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Problem

B [earning guarantees:

Ry = O(\/TlogN).
—p informative even for /V very large.

® Problem: computational complexity of algorithm in O (V).
Can we derive more efficient algorithms when experts
admit some structure and when loss is decomposable?
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Example: Online Shortest Path

B Problems: path experts.

* sending packets along paths
of a network with routers
(vertices); delays (losses).

® car route selection in
presence of traffic (loss).
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Outline

® RWM with Path Experts

® FPL with Path Experts
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Path Experts
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Additive Loss

A for path§ — €p2€23€34,

(&) = li(eo2) + li(ea3) + i (esq).
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RWM + Path Experts

(Takimoto and Warmuth, 2002)

B Weight update: at each round ¢, update weight of path
expert E=eq - - ey:

o wy[€] — wi_1[€] e "8 equivalent to

o Wy [62] — wt_l[ei] e_nlt(ez).

el4 wt_1[614] ¢ e—ﬁlt(€14)

B Sampling: need to make graph/automaton stochastic.
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Weight Pushing Algorithm

(MM 1997; MM, 2009)

B Weighted directed graph G = (Q, F, w)with set of initial
vertices I C () and final vertices ' C ():

e foranyq e @,

dal= > wll.

meP(q,F)
o foranye € Ewithd|orig(e)] # 0,

wle] + dforig(e)]™" - wle] - d[dest(e)].

e foranyq € [, initial weight
Agq) « d(q).
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lllustration
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Properties

®m Stochasticity: for any ¢ € Q with d|q| # 0,

wle| d|dest(e d
RCED> dideste) _ dd) _

ecFlq ec Flq] [Q]

B |nvariance: path weight preserved. Weight of path{ =e; - - - e,
from [ to F':

A(orig(er))w'[eq] - - w'[en]
wle|d|dest(eq)] wlep]d|dest(ea)]

= d|orig(eq)] dlorig(eq)] d|dest(eq)]
— wley] - - - wlep]d[dest(ey,)]
— w[el] e w[en] — w[f]
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Shortest-Distance Computation

B Acyclic case:

e special instance of a generic single-source shortest-
distance algorithm working with an arbitrary queue
discipline and any k-closed semiring (viv, 2002).

¢ linear-time algorithm with the topological order queue
discipline, O(|Q| + | E|).
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Generic Single-Source SD Algo.

(MM, 2002)
GEN-SINGLE-SOURCE(G, s)

1 fori<+ 1to |Q|do

2 d[i] < r[i] < 0

3 dls]«r[s]+1

4 Q<+ {s}

5 while Q # 0 do

6 q < HEAD(Q)

7 DEQUEUE(Q)

8 r rlg|

9 rlq] < 0
10 for each e € F[q| do
11 if d[nle]] # d|nle]] & (" ® wle]) then
12 d[nle]] < dlnle]] ® (' © wle])
13 [ e]] < rinle]] © (r' @ wle])
14 if nle] ¢ Q then
15 ENQUEUE(Q, nle])
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Shortest-Distance Computation

B General case:

o all-pairs shortest-distance algorithm in (4, X ); for all
pairs of vertices(p, q),

dlp,gl = > wlr).
T€P(p,q)
e generalization of Floyd-Warshall algorithm to non-

idempotent semirings (viv, 2002).
e time complexity in O(|Q|?), space complexity inO(|Q|?).

* alternative: approximation using generic single-source
shortest-distance algorithm (vim, 2002).
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Generic All-Pairs SD Algorithm

(MM, 2002)

GEN-ALL-PAIRS(G)

1 fori<«1to |Q|do
2 for j < 1 to |@Q| do
3 dii,jl«< B wl
eec ENP(i,5)
for k£ <+ 1 to |Q| do
for i < 1 to |Q|,7 # k do
for j < 1to |Q|,j # k do
d|i, j] < d|i, 7] ® (d[i, k] ® d|k, k]* @ d[k, j])
for i < 1 to |Q],i # k do
dlk,i] < dlk, k|* @ d[k, ]
dli, k] < d|i, k] @ d|k, k]*
dlk, k] < d[k, k]*

_ O © 00 ~J O Ot i~

—_ =

In-place version.
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Learning Guarantee

B Theorem: let N be total number of path experts and M an
upper bound on the loss of a path expert. Then, the
(expected) regret of RWM is bounded as follows:

Lr < L2 L IM+/T log N,
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Exponentiated Weighted Avg

B Computation of the prediction at each round:

7 — deP(I,F) we €]yt e
t — .
dep(],F) Wy [‘S]

® Two single-source shortest-distance computations:
e edge weight wy|e| (denominator).

o edge weight w¢|e]y:|e](numerator).
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FPL + Path Experts

B Weight update: at each round, update weight of edgee,
wele] < we_1le] + l:(e).

B Prediction: at each round, shortest path after perturbing
each edge weight:

w;[e] < wele] + pe(e),

where p; ~ U(]0, 1/6]|E|)
or p: ~ Laplacian with density f(x) =
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Learning Guarantees

B Theorem: assume that edge losses are in|0, 1]. Let l,,, be
the length of the longest path from [ to F' and M an upper
bound on the loss of a path expert. Then,

e the (expected) regret of FPL is bounded as follows:

E[R7] < 2/ lmax M |E|T < 2max/ | E|T.

* the (expected) regret of FPL* is bounded as follows:

E[Rr| < 4\/ﬁ?i”\E!lmax(1 +log |E) 4+ 4| Ellmax(1 + log | EY)
< AmaxV/T|E|(1 4 10g | E]) 4+ 4|E)lmax (1 + log | E|)
= O(lmax V' T|E|log |E]).

Advanced Machine Learning - Mohri@ page 18



Proof

B For FPL, use bound of previous lectures with
Xl — |E‘ Wl :lmax R:Mglmax-
B For FPL*, use bound of previous lecture with

X1 =|E| Wi =lnaw N =IE|.
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Computational Complexity

B For an acyclic graph:
e [" updates of all edge weights.

e 1’ runs of a linear-time single-source shortest-path.
o overall O(T(|Q| + |F|)).
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Extensions

B Component hedge algorithm (Koolen, warmuth, and Kivinen, 2010):

e optimal regret complexity: R = O(M+/T log |E|).

e special instance of mirror descent.

B Non-additive losses (Cortes, Kuznetsov, MM, Warmuth, 2015);
e extensions of RWM and FPL.

e rational and tropical losses.
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