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Kernel methods. 
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• learning bounds. 
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Kernel Methods
Features                       implicitly defined via the choice of a 
PDS kernel  

    interpreted as a similarity measure. 

Flexibility: PDS kernel can be chosen arbitrarily. 

Help extend a variety of algorithms to non-linear 
predictors, e.g., SVMs, KRR, SVR, KPCA. 

PDS condition directly related to convexity of optimization 
problem.
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� : X � H
K

�x, y � X, �(x) · �(y) = K(x, y).
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Example - Polynomial Kernels
Definition:

Example: for            and          ,
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Other Standard PDS Kernels
Gaussian kernels:  

• Normalized kernel of 

Sigmoid Kernels:
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K(x, y) = tanh(a(x · y) + b), a, b � 0.

K(x, y) = exp
�
� ||x� y||2

2�2

�
, � �= 0.

(x,x�) �� exp
�
x·x�

�2

�
.
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SVM
Primal: 

Dual:
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min
w,b

1
2
�w�2 + C

m�

i=1

�
1� yi(w · �K(xi) + b)

�

+
.

max
�

m�

i=1

�i �
1
2

m�

i,j=1

�i�jyiyjK(xi, xj)

subject to: 0 � �i � C �
m�

i=1

�iyi = 0, i � [1, m].

(Cortes and Vapnik, 1995; Boser, Guyon, and Vapnik, 1992)
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Kernel Ridge Regression
Primal: 

Dual:
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(Hoerl and Kennard, 1970; Sanders et al., 1998)

max
��Rm

���(K + �I)� + 2��y.

min
w

��w�2 +
m�

i=1

(w · �K(xi) + b� yi)
2 .



pageAdvanced Machine Learning - Mohri@

Questions
How should the user choose the kernel? 

• problem similar to that of selecting features for other 
learning algorithms. 

• poor choice         learning made very difficult. 

• good choice         even poor learners could succeed. 

The requirement from the user is thus critical. 

• can this requirement be lessened? 

• is a more automatic selection of features possible?

11
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Outline
Kernel methods. 
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• scenario. 

• learning bounds. 
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Standard Learning with Kernels
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Learning Kernel Framework
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Kernel Families
Most frequently used kernel families,           , 

Hypothesis sets:  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Relation between Norms
Lemma: for                             , the following holds: 

Proof: for the left inequalities, observe that for            , 

• Right inequalities follow immediately Hölder’s inequality:
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Single Kernel Guarantee
Theorem: fix          . Then, for any          , with probability at 
least          , the following holds for all              ,
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�>0 �>0
1�� h�H1

(Koltchinskii and Panchenko, 2002)

R(h) � �R�(h) +
2
�

�
Tr[K]
m

+

�
log 1

�

2m
.
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Multiple Kernel Guarantee
Theorem: fix          . Let                with                  . Then, for 
any          , with probability at least         , the following holds 
for all              and any integer                :
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�>0
�>0 1��

(Cortes, MM, and Rostamizadeh, 2010)

h�Hq

q, r � 1 1
q + 1

r =1

u = (Tr[K1], . . . , Tr[Kp])�with                                                    .

1�s�r

R(h)  bR⇢(h) +
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⇢

p
skuks
m

+

s
log 1

�

2m
,
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Proof
Let                with                 .
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Lemma
Lemma: Let     be a kernel matrix for a finite sample. Then, 
for any integer   , 

Proof: combinatorial argument.

20

K
r

(Cortes, MM, and Rostamizadeh, 2010)
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Proof
For any                 ,
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L1 Learning Bound
Corollary: fix          . For any          , with probability         , the 
following holds for all             : 

• weak dependency on    . 

• bound valid for               . 

•  

22

�>0 �>0 1��
(Cortes, MM, and Rostamizadeh, 2010)

h�H1
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Tr[Kk] � m max
x
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⇢
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.
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Proof
For            , the bound holds for any integer  

The function                 reaches it minimum at          .
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Lower Bound
Tight bound: 

• dependency               cannot be improved. 

• argument based on VC dimension or example. 

Observations: case                         . 

• canonical projection kernels                                 . 

•      contains                                                                       . 

•                                          . 

• for          and            ,                          . 

• VC lower bound:                                         .

24

�
log p

X={-1,+1}p

Kk(x,x�)=xkx�
k

VCdim(Jp)=�(log p)
�=1 h�Jp

Jp ={x ��sxk : k� [1, p], s�{-1,+1}}

�R�(h)= �R(h)
�

��
VCdim(Jp)/m

�

H1
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Pseudo-Dimension Bound
Assume that for all                                              . Then, for   
any          , with probability at least         , for any             , 

• bound additive in    (modulo log terms). 

• not informative for            . 

• based on pseudo-dimension of kernel family. 

• similar guarantees for other families.

�>0 1��

(Srebro and Ben-David, 2006)

p

25

k ⇥ [1, p], Kk(x, x)�R2

R(h) � �R�(h) +

⇥

8
2 + p log 128em3R2

�2p + 256R2

�2 log �em
8R log 128mR2

�2 + log(1/�)
m

.

p>m

h�H1
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Comparison

�/R= .2

26
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Lq Learning Bound
Corollary: fix          . Let                with                  . Then, for 
any          , with probability at least         , the following holds 
for all              : 

• mild dependency on     . 

•  

27

�>0
�>0 1��

(Cortes, MM, and Rostamizadeh, 2010)

h�Hq

q, r � 1 1
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Lower Bound
Tight bound: 

• dependency        cannot be improved. 

• in particular       tight for      regularization. 

Observations: equal kernels. 

•                                                        . 

• thus,                                                      for                          . 

•                                                 (Hölder’s inequality). 

•      coincides with                                                  .
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Outline
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General LK Formulation - SVMs
Notation: 

•    set of PDS kernel functions. 

•     kernel matrices associated to    , assumed convex. 

•                     diagonal matrix with                . 

Optimization problem: 

• convex problem: function linear in     , convexity of 
pointwise maximum.

30

Y�Rm�m Yii =yi

K

K
K K

min
K�K

max
�

2 ��1���Y�KY�

subject to: 0 � � � C ���y = 0.
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Parameterized LK Formulation
Notation: 

•                  parameterized set of PDS kernel functions. 

•    convex set,                concave function. 

•                     diagonal matrix with                . 

Optimization problem: 

• convex problem: function convex in    , convexity of 
pointwise maximum.

31

Y�Rm�m Yii =yi

(Kµ)µ��

� µ ��Kµ

min
µ��

max
�

2 ��1���Y�KµY�

subject to: 0 � � � C ���y = 0.

µ
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Non-Negative Combinations
                                    ,                . 

By von Neumann’s generalized minimax theorem 
(convexity wrt     , concavity wrt     ,       convex and  
compact,     convex and compact):
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µ �
A

�1

min
µ��1

max
��A

2 ��1���Y�KµY�

=max
��A

min
µ��1

2 ��1���Y�KµY�

=max
��A

2 ��1� max
µ��1

��Y�KµY�

=max
��A

2 ��1� max
k�[1,p]

��Y�KkY�.

Kµ =
�p

k=1 µkKk µ � �1
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Non-Negative Combinations
Optimization problem: in view of the previous analysis, the 
problem can be rewritten as the following QCQP. 

• complexity (interior-point methods):                 .

33

(Lanckriet et al., 2004)

max
�,t

2��1� t

subject to: �k � [1, p], t � ��Y�KkY�;

0 � � � C ���y = 0.

O(pm3)
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Equivalent Primal Formulation
Optimization problem:

34

min
w,µ2�q

1

2

pX

k=1

kwkk22
µk

+ C
mX

i=1

max

(
0, 1� yi

 
pX

k=1

wk ·�k(xi)

!)
.
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Lots of Optimization Solutions
QCQP (Lanckriet et al., 2004). 

Wrapper methods — interleaving call to SVM solver and 
update of     : 

• SILP (Sonnenburg et al., 2006). 

• Reduced gradient (SimpleML) (Rakotomamonjy et al., 
2008). 

• Newton’s method (Kloft et al., 2009). 

• Mirror descent (Nath et al., 2009). 

On-line method (Orabona & Jie, 2011). 

Many other methods proposed.
35
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Does It Work?
Experiments:  

• this algorithm and its different optimization solutions 
often do not significantly outperform the simple uniform 
combination kernel in practice! 

• observations corroborated by NIPS workshops. 

Alternative algorithms: significant improvement (see 
empirical results of (Gönen and Alpaydin, 2011)). 

• centered alignment-based LK algorithms (Cortes, MM, 
and Rostamizadeh, 2010 and 2012). 

• non-linear combination of kernels  (Cortes, MM, and 
Rostamizadeh, 2009).

36
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LK Formulation - KRR
Kernel family: 

• non-negative combinations. 

• Lq regularization. 

Optimization problem: 

• convex optimization: linearity in     and convexity of 
pointwise maximum.

37

min
µ

max
�

� �����
p�

k=1

µk��Kk� + 2��y

subject to: µ � 0 � �µ� µ0�q � �.

µ

(Cortes, MM, and Rostamizadeh, 2009)
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Projected Gradient
Solving maximization problem in     , closed-form       
solution                                       , reduces problem to 

Convex optimization problem, one solution using 
projection-based gradient descent:

38

�
� = (Kµ + �I)�1y

min
µ

y�(Kµ + �I)�1y

subject to: µ � 0 � �µ� µ0�2 � �.

�F

�µk
= Tr

�
�y�(Kµ + �I)�1y

�(Kµ + �I)
�(Kµ + �I)

�µk

�

=� Tr
�
(Kµ + �I)�1yy�(Kµ + �I)�1 �(Kµ + �I)

�µk

�

=� Tr
�
(Kµ + �I)�1yy�(Kµ + �I)�1Kk

�

=� y�(Kµ + �I)�1Kk(Kµ + �I)�1y = ���Kk�.
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Proj. Grad. KRR - L2 Reg.

39

ProjectionBasedGradientDescent((Kk)k�[1,p], µ0)
1 µ� µ0

2 µ� ��
3 while �µ� � µ� > � do
4 µ� µ�

5 �� (Kµ + �I)�1y
6 µ� � µ + � (��K1�, . . . , ��Kp�)�
7 for k � 1 to p do
8 µ�

k � max(0, µ�
k)

9 µ� � µ0 + � µ��µ0
�µ��µ0�

10 return µ�
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Interpolated Step KRR - L2 Reg.

40

Simple and very efficient: few iterations (less than15).

InterpolatedIterativeAlgorithm((Kk)k�[1,p], µ0)
1 ���
2 �� � (Kµ0

+ �I)�1y
3 while ��� ��� > � do
4 �� ��

5 v� (��K1�, . . . , ��Kp�)�
6 µ� µ0 + � v

�v�
7 �� � �� + (1� �)(Kµ + �I)�1y
8 return ��
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L2-Regularized Combinations
Dense combinations are beneficial when using many 
kernels. 

Combining kernels based on single features, can be viewed 
as principled feature weighting.

41
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Conclusion
Solid theoretical guarantees suggesting the use of a large 
number of base kernels. 

Broad literature on optimization techniques but often no 
significant improvement over uniform combination. 

Recent algorithms with significant improvements, in 
particular non-linear combinations. 

Still many theoretical and algorithmic questions left to 
explore.
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