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Machine Learning Components

critical task — main focus
of ML literature
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Kernel Methods

B Features®: X — H implicitly defined via the choice of a
PDS kernel K

Ve,y € X, ®(x)- B(y) = K(z,y).
B Kinterpreted as a similarity measure.
B Flexibility: PDS kernel can be chosen arbitrarily.

B Help extend a variety of algorithms to non-linear
predictors, e.g., SVMs, KRR, SVR, KPCA.

B PDS condition directly related to convexity of optimization
problem.
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Example - Polynomial Kernels

®  Definition:
Ve, y € RY, K(x,y) = (z-y+c)% ¢>0.
B Example:forN=2andd=2,

K(z,y) = (x1y1 + T2y2 + 0)2
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XOR Problem

B Use second-degree polynomial kernel withc = 1:

\/§$1$2

L2
(—1,1) ? (1,1)
@ @
@ @
(—1,-1) (1,-1)

Linearly non-separable
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(1,1, +v2, =2, —v/2,1) t
()

(1, 1,.+\/§, +v/2,+v2,1)

O
(1,1, —v2,—v2,+v2,1)

» /211

O
(1,1, ~v2, +v/2, /2, 1)

Linearly separable by z1z2 = 0.
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Other Standard PDS Kernels

B Gaussian kernels:

T — 2
K(x,y) = exp (—H il ) o # 0.

202

* Normalized kernel of (x,x’) > exp (XX°).

o)

& Sigmoid Kernels:

K(x,y) =tanh(a(z -y) +b), a,b > 0.
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SVM

(Cortes and Vapnik, 1995; Boser, Guyon, and Vapnik, 1992)
® Primal:

min %HWHQ +OY (1w @) +0)

w,b ;
1=1

R
B Dual:

ma,x E ozz—— E ;oYY K (i, x5)

,Jl

subject to: 0 < a; < C' A Zaiyi = 0,7 € [1,m].
i=1
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Kernel Ridge Regression

(Hoerl and Kennard, 1970; Sanders et al., 1998)
A Primal;

min A[wl? + 3 (W Bxc(@) +b—)”.
i=1
B Dual:

max —ao' (K + M\)a + 2a'y.
aclR™
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Questions

B How should the user choose the kernel?

* problem similar to that of selecting features for other
learning algorithms.

® poor choice=—>»learning made very difficult.

®* good choice—>even poor learners could succeed.

B The requirement from the user is thus critical.
® can this requirement be lessened?

® s amore automatic selection of features possible?
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Standard Learning with Kernels

.8

algorithm
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Learning Kernel Framework
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algorithm
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Kernel Families

m Most frequently used kernel families, ¢ > 1,

4 _,ul_ N

p
Ke=<SKp: Kp=)» mKpp=|:|€As¢
\ k=1 | Mp | J

with A, = {u >0, ||l = 1}.

B Hypothesis sets:

Hq:{h cHg: K € Ko, |hlu, g1}.
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Relation between Norms

® Lemma:for p,q € (0, +oc], the following holds:
vx € RY,p<q= |zl < llzll, < N#77 |z,

| Proof: for the left inequalities, observe that for x # 0,

] 5[] = S [ -

- 2| x|,
<1

* Rightinequalities follow immediately Holder’s inequality:

x|l = Z’xi’p} < (Z(!xi!pﬁ) (Z(l)‘ﬂ”) :HxHqN%—%.

Sl L
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Single Kernel Guarantee

(Koltchinskii and Panchenko, 2002)
m Theorem: fix p>0. Then, for any 0 > 0, with probability at

least 1 — 4, the following holds for all he Hq,

2 \/Tr[K] log 3
0 m 2m
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Multiple Kernel Guarantee

(Cortes, MM, and Rostamizadeh, 2010)
B Theorem: fixp>0. Let g,r > 1with %—l—%: 1. Then, for
any o0 >0, with probability at least1 — 9, the following holds
forall h€ H,and any integerl <s<r:

withu = (Tr[K4],..., Tr[K,]) "

Advanced Machine Learning - Mohri@ page 18



Proof
B letqg,r > 1With%—|—%:1.

Rs(H,) = —E _ sup Zazh(a}z)}

m o L
heHq ;—;

m

o L

mo L peA;,aTK, a<ll

= —E | sup \/O‘TK“(T}
m o - pueEA,

:—E_ sup \/u-ua}

m (o) —uEAq

— iE :\/ HU—GHT}'
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= —E sup Z JiajKM(xi,:cj)}

= —E sup O'TK“(X} = — <0',04>K1/2}

ma pElgllall 1/2<1
s

(Cauchy-Schwarz)
(6'Kio,...,0 'K,0)")]

(definition of dual norm)
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Lemma

(Cortes, MM, and Rostamizadeh, 2010)
B Lemma: Let Kbe a kernel matrix for a finite sample. Then,

for any integer 7,

E [(O'TKO')T} < (7“ Tr[K])T.

p —

B Proof: combinatorial argument.
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Proof

B Foranyl<s<r,

1 I s
= —E [Z(UTKkU)S] }

et =

1 & 3
< — [E [Z(JTKkJ)S]] " (Jensen’s inequality)

m Lo

k=1

1T °E
< L —Ep: (STr[K ])S] g - “lul (lemma)
S m g m '
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L1 Learning Bound

(Cortes, MM, and Rostamizadeh, 2010)
®m Corollary: fix p>0. For any 0 > 0, with probability 1 — 4, the
following holds for all h € Hj:

p
o felesrl gl
R(R) < Ry(h) + =

0 m 2m

® weak dependency on p.

® boundvalid forp > m.
o TrKy| < mmax Ki(x,x).
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Proof

B For g = 1, the bound holds for any integer s > 1

S 2 /slulls  [logs
R(h) < R,(h — | )
(h) < Ryl + 2 Y2 2
- 11 o
ith — TrKL|°| < sps Tr K|
with s||ul|s = s l; rlKg]®| < sp ax r[ K]

=

B The function s — sp’s reaches it minimum at log p.
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Lower Bound

B Tight bound:
* dependency+/logp cannot be improved.

e argument based on VC dimension or example.

® Observations: case X={-1,+1}".
* canonical projection kernels K (x,x') =252},
* Hjcontains J,={xrsxy: ke[l,p|,se{-1,+1}}.
o VCdim(J,)=0(logp).
o forp=1landheJ,, R,(h)=R(h).
* VC lower bound: Q(1/VCdim(J?)/m).
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Pseudo-Dimension Bound

(Srebro and Ben-David, 2006)

® Assume that for allk € [1, p], Ki(z, z) < R*. Then, for
any d >0, with probability at least 1 — 9, for any h € H;,

2+ plog 12822;3}%2 + 25615—22 log 5 log 128:§R2 + log(1/9)

R(h) < R,(h) + \/ 8

m

® pound additive in p(modulo log terms).
* notinformative for p>m.
* pased on pseudo-dimension of kernel family.

® similar guarantees for other families.
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Comparison

100 -

[Srebro & Ben-David, 2006]

10 -

0.01 & [our bound, 2010]

I 1 1 I

0 5 10 15
m in Millions

p/R=.2
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Ly Learning Bound

(Cortes, MM, and Rostamizadeh, 2010)
B Corollary: fix p>0. Let g, 7 > 1with %—k%:l . Then, for
any 0 >0, with probability at least1 — 9, the following holds
forall he Hy:

9 \/rp% max,_, Tr[Ky] log %

0 m | 2m

R(h) < R,(h) +

)

>

ild dependency on p.

o TrK;] < mmax Ki(z,z).

T
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Lower Bound

B Tight bound:
* dependency p% cannot be improved.

® in particular pi tight for Loregularization.

B Observations: equal kernels.
¢ D p1 /LkKk:( 1 Mk)KL
Il = (O her ) |, for 22—y pa 70
o izl pr < P% pellq = P%(Hélder’s inequality).
* H,coincides with{h € H,: ||h|m,, < par }.

e thus,
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General LK Formulation - SVMs

@ Notation:
e [Cset of PDS kernel functions.
o K kernel matrices associated to &, assumed convex.
o Y eR™*™diagonal matrix withY;; =y;.

B QOptimization problem:

minmax 2a'l—a' Y'KYa
Kel ©

subject to: 0 < a < CAa'y =0.

e convex problem: function linear in K, convexity of
pointwise maximum.
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Parameterized LK Formulation

& Notation:
* (K, )uecn parameterized set of PDS kernel functions.
e Aconvex set, u— K, concave function.

o YR diagonal matrix withY;; =y;.

B QOptimization problem:

minmax 2o ' 1 — aTYTKH,Ya
UEA o

subject to: 0 < a < C A aTy — 0.

® convex problem: function convex in pt, convexity of
pointwise maximum.
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Non-Negative Combinations

L K,u — 22:1 ,ukKk, [ A1 .

B By von Neumann's generalized minimax theorem
(convexity wrt v, concavity wrt ¢, A1 convex and
compact, A convex and compact):

min max 2o ' 1 — aTYTKMYa

pEA] a€ A

—max min 2o ' 1 — aTYTK“Ya
ac A peAq

—max 2a' 1 — max aTYTK Yo
acA HEA1

—max 2a' 1 — max aTYTKkYa
acA ke[l,p]
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Non-Negative Combinations

(Lanckriet et al., 2004)

B Optimization problem: in view of the previous analysis, the
problem can be rewritten as the following QCQP.

max 2o 1 — ¢
ot

subject to: Vk € [1,p],t > o' Y'K.Ya:
0<a<CAa'y=0.

 complexity (interior-point methods): O(pm?).
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Equivalent Primal Formulation

B Optimization problem:

1wl - -
wfilé%q§§_: —I—C’;max 0,1 —wy; ;wk-@k(azi) .

— [k
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Lots of Optimization Solutions

B QCQP (Lanckriet et al., 2004).

® Wrapper methods — interleaving call to SVM solver and
update of p :

® SILP (Sonnenburg et al., 2006).

® Reduced gradient (SimpleML) (Rakotomamonjy et al.,
2008).

e Newton's method (Kloft et al., 2009).
* Mirror descent (Nath et al., 2009).

B On-line method (Orabona & Jie, 2011).

® Many other methods proposed.
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Does It Work?

B Experiments:

* this algorithm and its different optimization solutions
often do not significantly outperform the simple uniform
combination kernel in practice!

® observations corroborated by NIPS workshops.
B Alternative algorithms: significant improvement (see
empirical results of (Gonen and Alpaydin, 2011)).

e centered alignment-based LK algorithms (Cortes, MM,
and Rostamizadeh, 2010 and 2012).

® non-linear combination of kernels (Cortes, MM, and
Rostamizadeh, 2009).
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LK Formulation - KRR

(Cortes, MM, and Rostamizadeh, 2009)
B Kernel family:

® non-negative combinations.

® L4 regularization.

B Optimization problem:

p
minmax — A\ ' o — E ,ukaTKka + 2aTy
v (0%
k=1

subject to: p >0 A || — pgllq < A

® convex optimization: linearity in p and convexity of
pointwise maximum.
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Projected Gradient

B Solving maximization problem in o, closed-form
solution & = (K, + M) "'y, reduces problem to

min y' (K, + M)y
7
subject to: p > 0A || — pgll2 < A.

B Convex optimization problem, one solution using
projection-based gradient descent:

OF oy (K, + A\)"ly (K, + )\I)]
— =T1r
Ofik I(K, + AT) Ok
= —Tr (K, + ) tyy ' (K, +AI)7* 8(K5M—|— AI)]
k

=—Tr (K, + D) lyy ' (K, + M) 7' Ky]

=y (K, + M) 'Kp(K, + M) 'y = —a' Ka.
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Proj. Grad. KRR - L, Reg.

PROJECTIONBASEDGRADIENTDESCENT ((K)ke[1,p]5 Ho)
1 p— py
p' — o0
while ||p/ — p|| > € do
po—p
a— (K, + M)ty
pw—p+na'Ka,...,a'K,a)'
for kK — 1 to p do
py, — max(0, py )
ph o + Al
return g’

O© OO0 = O O = W N

p—t
-

Advanced Machine Learning - Mohri@ page 39



Interpolated Step KRR - L, Reg.

INTERPOLATEDITERATIVEALGORITHM (K ) k1 p5 o)
Q <— OO
o — (K, + )7y
while ||a’ — al| > € do
a— o
v (a'Kia,...,a'K,a)'

O ~J O O i W N

return o’

Simple and very efficient: few iterations (less thanl5).
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L>-Regularized Combinations

(Cortes, MM, and Rostamizadeh, 2009)

B Dense combinations are beneficial when using many
kernels.

B Combining kernels based on single features, can be viewed
as principled feature weighting.
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Conclusion

B Solid theoretical guarantees suggesting the use of a large
number of base kernels.

B Broad literature on optimization techniques but often no
significant improvement over uniform combination.

B Recent algorithms with significant improvements, in
particular non-linear combinations.

® Still many theoretical and algorithmic questions left to
explore.
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