Advanced Machine Learning

 Learning KernelsMEHRYAR MOHRI

Outline

- Kernel methods.
- Learning kernels
- scenario.
- learning bounds.
- algorithms.

Machine Learning Components

Machine Learning Components

Kernel Methods

- Features $\boldsymbol{\Phi}: X \rightarrow \mathbb{H}$ implicitly defined via the choice of a PDS kernel K

$$
\forall x, y \in X, \quad \Phi(x) \cdot \Phi(y)=K(x, y)
$$

- K interpreted as a similarity measure.
- Flexibility: PDS kernel can be chosen arbitrarily.
- Help extend a variety of algorithms to non-linear predictors, e.g., SVMs, KRR, SVR, KPCA.
- PDS condition directly related to convexity of optimization problem.

Example - Polynomial Kernels

Definition:

$$
\forall x, y \in \mathbb{R}^{N}, K(x, y)=(x \cdot y+c)^{d}, \quad c>0
$$

Example: for $N=2$ and $d=2$,

$$
\begin{aligned}
K(x, y) & =\left(x_{1} y_{1}+x_{2} y_{2}+c\right)^{2} \\
& =\left[\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
\sqrt{2} x_{1} x_{2} \\
\sqrt{2 c} x_{1} \\
\sqrt{2 c} x_{2} \\
c
\end{array}\right] \cdot\left[\begin{array}{c}
y_{1}^{2} \\
y_{2}^{2} \\
\sqrt{2} y_{1} y_{2} \\
\sqrt{2 c} y_{1} \\
\sqrt{2 c} y_{2} \\
c
\end{array}\right] .
\end{aligned}
$$

XOR Problem

- Use second-degree polynomial kernel with $c=1$:

Linearly non-separable Linearly separable by $x_{1} x_{2}=0$.

Other Standard PDS Kernels

- Gaussian kernels:

$$
K(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right), \sigma \neq 0 .
$$

- Normalized kernel of $\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \mapsto \exp \left(\frac{\mathbf{x} \cdot \mathbf{x}^{\prime}}{\sigma^{2}}\right)$.
- Sigmoid Kernels:

$$
K(x, y)=\tanh (a(x \cdot y)+b), a, b \geq 0 .
$$

SVM

(Cortes and Vapnik, 1995; Boser, Guyon, and Vapnik, 1992)

- Primal:

$$
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{m}\left(1-y_{i}\left(\mathbf{w} \cdot \mathbf{\Phi}_{K}\left(x_{i}\right)+b\right)\right)_{+} .
$$

- Dual:

$$
\max _{\alpha} \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right)
$$

$$
\text { subject to: } 0 \leq \alpha_{i} \leq C \wedge \sum_{i=1}^{m} \alpha_{i} y_{i}=0, i \in[1, m]
$$

Kernel Ridge Regression

(Hoerl and Kennard, 1970; Sanders et al., 1998)

- Primal:

$$
\min _{\mathbf{w}} \lambda\|\mathbf{w}\|^{2}+\sum_{i=1}^{m}\left(\mathbf{w} \cdot \mathbf{\Phi}_{K}\left(x_{i}\right)+b-y_{i}\right)^{2} .
$$

- Dual:

$$
\max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}}-\boldsymbol{\alpha}^{\top}(\mathbf{K}+\lambda \mathbf{I}) \boldsymbol{\alpha}+2 \boldsymbol{\alpha}^{\top} \mathbf{y}
$$

Questions

- How should the user choose the kernel?
- problem similar to that of selecting features for other learning algorithms.
- poor choice \longrightarrow learning made very difficult.
- good choice \longrightarrow even poor learners could succeed.
- The requirement from the user is thus critical.
- can this requirement be lessened?
- is a more automatic selection of features possible?

Outline

- Kernel methods.
- Learning kernels
- scenario.
- learning bounds.
- algorithms.

Standard Learning with Kernels

Learning Kernel Framework

Kernel Families

- Most frequently used kernel families, $q \geq 1$,

$$
\mathcal{K}_{q}=\left\{K_{\boldsymbol{\mu}}: K_{\boldsymbol{\mu}}=\sum_{k=1}^{p} \mu_{k} K_{k}, \boldsymbol{\mu}=\left[\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{p}
\end{array}\right] \in \Delta_{q}\right\}
$$

with $\Delta_{q}=\left\{\boldsymbol{\mu}: \boldsymbol{\mu} \geq 0,\|\boldsymbol{\mu}\|_{q}=1\right\}$.

- Hypothesis sets:

$$
H_{q}=\left\{h \in \mathbb{H}_{K}: K \in \mathcal{K}_{q},\|h\|_{\mathbb{H}_{K}} \leq 1\right\}
$$

Relation between Norms

- Lemma: for $p, q \in(0,+\infty]$, the following holds:

$$
\forall \mathbf{x} \in \mathbb{R}^{N}, p \leq q \Rightarrow\|x\|_{q} \leq\|x\|_{p} \leq N^{\frac{1}{p}-\frac{1}{q}}\|x\|_{q}
$$

- Proof: for the left inequalities, observe that for $\mathbf{x} \neq 0$,

$$
\left[\frac{\|\mathbf{x}\|_{p}}{\|\mathbf{x}\|_{q}}\right]^{p}=\sum_{i=1}^{N}[\underbrace{\frac{\left|x_{i}\right|}{\|\mathbf{x}\|_{q}}}_{\leq 1}]^{p} \geq \sum_{i=1}^{N}\left[\frac{\left|x_{i}\right|}{\|\mathbf{x}\|_{q}}\right]^{q}=1
$$

- Right inequalities follow immediately Hölder's inequality:

$$
\|\mathbf{x}\|_{p}=\left[\sum_{i=1}^{N}\left|x_{i}\right|^{p}\right]^{\frac{1}{p}} \leq\left[\left(\sum_{i=1}^{N}\left(\left|x_{i}\right|^{p}\right)^{\frac{q}{p}}\right)^{\frac{p}{q}}\left(\sum_{i=1}^{N}(1)^{\frac{q}{q-p}}\right)^{1-\frac{p}{q}}\right]^{\frac{1}{p}}=\|\mathbf{x}\|_{q} N^{\frac{1}{p}-\frac{1}{q}} .
$$

Single Kernel Guarantee

(Koltchinskii and Panchenko, 2002)

- Theorem: fix $\rho>0$. Then, for any $\delta>0$, with probability at least $1-\delta$, the following holds for all $h \in H_{1}$,

$$
R(h) \leq \widehat{R}_{\rho}(h)+\frac{2}{\rho} \frac{\sqrt{\operatorname{Tr}[\mathbf{K}]}}{m}+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}}
$$

Multiple Kernel Guarantee

(Cortes, MM, and Rostamizadeh, 2010)

- Theorem: fix $\rho>0$. Let $q, r \geq 1$ with $\frac{1}{q}+\frac{1}{r}=1$. Then, for any $\delta>0$, with probability at least $1-\delta$, the following holds for all $h \in H_{q}$ and any integer $1 \leq s \leq r$:

$$
R(h) \leq \widehat{R}_{\rho}(h)+\frac{2}{\rho} \frac{\sqrt{s\|\mathbf{u}\|_{s}}}{m}+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}}
$$

with $\mathbf{u}=\left(\operatorname{Tr}\left[\mathbf{K}_{1}\right], \ldots, \operatorname{Tr}\left[\mathbf{K}_{p}\right]\right)^{\top}$.

Dro f

- Let $q, r \geq 1$ with $\frac{1}{q}+\frac{1}{r}=1$.

$$
\begin{align*}
& \widehat{\mathfrak{R}}_{S}\left(H_{q}\right)=\frac{1}{m} \underset{\boldsymbol{\sigma}}{\mathrm{E}}\left[\sup _{h \in H_{q}} \sum_{i=1}^{m} \sigma_{i} h\left(x_{i}\right)\right] \\
&=\frac{1}{m} \underset{\boldsymbol{\sigma}}{\mathrm{E}}\left[\sup _{\boldsymbol{\mu} \in \Delta_{q}, \boldsymbol{\alpha}^{\top} \mathbf{K}_{\mu} \boldsymbol{\alpha} \leq 1} \sum_{i, j=1}^{m} \sigma_{i} \alpha_{j} K_{\boldsymbol{\mu}}\left(x_{i}, x_{j}\right)\right] \\
&=\frac{1}{m} \underset{\boldsymbol{\sigma}}{\mathrm{E}}\left[\sup _{\boldsymbol{\mu} \in \Delta_{q}, \boldsymbol{\alpha}^{\top} \mathbf{K}_{\mu} \boldsymbol{\alpha} \leq 1} \boldsymbol{\sigma}^{\top} \mathbf{K}_{\boldsymbol{\mu}} \boldsymbol{\alpha}\right]=\frac{1}{m} \underset{\boldsymbol{\sigma}}{\mathrm{E}}\left[\sup _{\boldsymbol{\mu} \in \Delta_{q},\|\boldsymbol{\alpha}\|_{\mathbf{K}_{\mu}^{1 / 2}} \leq 1}\langle\boldsymbol{\sigma}, \boldsymbol{\alpha}\rangle_{\mathbf{K}_{\mu}^{1 / 2}}\right] \\
&=\frac{1}{m} \underset{\boldsymbol{\sigma}}{\mathrm{E}}\left[\sup _{\boldsymbol{\mu} \in \Delta_{q}} \sqrt{\boldsymbol{\sigma}^{\top} \mathbf{K}_{\boldsymbol{\mu}} \boldsymbol{\sigma}}\right] \quad \quad(\text { Cauchy-Schwarz) } \tag{Cauchy-Schwarz}\\
&\left.=\frac{1}{m} \underset{\boldsymbol{\sigma}}{\mathrm{E}}\left[\sup _{\boldsymbol{\mu} \in \Delta_{q}} \sqrt{\boldsymbol{\mu} \cdot \mathbf{u}_{\boldsymbol{\sigma}}}\right] \quad\left[\mathbf{u}_{\boldsymbol{\sigma}}=\left(\boldsymbol{\sigma}^{\top} \mathbf{K}_{1} \boldsymbol{\sigma}, \ldots, \boldsymbol{\sigma}^{\top} \mathbf{K}_{p} \boldsymbol{\sigma}\right)^{\top}\right)\right] \\
&=\frac{1}{m} \underset{\boldsymbol{\sigma}}{\mathrm{E}}\left[\sqrt{\left\|\mathbf{u}_{\boldsymbol{\sigma}}\right\|_{r}}\right] . \\
& \quad \text { (definition of dual norm) }
\end{align*}
$$

Lemma

(Cortes, MM, and Rostamizadeh, 2010)

- Lemma: Let \mathbf{K} be a kernel matrix for a finite sample. Then, for any integer r,

$$
\underset{\boldsymbol{\sigma}}{\mathrm{E}}\left[\left(\boldsymbol{\sigma}^{\top} \mathbf{K} \boldsymbol{\sigma}\right)^{r}\right] \leq(r \operatorname{Tr}[\mathbf{K}])^{r} .
$$

■ Proof: combinatorial argument.

Proof

- For any $1 \leq s \leq r$, $\widehat{\mathfrak{R}}_{S}\left(H_{q}\right)=\frac{1}{m} \underset{\boldsymbol{\sigma}}{\mathrm{E}}\left[\sqrt{\left\|\mathbf{u}_{\boldsymbol{\sigma}}\right\|_{r}}\right]$

$$
\begin{aligned}
& \leq \frac{1}{m} \underset{\boldsymbol{\sigma}}{\mathrm{E}}\left[\sqrt{\left\|\mathbf{u}_{\boldsymbol{\sigma}}\right\|_{s}}\right] \\
& =\frac{1}{m} \underset{\boldsymbol{\sigma}}{\mathrm{E}}\left[\left[\sum_{k=1}^{p}\left(\boldsymbol{\sigma}^{\top} \mathbf{K}_{k} \boldsymbol{\sigma}\right)^{s}\right]^{\frac{1}{2 s}}\right] \\
& \leq \frac{1}{m}\left[\underset{\boldsymbol{\sigma}}{\mathrm{E}}\left[\sum_{k=1}^{p}\left(\boldsymbol{\sigma}^{\top} \mathbf{K}_{k} \boldsymbol{\sigma}\right)^{s}\right]\right]^{\frac{1}{2 s}} \text { (Jensen's inequality) }
\end{aligned}
$$

$$
=\frac{1}{m}\left[\sum_{k=1}^{p} \underset{\boldsymbol{\sigma}}{\mathrm{E}}\left[\left(\boldsymbol{\sigma}^{\top} \mathbf{K}_{k} \boldsymbol{\sigma}\right)^{s}\right]\right]^{\frac{1}{2 s}}
$$

$$
\begin{equation*}
\leq \frac{1}{m}\left[\sum_{k=1}^{k \overline{\bar{p}}}\left(s \operatorname{Tr}\left[\mathbf{K}_{k}\right]\right)^{s}\right]^{\frac{1}{2 s}}=\frac{\sqrt{s\|\mathbf{u}\|_{s}}}{m} \tag{lemma}
\end{equation*}
$$

L_{1} Learning Bound

(Cortes, MM, and Rostamizadeh, 2010)

- Corollary: fix $\rho>0$. For any $\delta>0$, with probability $1-\delta$, the following holds for all $h \in H_{1}$:

$$
R(h) \leq \widehat{R}_{\rho}(h)+\frac{2}{\rho} \frac{\sqrt{e\lceil\log p\rceil \max _{k=1}^{p} \operatorname{Tr}\left[\mathbf{K}_{k}\right]}}{m}+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}}
$$

- weak dependency on p.
- bound valid for $p \gg m$.
- $\operatorname{Tr}\left[\mathbf{K}_{k}\right] \leq m \max _{x} K_{k}(x, x)$.

Proof

- For $q=1$, the bound holds for any integer $s \geq 1$

$$
\begin{aligned}
R(h) & \leq \widehat{R}_{\rho}(h)+\frac{2}{\rho} \frac{\sqrt{s\|\mathbf{u}\|_{s}}}{m}+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}} \\
\text { with } s\|\mathbf{u}\|_{s} & =s\left[\sum_{k=1}^{p} \operatorname{Tr}\left[\mathbf{K}_{k}\right]^{s}\right]^{\frac{1}{s}} \leq s p^{\frac{1}{s}} \max _{k=1}^{p} \operatorname{Tr}\left[\mathbf{K}_{k}\right] .
\end{aligned}
$$

- The function $s \mapsto s p^{\frac{1}{s}}$ reaches it minimum at $\log p$.

Lower Bound

- Tight bound:
- dependency $\sqrt{\log p}$ cannot be improved.
- argument based on VC dimension or example.
- Observations: case $\mathcal{X}=\{-1,+1\}^{p}$.
- canonical projection kernels $K_{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=x_{k} x_{k}^{\prime}$.
- H_{1} contains $J_{p}=\left\{\mathbf{x} \mapsto s x_{k}: k \in[1, p], s \in\{-1,+1\}\right\}$.
- $\operatorname{VCdim}\left(J_{p}\right)=\Omega(\log p)$.
- for $\rho=1$ and $h \in J_{p}, \widehat{R}_{\rho}(h)=\widehat{R}(h)$.
- VC lower bound: $\Omega\left(\sqrt{\operatorname{VCdim}\left(J^{p}\right) / m}\right)$.

Pseudo-Dimension Bound

(Srebro and Ben-David, 2006)

- Assume that for all $k \in[1, p], K_{k}(x, x) \leq R^{2}$. Then, for any $\delta>0$, with probability at least $1-\delta$, for any $h \in H_{1}$,

$$
R(h) \leq \widehat{R}_{\rho}(h)+\sqrt{8 \frac{2+p \log \frac{128 e m^{3} R^{2}}{\rho^{2} p}+256 \frac{R^{2}}{\rho^{2}} \log \frac{\rho e m}{8 R} \log \frac{128 m R^{2}}{\rho^{2}}+\log (1 / \delta)}{m}} .
$$

- bound additive in p (modulo log terms).
- not informative for $p>m$.
- based on pseudo-dimension of kernel family.
- similar guarantees for other families.

Comparison

$$
\rho / R=.2
$$

L_{q} Learning Bound

(Cortes, MM, and Rostamizadeh, 2010)

- Corollary: fix $\rho>0$. Let $q, r \geq 1$ with $\frac{1}{q}+\frac{1}{r}=1$. Then, for any $\delta>0$, with probability at least $1-\delta$, the following holds for all $h \in H_{q}$:

$$
R(h) \leq \widehat{R}_{\rho}(h)+\frac{2}{\rho} \frac{\sqrt{r p^{\frac{1}{r}} \max _{k=1}^{p} \operatorname{Tr}\left[\mathbf{K}_{k}\right]}}{m}+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}}
$$

- mild dependency on p.
- $\operatorname{Tr}\left[\mathbf{K}_{k}\right] \leq m \max _{x} K_{k}(x, x)$.

Lower Bound

- Tight bound:
- dependency $p^{\frac{1}{2 r}}$ cannot be improved.
- in particular $p^{\frac{1}{4}}$ tight for L_{2} regularization.
- Observations: equal kernels.
- $\sum_{k=1}^{p} \mu_{k} K_{k}=\left(\sum_{k=1}^{p} \mu_{k}\right) K_{1}$.
- thus, $\|h\|_{\mathbb{H}_{K_{1}}}^{2}=\left(\sum_{k=1}^{p} \mu_{k}\right)\|h\|_{\mathbb{H}_{K}}^{2}$ for $\sum_{k=1}^{p} \mu_{k} \neq 0$.
- $\sum_{k=1}^{p} \mu_{k} \leq p^{\frac{1}{r}}\|\boldsymbol{\mu}\|_{q}=p^{\frac{1}{r}}$ (Hölder's inequality).
- H_{q} coincides with $\left\{h \in \mathbb{H}_{K_{1}}:\|h\|_{\mathbb{H}_{K_{1}}} \leq p^{\frac{1}{2 r}}\right\}$.

Outline

- Kernel methods.
- Learning kernels
- scenario.
- learning bounds.
- algorithms.

General LK Formulation - SVMs

■ Notation:

- K set of PDS kernel functions.
- $\overline{\mathcal{K}}$ kernel matrices associated to \mathcal{K}, assumed convex.
- $\mathbf{Y} \in \mathbb{R}^{m \times m}$ diagonal matrix with $\mathbf{Y}_{i i}=\mathbf{y}_{i}$.
- Optimization problem:

$$
\begin{aligned}
& \min _{\mathbf{K} \in \overline{\mathcal{K}}} \max _{\boldsymbol{\alpha}} 2 \boldsymbol{\alpha}^{\top} \mathbf{1}-\boldsymbol{\alpha}^{\top} \mathbf{Y}^{\top} \mathbf{K Y} \boldsymbol{\alpha} \\
& \text { subject to: } \mathbf{0} \leq \boldsymbol{\alpha} \leq \mathbf{C} \wedge \boldsymbol{\alpha}^{\top} \mathbf{y}=0 .
\end{aligned}
$$

- convex problem: function linear in \mathbf{K}, convexity of pointwise maximum.

Parameterized LK Formulation

- Notation:
- $\left(K_{\mu}\right)_{\mu \in \Delta}$ parameterized set of PDS kernel functions.
- Δ convex set, $\mu \mapsto \mathbf{K}_{\mu}$ concave function.
- $\mathbf{Y} \in \mathbb{R}^{m \times m}$ diagonal matrix with $\mathbf{Y}_{i i}=\mathbf{y}_{i}$.
- Optimization problem:

$$
\begin{array}{r}
\min _{\mu \in \Delta} \max _{\boldsymbol{\alpha}} 2 \boldsymbol{\alpha}^{\top} \mathbf{1}-\boldsymbol{\alpha}^{\top} \mathbf{Y}^{\top} \mathbf{K}_{\boldsymbol{\mu}} \mathbf{Y} \boldsymbol{\alpha} \\
\text { subject to: } \mathbf{0} \leq \boldsymbol{\alpha} \leq \mathbf{C} \wedge \boldsymbol{\alpha}^{\top} \mathbf{y}=0 .
\end{array}
$$

- convex problem: function convex in $\boldsymbol{\mu}$, convexity of pointwise maximum.

Non-Negative Combinations

- $K_{\mu}=\sum_{k=1}^{p} \mu_{k} K_{k}, \mu \in \Delta_{1}$.
- By von Neumann's generalized minimax theorem (convexity wrt $\boldsymbol{\mu}$, concavity wrt $\boldsymbol{\alpha}, \Delta_{1}$ convex and compact, \mathcal{A} convex and compact):

$$
\begin{aligned}
& \min _{\mu \in \Delta_{1}} \max _{\boldsymbol{\alpha} \in \mathcal{A}} 2 \boldsymbol{\alpha}^{\top} \mathbf{1}-\boldsymbol{\alpha}^{\top} \mathbf{Y}^{\top} \mathbf{K}_{\boldsymbol{\mu}} \mathbf{Y} \boldsymbol{\alpha} \\
= & \max _{\boldsymbol{\alpha} \in \mathcal{A}} \min _{\mu \in \Delta_{1}} 2 \boldsymbol{\alpha}^{\top} \mathbf{1}-\boldsymbol{\alpha}^{\top} \mathbf{Y}^{\top} \mathbf{K}_{\boldsymbol{\mu}} \mathbf{Y} \boldsymbol{\alpha} \\
= & \max _{\boldsymbol{\alpha} \in \mathcal{A}} 2 \boldsymbol{\alpha}^{\top} \mathbf{1}-\max _{\mu \in \Delta_{1}} \boldsymbol{\alpha}^{\top} \mathbf{Y}^{\top} \mathbf{K}_{\mu} \mathbf{Y} \boldsymbol{\alpha} \\
= & \max _{\boldsymbol{\alpha} \in \mathcal{A}} 2 \boldsymbol{\alpha}^{\top} \mathbf{1}-\max _{k \in[1, p]} \boldsymbol{\alpha}^{\top} \mathbf{Y}^{\top} \mathbf{K}_{k} \mathbf{Y} \boldsymbol{\alpha} .
\end{aligned}
$$

Non-Negative Combinations

(Lanckriet et al., 2004)

- Optimization problem: in view of the previous analysis, the problem can be rewritten as the following QCQP.

$$
\begin{array}{rl}
\max _{\boldsymbol{\alpha}, t} & 2 \boldsymbol{\alpha}^{\top} \mathbf{1}-t \\
\text { subject to: } & \forall k \in[1, p], t \geq \boldsymbol{\alpha}^{\top} \mathbf{Y}^{\top} \mathbf{K}_{k} \mathbf{Y} \boldsymbol{\alpha} ; \\
& \mathbf{0} \leq \boldsymbol{\alpha} \leq \mathbf{C} \wedge \boldsymbol{\alpha}^{\top} \mathbf{y}=0
\end{array}
$$

- complexity (interior-point methods): $O\left(p m^{3}\right)$.

Equivalent Primal Formulation

- Optimization problem:

$$
\min _{w, \mu \in \Delta_{q}} \frac{1}{2} \sum_{k=1}^{p} \frac{\left\|\mathbf{w}_{k}\right\|_{2}^{2}}{\mu_{k}}+C \sum_{i=1}^{m} \max \left\{0,1-y_{i}\left(\sum_{k=1}^{p} \mathbf{w}_{k} \cdot \mathbf{\Phi}_{k}\left(x_{i}\right)\right)\right\}
$$

Lots of Optimization Solutions

■ QCQP (Lanckriet et al., 2004).

- Wrapper methods - interleaving call to SVM solver and update of μ :
- SILP (Sonnenburg et al., 2006).
- Reduced gradient (SimpleML) (Rakotomamonjy et al., 2008).
- Newton's method (Kloft et al., 2009).
- Mirror descent (Nath et al., 2009).
- On-line method (Orabona \& Jie, 2011).
- Many other methods proposed.

Does It Work?

- Experiments:
- this algorithm and its different optimization solutions often do not significantly outperform the simple uniform combination kernel in practice!
- observations corroborated by NIPS workshops.
- Alternative algorithms: significant improvement (see empirical results of (Gönen and Alpaydin, 2011)).
- centered alignment-based LK algorithms (Cortes, MM, and Rostamizadeh, 2010 and 2012).
- non-linear combination of kernels (Cortes, MM, and Rostamizadeh, 2009).

LK Formulation - KRR

(Cortes, MM, and Rostamizadeh, 2009)

- Kernel family:
- non-negative combinations.
- Lq regularization.
- Optimization problem:

$$
\begin{aligned}
& \min _{\boldsymbol{\mu}} \max _{\boldsymbol{\alpha}}-\lambda \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha}-\sum_{k=1}^{p} \mu_{k} \boldsymbol{\alpha}^{\top} \mathbf{K}_{k} \boldsymbol{\alpha}+2 \boldsymbol{\alpha}^{\top} \mathbf{y} \\
& \text { subject to: } \boldsymbol{\mu} \geq 0 \wedge\left\|\boldsymbol{\mu}-\boldsymbol{\mu}_{0}\right\|_{q} \leq \Lambda
\end{aligned}
$$

- convex optimization: linearity in $\boldsymbol{\mu}$ and convexity of pointwise maximum.

Projected Gradient

- Solving maximization problem in $\boldsymbol{\alpha}$, closed-form solution $\boldsymbol{\alpha}=\left(\mathbf{K}_{\boldsymbol{\mu}}+\lambda \mathbf{I}\right)^{-1} \mathbf{y}$, reduces problem to

$$
\min _{\boldsymbol{\mu}} \mathbf{y}^{\top}\left(\mathbf{K}_{\boldsymbol{\mu}}+\lambda \mathbf{I}\right)^{-1} \mathbf{y}
$$

$$
\text { subject to: } \boldsymbol{\mu} \geq 0 \wedge\left\|\boldsymbol{\mu}-\boldsymbol{\mu}_{0}\right\|_{2} \leq \Lambda
$$

- Convex optimization problem, one solution using projection-based gradient descent:

$$
\begin{aligned}
\frac{\partial F}{\partial \mu_{k}} & =\operatorname{Tr}\left[\frac{\partial \mathbf{y}^{\top}\left(\mathbf{K}_{\boldsymbol{\mu}}+\lambda \mathbf{I}\right)^{-1} \mathbf{y}}{\partial\left(\mathbf{K}_{\boldsymbol{\mu}}+\lambda \mathbf{I}\right)} \frac{\partial\left(\mathbf{K}_{\boldsymbol{\mu}}+\lambda \mathbf{I}\right)}{\partial \mu_{k}}\right] \\
& =-\operatorname{Tr}\left[\left(\mathbf{K}_{\boldsymbol{\mu}}+\lambda \mathbf{I}\right)^{-1} \mathbf{y} \mathbf{y}^{\top}\left(\mathbf{K}_{\boldsymbol{\mu}}+\lambda \mathbf{I}\right)^{-1} \frac{\partial\left(\mathbf{K}_{\boldsymbol{\mu}}+\lambda \mathbf{I}\right)}{\partial \mu_{k}}\right] \\
& =-\operatorname{Tr}\left[\left(\mathbf{K}_{\boldsymbol{\mu}}+\lambda \mathbf{I}\right)^{-1} \mathbf{y} \mathbf{y}^{\top}\left(\mathbf{K}_{\boldsymbol{\mu}}+\lambda \mathbf{I}\right)^{-1} \mathbf{K}_{k}\right] \\
& =-\mathbf{y}^{\top}\left(\mathbf{K}_{\boldsymbol{\mu}}+\lambda \mathbf{I}\right)^{-1} \mathbf{K}_{k}\left(\mathbf{K}_{\boldsymbol{\mu}}+\lambda \mathbf{I}\right)^{-1} \mathbf{y}=-\boldsymbol{\alpha}^{\top} \mathbf{K}_{k} \boldsymbol{\alpha} .
\end{aligned}
$$

Proj. Grad. KRR - L 2 Reg.

ProjectionBasedGradientDescent $\left(\left(\mathbf{K}_{k}\right)_{k \in[1, p]}, \boldsymbol{\mu}_{0}\right)$

$$
\begin{array}{rc}
1 & \boldsymbol{\mu} \leftarrow \boldsymbol{\mu}_{0} \\
2 & \boldsymbol{\mu}^{\prime} \leftarrow \infty \\
3 & \text { while }\left\|\boldsymbol{\mu}^{\prime}-\boldsymbol{\mu}\right\|>\epsilon \text { do } \\
4 & \boldsymbol{\mu} \leftarrow \boldsymbol{\mu}^{\prime} \\
5 & \boldsymbol{\alpha} \leftarrow\left(\mathbf{K}_{\boldsymbol{\mu}}+\lambda \mathbf{I}\right)^{-1} \mathbf{y} \\
6 & \boldsymbol{\mu}^{\prime} \leftarrow \boldsymbol{\mu}+\eta\left(\boldsymbol{\alpha}^{\top} \mathbf{K}_{1} \boldsymbol{\alpha}, \ldots, \boldsymbol{\alpha}^{\top} \mathbf{K}_{p} \boldsymbol{\alpha}\right)^{\top} \\
7 & \text { for } k \leftarrow 1 \text { to } p \text { do } \\
8 & \boldsymbol{\mu}_{k}^{\prime} \leftarrow \max \left(0, \boldsymbol{\mu}_{k}^{\prime}\right) \\
9 & \boldsymbol{\mu}^{\prime} \leftarrow \boldsymbol{\mu}_{0}+\Lambda \frac{\boldsymbol{\mu}^{\prime}-\boldsymbol{\mu}_{0}}{\left\|\boldsymbol{\mu}^{\prime}-\boldsymbol{\mu}_{0}\right\|} \\
10 & \text { return } \boldsymbol{\mu}^{\prime}
\end{array}
$$

Interpolated Step KRR - L 2 Reg.

```
InterpolatedIterativeAlgorithm \(\left(\left(\mathbf{K}_{k}\right)_{k \in[1, p]}, \boldsymbol{\mu}_{0}\right)\)
\(1 \boldsymbol{\alpha} \leftarrow \infty\)
\(2 \quad \boldsymbol{\alpha}^{\prime} \leftarrow\left(\mathbf{K}_{\boldsymbol{\mu}_{0}}+\lambda \mathbf{I}\right)^{-1} \mathbf{y}\)
\(3 \quad\) while \(\left\|\boldsymbol{\alpha}^{\prime}-\boldsymbol{\alpha}\right\|>\epsilon\) do
\(4 \quad \boldsymbol{\alpha} \leftarrow \boldsymbol{\alpha}^{\prime}\)
\(5 \quad \mathbf{v} \leftarrow\left(\boldsymbol{\alpha}^{\top} \mathbf{K}_{1} \boldsymbol{\alpha}, \ldots, \boldsymbol{\alpha}^{\top} \mathbf{K}_{p} \boldsymbol{\alpha}\right)^{\top}\)
\(6 \quad \boldsymbol{\mu} \leftarrow \boldsymbol{\mu}_{0}+\Lambda \frac{\mathbf{v}}{\|\mathbf{v}\|}\)
\(7 \quad \boldsymbol{\alpha}^{\prime} \leftarrow \eta \boldsymbol{\alpha}+(1-\eta)\left(\mathbf{K}_{\boldsymbol{\mu}}+\lambda \mathbf{I}\right)^{-1} \mathbf{y}\)
8 return \(\boldsymbol{\alpha}^{\prime}\)
```

Simple and very efficient: few iterations (less than I5).

L2-Regularized Combinations

(Cortes, MM, and Rostamizadeh, 2009)

- Dense combinations are beneficial when using many kernels.
- Combining kernels based on single features, can be viewed as principled feature weighting.

Conclusion

- Solid theoretical guarantees suggesting the use of a large number of base kernels.
- Broad literature on optimization techniques but often no significant improvement over uniform combination.
- Recent algorithms with significant improvements, in particular non-linear combinations.
- Still many theoretical and algorithmic questions left to explore.

References

- Bousquet, Olivier and Herrmann, Daniel J. L. On the complexity of learning the kernel matrix. In NIPS, 2002.
- Corinna Cortes, Marius Kloft, and Mehryar Mohri. Learning kernels using local Rademacher complexity. In Proceedings of NIPS, 2013.
- Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Learning non-linear combinations of kernels. In NIPS, 2009.
- Cortes, Corinna, Mohri, Mehryar, and Rostamizadeh, Afshin. Generalization Bounds for Learning Kernels. In ICML, 2010.
- Cortes, Corinna, Mohri, Mehryar, and Rostamizadeh, Afshin. Two-stage learning kernel methods. In ICML, 2010.
- Corinna Cortes, Mehryar Mohri, Afshin Rostamizadeh. Algorithms for Learning Kernels Based on Centered Alignment. JMLR 13: 795-828, 2012.

References

- Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Tutorial: Learning Kernels. ICML 2011, Bellevue, Washington, July 2011.
- Zakria Hussain, John Shawe-Taylor. Improved Loss Bounds For Multiple Kernel Learning. In AISTATS, 2011 [see arxiv for corrected version].
- Sham M. Kakade, Shai Shalev-Shwartz, Ambuj Tewari: Regularization Techniques for Learning with Matrices. JMLR 13: 1865-1890, 2012.
- Koltchinskii, V. and Panchenko, D. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30, 2002.
- Koltchinskii, Vladimir and Yuan, Ming. Sparse recovery in large ensembles of kernel machines on-line learning and bandits. In COLT, 2008.

■ Lanckriet, Gert, Cristianini, Nello, Bartlett, Peter, Ghaoui, Laurent El, and Jordan, Michael. Learning the kernel matrix with semidefinite programming. JMLR, 5, 2004.

References

- Mehmet Gönen, Ethem Alpaydin: Multiple Kernel Learning Algorithms. JMLR 12: 2211-2268 (2011).
- Srebro, Nathan and Ben-David, Shai. Learning bounds for support vector machines with learned kernels. In COLT, 2006.
- Ying, Yiming and Campbell, Colin. Generalization bounds for learning the kernel problem. In COLT, 2009.

