algorithm are global minimizers
- Finite convergence for piecewise linear functions (Conjecture).
- Keeps track of exponentially many vertices.
Cutting plane algorithm \[\text{[H. Tuy 03]}\]

- All limit points of this algorithm are global minimizers
- Finite convergence for piecewise linear functions (Conjecture).
- Keeps track of exponentially many vertices.
Cutting plane algorithm [H. Tuy 03]

- All limit points of this algorithm are global minimizers
- Finite convergence for piecewise linear functions (Conjecture).
- Keeps track of exponentially many vertices.
Cutting plane algorithm [H. Tuy 03]

- All limit points of this algorithm are global minimizers
- Finite convergence for piecewise linear functions (Conjecture).
- Keeps track of exponentially many vertices.
Cutting plane algorithm \cite{H.Tuy 03}

- All limit points of this algorithm are global minimizers
- Finite convergence for piecewise linear functions (Conjecture).
- Keeps track of exponentially many vertices.
Cutting plane algorithm \[H. Tuy 03\]

- All limit points of this algorithm are global minimizers.
- Finite convergence for piecewise linear functions (Conjecture).
- Keeps track of exponentially many vertices.
Cutting plane algorithm [H. Tuy 03]

- All limit points of this algorithm are global minimizers.
- Finite convergence for piecewise linear functions (Conjecture).
- Keeps track of exponentially many vertices.
Cutting plane algorithm [H. Tuy 03]

- All limit points of this algorithm are global minimizers.
- Finite convergence for piecewise linear functions (Conjecture).
- Keeps track of exponentially many vertices.
Cutting plane algorithm [H. Tuy 03]

- All limit points of this algorithm are global minimizers
- Finite convergence for piecewise linear functions (Conjecture).
- Keeps track of exponentially many vertices.
Cutting plane algorithm \cite{H.Tuy 03}

- All limit points of this algorithm are global minimizers
- Finite convergence for piecewise linear functions (Conjecture).
- Keeps track of exponentially many vertices.
• All limit points of this algorithm are global minimizers
• Finite convergence for piecewise linear functions (Conjecture).
• Keeps track of exponentially many vertices.
Cutting plane algorithm \cite{H.Tuy 03}

- All limit points of this algorithm are global minimizers.
- Finite convergence for piecewise linear functions (Conjecture).
- Keeps track of exponentially many vertices.
Cutting plane algorithm\cite{H.Tuy 03}

\begin{itemize}
 \item All limit points of this algorithm are global minimizers
 \item Finite convergence for piecewise linear functions (Conjecture).
 \item Keeps track of exponentially many vertices.
\end{itemize}
Cutting plane algorithm [H. Tuy 03]

- All limit points of this algorithm are global minimizers
- Finite convergence for piecewise linear functions (Conjecture).
- Keeps track of exponentially many vertices.
Branch and bound. [Hoarst and Thoai 99]

• Main idea is to keep upper and lower bounds of $g - h$ on simplices S_k.

• Upper bound: Evaluate $g(x_k) - h(x_k)$ for $x_k \in S_k$. Use DCA as subroutine for better bounds.

• Lower bound: If $(v_i)_{i=1}^{n+1}$ are the vertices of S_k and $x = \sum_{i=1}^{n+1} \alpha_i v_i$. Solve

$$\min_{\alpha} g\left(\sum \alpha_i v_i\right) - \sum \alpha_i h(v_i)$$
Low rank optimization and polynomial guarantees [Goyal and Ravi 08]

- A function $f : \mathbb{R}^n \to \mathbb{R}$ has rank $k \ll n$ if there exists $g : \mathbb{R}^k \to \mathbb{R}$ and $\alpha_1, \ldots, \alpha_k \in \mathbb{R}^n$ such that $f(x) = g(\alpha_1 \cdot x, \ldots, \alpha_k \cdot x)$

- Most examples in Economy literature.

- For a quasi-concave function f we want to solve $\min_{x \in C} f(x)$.

- Can always transform DC programs to this type of problem.
Algorithm

• Let g satisfy the following conditions.
 ‣ The gradient $\nabla g(y) \geq 0$
 ‣ $g(\lambda y) \leq \lambda^c g(y)$ for all $\lambda > 1$ and some c
 ‣ $\alpha_i \cdot x > 0$ for all $x \in P$

• There is an algorithm that finds \tilde{x} with $f(\tilde{x}) \leq (1 + \epsilon)f(x^*)$ in $O\left(\frac{c^k}{\epsilon^k}\right)$
Further reading

- Farkas type results and duality for DC programs with convex constraints. [Dinh et. al 13]

- On DC functions and mappings [Duda et. al 01]
Open problems

• Local rate of convergence for constrained DC programs.

• Is there a condition under which DCA finds global optima. For instance \(g - h \) might not be convex but \(h^* - g^* \) might.

• Finite convergence of cutting plane methods.
References

References

