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Abstract

Cell migration through a three-dimensional (3D) extracellular matrix (ECM) underlies impor-

tant physiological phenomena and is based on a variety of mechanical strategies depending

on the cell type and the properties of the ECM. By using computer simulations of the cell’s

mid-plane, we investigate two such migration mechanisms—‘push-pull’ (forming a finger-

like protrusion, adhering to an ECM node, and pulling the cell body forward) and ‘rear-

squeezing’ (pushing the cell body through the ECM by contracting the cell cortex and ECM

at the cell rear). We present a computational model that accounts for both elastic deforma-

tion and forces of the ECM, an active cell cortex and nucleus, and for hydrodynamic forces

and flow of the extracellular fluid, cytoplasm, and nucleoplasm. We find that relations

between three mechanical parameters—the cortex’s contractile force, nuclear elasticity,

and ECM rigidity—determine the effectiveness of cell migration through the dense ECM.

The cell can migrate persistently even if its cortical contraction cannot deform a near-rigid

ECM, but then the contraction of the cortex has to be able to sufficiently deform the nucleus.

The cell can also migrate even if it fails to deform a stiff nucleus, but then it has to be able to

sufficiently deform the ECM. Simulation results show that nuclear stiffness limits the cell

migration more than the ECM rigidity. Simulations show the rear-squeezing mechanism of

motility results in more robust migration with larger cell displacements than those with the

push-pull mechanism over a range of parameter values. Additionally, results show that the

rear-squeezing mechanism is aided by hydrodynamics through a pressure gradient.

Author summary

Computational simulations of two different mechanisms of 3D cell migration in an extra-

cellular matrix are presented. One mechanism represents a mesenchymal mode, charac-

terized by finger-like actin protrusions, while the second mode is more amoeboid in that

rear contraction of the cortex propels the cell forward. In both mechanisms, the cell gener-

ates a thin actin protrusion on the cortex that attaches to an ECM node. The cell is then
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either pulled (mesenchymal) or pushed (amoeboid) forward. Results show both mecha-

nisms result in successful migration over a range of simulated parameter values as long as

the contractile tension of the cortex exceeds either the nuclear stiffness or ECM stiffness,

but not necessarily both. However, the distance traveled by the amoeboid migration mode

is more robust to changes in parameter values, and is larger than in simulations of the

mesenchymal mode. Additionally, cells experience a favorable fluid pressure gradient

when migrating in the amoeboid mode, and an adverse fluid pressure gradient in the mes-

enchymal mode.

Introduction

The ability of cells to navigate a complex three-dimensional (3D) extracellular matrix (ECM)

is essential in the physiology of health and disease. One example of a process important for

health is fibroblasts moving through the ECM to heal wounds [1]. On the other hand, one of

the hallmarks of cancer is the migration of metastatic cancer cells across the ECM [2]. More

often than not, cells move in cohesive groups, but many physiological phenomena involve sin-

gle cell migration [3], which is our focus here. Understanding the mechanics of this migration

is a great present challenge which can be met by combining cell biological, biophysical, and

computational approaches [4].

There are a bewildering number of observed mechanical strategies of cell locomotion in

3D, reflecting the complexity and adaptability of the cell’s mechanical modules. The most

frequently described migration modes are mesenchymal and amoeboid [5], but distinctions

between these two modes are not clear-cut. In the mesenchymal mode, cells are elongated and

polarized, with protrusion activity at the short front, retraction activity at the short rear and

opposite end, and tensed long sides. In this mode, integrin-dependent adhesions are distrib-

uted all over the cell surface and are crucial for migration, as inhibition of integrin stops the

motion of the cells [6]. Cells protrude at the front, form a pseudopod, attach it firmly to ECM

fibers, and generate contraction within the pseudopod [7] and several microns behind its tip

[8]. The pseudopod can be a cylindrical lobopod in a stiff ECM or a branched, finger-like

lamellipodium in a soft matrix [6]. After the protrusion and contraction are generated, a con-

tinuous release of adhesions at the rear results in translocation of the cell body forward.

In the amoeboid mode, cells are less polarized and have a more rounded shape. They have

a more uniform distribution of cytoskeletal structures and/or membrane blebs around the

periphery [5, 6] and migrate by squeezing through the pores of the ECM. One example of

amoeboid migration is an epithelial cell moving through a 3D collagen matrix [9], where the

nucleus is observed leading the cell front. The contractile cell body trails behind, and actomyo-

sin contraction propels the nucleus forward, driving the migration of the cell. It appears from

the images in [9] that the cells generate ECM deformations which store elastic energy. The cell

propels forward when the elastic ECM deformations are released [10]. Another example of

cells harnessing ECM deformations to create locomotion was recently reported in [11].

The modes of migration are malleable: cells are able to switch from one mode to another

depending on the physical and geometric properties of the cell and ECM [5, 6, 12]. What uni-

tes these modes is that the cell’s migration in the ECM depends crucially on myosin-powered

contraction [4], which is not the case for cell migration on flat 2D surfaces [13]. In 2D, the

cell’s largest organelle, the nucleus, rides effortlessly atop the actomyosin locomotory network

[14], while inside the 3D ECM the problem of moving the bulky nucleus through the matrix

becomes the center of the cell’s mechanical effort [4, 15]. Recent work indicates that the steric
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resistance the 3D matrix presents against the forward propulsion of the nucleus is a universal

constraint for 3D cell migration [16–18]. Myosin-generated forces are critical for overcoming

this resistance.

Computational modelling is a valuable complement to experiments in the understanding

of complex cell migration mechanics. Modeling of cell motility on flat 2D surfaces is very

advanced due to a relative simplicity of 2D cell motile appendages that are amenable to

description in terms of partial differential equations [19]. 3D cell migration and respective

modeling are much more complex. In 2005, Zaman et al. proposed one of the first (highly sim-

plified) force balance models for 3D cell migration, which showed that migration progress

depends on adhesion strength and the ECM’s mechanical and geometric properties [20]. One

of the subsequent models included a continuum approach, in which each modelled cell was

simplified as a self-protrusive 3D elastic unit interacting with an elastic ECM through detach-

able bonds [21]. Other continuous mechanical models focused on the cell shape, rather than

its interactions with its deformable environment [22–24]. A few detailed, agent-based models

of migrating cells immersed in a deformable ECM included models of the ECM, cell cortex,

and membrane using networks of viscoelastic links [25, 26]. Another very recent effort investi-

gated the influence of the flow of interstitial fluid on the cell’s migration through the ECM

[10].

A few recent models started to investigate specifically the influence of the nucleus on 3D

cell migration. Sakamoto et al. [27] proposed a computational model that took into account

the viscoelastic properties of the cell body. By using a finite-element method and prescribing

cyclic protrusion of the leading edge of the cell, the authors predicted that the mesenchymal-

to-amoeboid transition is caused by a reduced adhesion and an increased switching frequency

between protrusion and contraction. A 2D mechanical model to simulate the migration of a

HeLa cell with a large deformable cell body through a micro-channel was proposed in [23].

The cellular Potts modeling framework is especially well suited for modeling mechanical

aspects of cell migration in a 3D environment, and this approach has led to visually stunning

simulations of the deforming nucleus in cells crawling through the ECM [28]. A very detailed

model of a glioma cell represented by two elastic circular curves, an inner curve corresponding

to the nucleus of the cell and an outer curve corresponding to the cell basal membrane, was

proposed in [29]. In this model, migration of the glioma cell through a tissue made of normal

cells (also represented by elastic curves) was simulated with the immersed boundary method,

with viscous fluid mediating interactions of the membranes and cortices. Last, but not least, a

comprehensive mathematical model based on an energy minimization approach was used to

investigate cell movements inside a channel composed of ECM [30]. Simulations of this model

reproduced deformations of the elastic, initially spherical nucleus into an elongated shape able

to squeeze through the channel.

These models made inroads into the general question of what the mechanical constraints

imposed by squeezing the nucleus through the ECM are on cell migration, yet the following

specific questions remain open: Given nuclear and ECM mechanical properties, how strong

should the myosin-powered contraction be to generate persistent cell locomotion? Could one

or the other locomotory mode have a mechanical advantage? What are the migration mechan-

ics if the nucleus is much stiffer than the ECM, or vice versa? What are the mechanical roles of

the nucleoplasm, cytoplasm and interstitial fluid?

In this study, we model a two-dimensional cross section of the cell as two elastic contours.

One represents the nucleus, the diameter of which is sometimes on the order of 10 μm [17,

31]. The other contour, which envelops the nucleus, represents the cell cortex. The cortex has

contractile and protrusive activities, while the nucleus does not. In some cases, the nucleus is

almost as great in size as the whole cell [31]. In this case, which we focus on, the challenge of
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propelling the nucleus through the ECM is central for cell migration. We also consider the

case when the nucleus is significantly smaller than the cell. We model the ECM as an elastic

network. Viscous fluids permeate the ECM (interstitial fluid) and fill the spaces inside the

nucleus (nucleoplasm) and between the cortex and nucleus (cytoplasm).

We model two mechanical strategies of cell migration: in one, resembling a mesenchymal

mode, the cortex makes a protrusion, the tip of which adheres to an ECM node, and then

global cortex contraction pulls the cell forward. In another, resembling one of the amoeboid

modes, the cortex makes two attachments to ECM nodes and contracts only at one side,

pushing the nucleus at that side through the ECM gaps at the opposite side. In order to

simulate the coupled fluid-structure interaction problem, the model is formulated using the

method of regularized Stokeslets [32]. In this method, the main force balance includes the

elastic and contractile forces from the cell and ECM along with viscous fluid stresses. The

fluid velocity computed by the method determines the dynamics of cell migration. We find

that the migration is successful if the contractile tension of the cell cortex is greater than the

characteristic force needed to deform either the nucleus or ECM, but not necessarily both.

Simulations reproduce the observed amoeboid and mesenchymal morphodynamics and pre-

dict that the amoeboid mode overall performs better mechanically than the mesenchymal

mode.

Materials and methods

Qualitative model description

To avoid the computational expense of 3D simulations, we consider a planar cross section of

the cell and a cross section of the ECM in the same plane around the cell. Essentially, we

approximate the dynamics as occuring in the mid-plane of the cell. This approximation is not

rigorous, so the model is, strictly speaking, 2D, but it captures the essential 3D effect of squeez-

ing the deformable cell through the deformable ECM.

In short (mathematical and computational details are described in the following subsections

and in S1 Text), the simulated cell consists of an elastic and protrusive-contractile contour,

representing the cell’s actomyosin cortex and membrane. Inside the cell is a deformable

nucleus represented by another elastic contour. The nucleus and cortex have an elastic stretch-

ing energy, which is a conventional modeling choice [29, 33]; how well this approximation

represents the cell mechanics is an open question. For example, other models of the cell have

included a bulk elasticity throughout the cytoplasm [26, 34], which would be an extension of

the model presented here. We also include a contour bending energy in some simulations (see

S1 Text), although the latter has little effect on the dynamics in most parameter regimes. The

entire cell, both nucleus and cortex, is embedded into an ECM represented by a 2D elastic

node-spring network (shown in Fig 1).

The cell and ECM network are immersed in an incompressible, viscous fluid. This implies

that the cell and nucleus are filled with fluid, with a constant volume (area) of the nucleoplasm

inside the nucleus and a constant volume of the cytosol between the nucleus and cortex. For

simplicity, the viscosities of the nucleoplasm, cytoplasm and interstitial fluid are the same, and

both the cortex and nuclear membranes are assumed impermeable to fluids, i.e., each satisfies

a no-slip boundary condition at the fluid/contour interface. The fluid incompressibility com-

bined with the assumption of impermeability means the 2D cell area is approximately con-

served over time, and there is no flow across the cortex/nucleus boundary.

The fundamental force balance in the model is implemented as follows: a net elastic/protru-

sive/contractile force at each node of the nucleus, cortex and ECM is applied to the fluid. The

fluid’s velocity and pressure are then calculated by solving the Stokes equations using the
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method of regularized Stokeslets [32]. This method relies on the linearity of the Stokes equa-

tions and involves using the free space Green’s function for Stokes flow to compute the velocity

and pressure distribution generated by a collection of regularized point forces. The regulariza-

tion parameter, �, controls the width of the force regularization. Explicit formulas for the

velocity and pressure are given in Section S1 of S1 Text. Because all of the nodes move with the

computed fluid velocity, the ECM nodes do not penetrate the cortex, and the nodes of the cor-

tex do not penetrate the nucleus up to discretization errors.

We model two motile strategies. One of them loosely resembles mesenchymal locomotion,

during which cells migrate by forming a long, finger-like protrusion from the cell body into

the ECM and generate traction forces behind the tip of the protrusion [8]. In the model, the

cell first generates a finger-like protrusion that adheres to an ECM node. Then, global contrac-

tion of the cortex pulls the nucleus and cortex forward, ending the motile cycle. Fig 2I shows a

schematic of this mode.

Another motile strategy loosely resembles one of the amoeboid modes. In this mode, the

cortex first makes two protrusions that attach to two ECM nodes, and the half of the cortex

behind the nucleus contracts. This cortex contraction squeezes the nucleus forward through

the ECM network [9, 16, 35]. Fig 2II shows a schematic of this mode.

We now describe the model equations governing mechanics of the ECM, cortex and

nucleus, as well as the dynamic processes of the two motility mechanisms. The fluid mechanics

that couple the solid deformations of the ECM, cortex, and nucleus to the fluid are described

in Section S1 of S1 Text.

Extracellular matrix

Our model ECM is composed of elastic fibers that are immersed in fluid and linked by virtual

springs. We use the term “virtual” to indicate that the springs connecting the nodes do not ste-

rically inhibit cell migration. Rather, we assume that cells interact only with the ECM nodes,

and that the springs between the ECM nodes only provide restoring forces to the nodes. Thus,

we treat the ECM simply as a collection of point-nodes and form a lattice by triangulating

Fig 1. Sample ECMs used for cell motility simulations. The ECMs are generated on the box (x, y) 2 [0, 4] × [−2, 2] (lengthscale

units are in cell diameter). Blue points show the network, and black dotted lines show the spring connections The sparse network

in (a) has 20 nodes, and the dense network in (b) has 60 nodes.

https://doi.org/10.1371/journal.pcbi.1008160.g001
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Fig 2. Stages of motility for the push-pull and rear-squeezing mechanisms of motility. The position of the cortex (green), nucleus (magenta), ECM nodes (blue),

and applied forces (black arrows) are shown at several times values increasing from left to right and up to down. For panels in I, a random protrusion appears on the

cortex (a) and extends until it comes into contact with an ECM node in (b). The cortex then becomes extremely stiff, which initially pulls the ECM node towards the

cell in (c) and (d). Forces due to ECM elasticity eventually balance cellular forces to result in translocation of the entire cell (e). After coming to rest close to the node,

the cell releases the node and the node moves away (f). The system is then allowed to re-equilibrate. Panels in II show the stages of motility when the cell uses rear

contraction. Two protrusions form on the front (right) edge of the cell cortex in (a), then extend until both come into contact with ECM nodes in (b). The cortex is

then separated into two regions. The leading edge region between the attachments remains loose, while the longer rear region behind the attachments contracts.

Squeezing of the cell through the ECM gap occurs as the rear cortex contracts (c–e). The cell passes through the gap between the two nodes in (e), then comes to rest (f)

when the region of the cortex between the two nodes is short and stiff. Next, the cell releases the ECM nodes, which move back toward their original positions in the

final resting state (g), and the cortex relaxes. This completes one motility cycle.

https://doi.org/10.1371/journal.pcbi.1008160.g002
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these points. Any two nodes that share an edge (in the triangulation) are linked together by a

virtual spring. Suppose that N(i) is the set of neighbors for the ith fiber. Then the force at ECM

node i can be computed as

F̂ECM
i ¼ F̂ECM;0

i ðXiÞ � kECM
X

j2NðiÞ

ðXi � XjÞ: ð1Þ

In Eq (1), F̂ECM;0
i is the unique “pinning-down” force that ensures the fibers are motionless at

the beginning of the simulation. Since we construct random lattices, there will be a net force

initially on each fiber in the absence of F̂ECM;0 simply because the points are not located on a

regularly spaced mesh (see Fig 1). F̂ECM;0 penalizes translations of the lattice while ensuring

that the fibers do not collapse onto each other during a dynamic simulation. This force can

also be thought of as providing a spring rest length, and is calculated in practice by precomput-

ing a reference location to which we tether the point Xi. The second term in Eq (1) describes

the elastic contributions of the springs with stiffness kECM that connect fiber i to its neighbors.

The ECM effectively behaves like a viscoelastic material with a spring and dashpoint in parallel

(Kelvin-Voigt material). Viscosity arises from the fluid, and the elasticity comes from the

forces in Eq (1).

We normalize lengths and distances so that the cell has diameter 1. The ECM nodes are

therefore generated on the two dimensional box (x, y) 2 [0, 4] × [−2, 2] (excluding a region

near the origin where the cell is initially placed). Fig 1 shows the ECMs used in our numerical

experiments. We use 20 nodes for a sparse ECM and 60 nodes for a dense ECM. The black dot-

ted lines show the elastic lattice that connects the nodes. Fig 1 shows that the 20 and 60 node

ECMs have average fiber spacings of about 1.5 and 0.5 cell diameters, respectively. This means

that the ECM node spacing is either larger (for a sparse ECM) or smaller (for a dense ECM)

than the cell diameter.

Cell cortex and nucleus

The cell cortex is represented as an elastic contour, with an elastic energy that penalizes

stretching. At each reference arclength coordinate s on the cortex, the net force density is a

combination of elastic force and protrusive force,

FcðsÞ ¼ Fc;elðsÞ þ Fc;protðsÞ: ð2Þ

Elastic force densities on the cortex are defined as the derivative of a scalar tension times the

tangent vector (in reference arclength coordinates). Let τ = @X/@s be the derivative of the cor-

tex position with respect to reference arclength coordinates. Then the elastic force density is

defined by [36]

Fc;elðsÞ ¼ ðTcð�Þτð�ÞÞ0ðsÞ: ð3Þ

Using the product rule, it can be seen that Fc,el has both a normal and tangential component.

Tc(s) is a scalar tension on the cortex defined as

TcðsÞ ¼ kcðsÞðkτðsÞk � rðsÞÞ; ð4Þ

where the stiffness parameter kc(s) is analogous to a bulk modulus in 3D. To account for con-

tractile forces, the stiffness kc used to compute the tension can vary in time and with arclength

parameter s. Similarly, the rest length r(s, t) of the tangent vector can vary in space and time.

In the relaxed state, r = 1. When a region of the cell is contracting, we decrease r. Decreasing r
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in a region of the cortex is equivalent to adding a positive active tension in that region. This

kind of active tension is assumed in the form of Tc used in [33, 34].

The cortex surrounds the nucleus, so that there is a small volume (area in 2D) of the cyto-

plasmic fluid between the nucleus and cortex. The cell nucleus is also modeled as an elastic

contour. Since there are no protrusions, the total force density on the nucleus is given by the

elastic force density

Fn ¼ Fn;el ¼ ðTnτÞ0: ð5Þ

with Tn = kn(kτk − 1). For the nucleus, the stiffness kn and rest length (set to 1) are constant

throughout all simulations.

We next discuss the discretization of the forces. Defining some notation first, the cortex

contour is discretized by Nc initially equispaced nodes, while the nucleus contour is discretized

at Nn initially equispaced nodes. We denote the elastic force on the cortex at node m by Fc;el
m ,

where m = 1, . . .Nc, and likewise for other quantities defined at the nodes. The discrete forces

in Eqs (3) and (5) can then be computed using centered differences, with details given in the

S1 Text, Section S2.

The final piece is the protrusive force density Fc,prot. To define it, we first select a point m�

on the cortex which is the “center” of the protrusion. Let the normal to the unit circle at point

m� be denoted by nm�. Then we define the protrusive force density by

Fc;prot
m ¼

f0nm� m ¼ m�

1

2
f0nm� jm � m�j ¼ 1

�
2f0

Nc � 3
nm� otherwise:

8
>>>>><

>>>>>:

ð6Þ

The protrusion force is therefore in the outward normal (at m�) direction when |m −m�|� 1,

and the total force due to the protrusion is zero. The cell therefore does not move by exerting

a force on the fluid, but the force on the nodes away from m� can result in the rear of the cell

moving backward prior to the protrusion binding to the ECM, see, for example, Fig 2I(b) and

2II(b). The value for f0 in Eq (6) is chosen to be above a certain threshold to overcome the elas-

tic resistance of the cell. Our choice of f0 results in a fast protrusion that does not contribute

significantly to the dynamics of a single cell migration cycle, which is determined by viscous,

elastic and contractile deformations.

Fig 2I(a) shows the spatial profile of the force density (in black) that generates the protru-

sion on the cortex (in green) in the 20 node ECM. Fig 2I(b) shows how the protrusion

expands.

The physics of the continuum model are now completely defined. Given configurations of

the cortex and nucleus, we compute the discrete force densities on the cortex (Eq (2)), and

nucleus (Eq (5)). From these force densities, we multiply by the respective spacing between

points in the reference configurations, Δs = sm − sm−1, to obtain forces, which we denote by F̂ c

and F̂n. We add to these forces the spring forces due to the ECM (Eq (1)), and input these to

the method of regularized Stokeslets. We then obtain the fluid velocity of the cortex, nucleus,

and ECM points by regularizing the forces over a length scale of � and solving the Stokes equa-

tions analytically. The points are then updated by a forward Euler method.
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Motility mechanisms

Mechanism 1: Push-pull mesenchymal mode. In the first case, the cell randomly

generates one protrusion at a time on its front half (facing the right). We do not investigate

the process of choosing the direction of protrusion, as we focus on the mechanics of the

motility cycle. Thus, we choose the node m� in Eq (6) on the right half of the cortex at ran-

dom (i.e. from a uniform distribution). By specifying that the protrusion occurs in the front

half of the cell, a preferred migration direction from the left to the right is specified in the

model.

The subsequent cell movement pattern is shown in Fig 2I (top two rows). The cortex, which

is initially relaxed (stiffness kc = kc,s) generates a protrusion (Fig 2I(a)) which extends until it

comes into contact with an ECM node. Numerically, a contact occurs when the point at the

tip of the protrusion comes within a distance 2� from an ECM node (twice the regularization

length scale). The tip of the protrusion then reaches out and attaches to the ECM node, as

shown in Fig 2I(b).

Once the cortex attaches to the ECM node, it immediately stiffens globally. Stiffening of the

cortex is modeled by increasing the parameter for cortical tension kc to a value kc,r, which is

varied to investigate different motile regimes. The cortex then rapidly rounds to assume its cir-

cular resting configuration. In the case of a rigid ECM, the process results in the round cortex

being pulled toward the attached ECM node. For the case of a softer ECM, the dynamics are

more subtle. First, as shown in Fig 2I(c), the cortex assumes a quasi-circular shape by pulling

the ECM node toward the cell. This inward pull continues until the elastic deformation

force from the ECM balances the pulling force from cortical elasticity. The balancing of these

opposing forces evolves, so that as the cortex becomes more circular, the ECM becomes less

deformed, and the pulling force decreases. Eventually, the ECM node comes to rest near its ini-

tial position, as in Fig 2I(e). Once the velocities of the ECM and cortex nodes relax below a

small threshold value, the cortex detaches from the ECM node. In order to physically uncouple

the motion of the cortex and ECM node in the presence of the fluid, we move the ECM node

a small threshold distance of 2� away from the cortex and wait for the system to equilibrate

again (i.e., for the maximum velocity of the ECM and cortex nodes to relax below the small

threshold value). The end result of this process is shown in Fig 2I(f). The cortex is then free to

form another protrusion. We will refer to this entire process as the motility cycle, the steps of

which can be summarized as follows.

1. Begin with kc = kc,s and choose a random point m� on the +x side (front half) of the cortex

as the center of a protrusion.

2. Advance the system (by computing forces and velocities) until the tip of the protrusion

reaches a distance 2� from the cortex node.

3. Manually set the location of the cortex protrusion tip to be equal to that of the ECM node

(“bind” the protrusion). Globally increase the cortex stiffness to kc = kc,r

4. Advance the system (by computing forces and velocities) until the velocity of all points

drops numerically below �.

5. Unbind the node by moving it a distance 2� away from the cortex.

6. Advance the system until the velocity of all points drops numerically below �, reset kc = kc,s,
then go back to step 1 and repeat.

In step 2, it is possible that a protrusion could extend infinitely without contacting any

nodes. For this reason, in mechanism 1 we automatically retract (by stiffening the cortex
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globally) any protrusions that exceed a length of four cortical radii, assuming that they were

not able to contact any nodes. We also refer to this case as a cycle, so that cycles can be either

successful or unsuccessful. In fact, the case of unsuccessful cycles occurs frequently in real cells

[37].

Mechanism 2: Rear-squeezing mode. In this mechanism of motility, two protrusions are

generated on the loose cell cortex. As in the push-pull mechanism, we choose the first protru-

sion location randomly on the front half of the cell. The second protrusion is generated at a

location 15-45˚ apart from the first protrusion so that the protrusions are positioned to grow

towards two adjacent ECM nodes. The resulting force distribution for these two protrusions is

the superposition of two mechanism 1-type protrusions and is shown in Fig 2II(a). The protru-

sions expand until each contacts a node as in Fig 2II(b). Once contact occurs for both protru-

sions, the longer region of the cortex becomes very stiff, and we set kc = kc,r and r = 0.1 in Eq

(4) in this region only. We have used the same parameter kc,r across both mechanisms to repre-

sent increased cortical tension, although this tension is only increased in part of the cell in

mechanism 2. Also, note again that decreasing the rest length to r = 0.1 is equivalent to adding

an active tension (contraction) at the rear of the cell, and is required to generate enough ten-

sion to squeeze the cell through the ECM.

The shorter length, i.e., the leading edge at the right side, of the cortex between the two

nodes remains relaxed (stiffness remains equal to kc,s, and r = 1). The contracting rear of the

cortex squeezes the nucleus through the gap between the two attached ECM nodes by deform-

ing both the nucleus and ECM. This process results in cell propulsion, shown in Fig 2II(c)–

2II(f). Once the system comes to a resting state (all node velocities decrease below a threshold),

both nodes are moved a distance 2� away from the cell, and the system (cell and ECM nodes)

is allowed to equilibrate until it comes to rest. This final state is shown in Fig 2II(g). The cell is

then ready to form another protrusion. This entire process defines one cycle of motility, the

steps of which can be summarized as follows.

1. Begin with kc(s) = kc,s everywhere on the cortex and choose a random point m�
1

on the +x
side (front half) of the cortex for the first protrusion.

2. Choose randomly a point m�
2

which is 15 − 45˚ away from m�
1

to center the second

protrusion.

3. Advance the system (by computing forces and velocities) until the tip of each protrusion

comes within a distance 2� of an ECM node. The nodes must be distinct.

4. Manually set the locations of the cortex protrusion tips to be equal to those of their respec-

tive bound ECM nodes. Set kc = kc,s and r = 1 in the shorter region of the cortex between

the nodes. Set kc = kc,r and r = 0.1 in the longer region of the cortex between the nodes.

5. Advance the system (by computing forces and velocities) until the velocity of all points

drops numerically below �.

6. Unbind the nodes by moving each of them 2� away from the cortex. Reset kc = kc,s and r = 1

everywhere.

7. Advance the system until the velocity of all points drops numerically below �, then go back

to step 1 and repeat.

In step 3, two ECM contacts are required to move the cell, and protrusions sometimes fail

to reach a node. As in mechanism 1, we retract protrusions that reach a certain length before

hitting a node, and restart the process. In order to maintain the same total protrusive length

across mechanisms, we stipulate the maximum length of each protrusion as two cortical radii,
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so that the maximum total protrusive length of four cortical radii is the same as in mechanism

1. For the first cycle, we increase the threshold to three cortical radii to promote successful

attachment of the initial protrusions. If only one of the protrusions contacts a node and the

other reaches its maximum length without contact, the entire system is contracted (by increas-

ing globally the cell stiffness) until the system returns to rest and can generate new protrusions.

Although the cell does not move in this case, this too defines a cycle, so that once again cycles

can be successful or unsuccessful.

Parameter values and numerical procedure

Physical parameters. Geometric parameters include the ECM mesh size and sizes of the

cell cortex and nucleus, all of which are of the same order of magnitude [5, 38]. The cell diame-

ter is often of the order 10 μm, while the nuclear diameter is sometimes only slightly smaller

[17]. Thus, we choose the cell cortex and nucleus diameters at rest to be equal to 10 and 9 μm,

respectively. We also consider the case in which the nuclear volume is significantly smaller

than that of the cell. The length is normalized in all simulations to make the cell diameter, 10

μm, to be the unit of length. Openings in 3D extracellular environments range from 2 to 30

μm in diameter [39]. We vary the ECM density so that the average distance between the near-

est ECM nodes is 1.5 or 0.5 length units in the cases of low- and high-density ECM, respec-

tively. The cell can move through the ECM undeformed in the low-density case, and has to

deform significantly to squeeze through the ECM in the high-density case.

The issue of physical dimensions in a 2D model that includes interactions of solid and fluid

structures is subtle. From the hydrodynamic part of the model (see Section S1, S1 Text), it is

clear that in the 2D method of regularized Stokeslets the force applied to the fluid at a point

has the dimension of pN/μm (see Eqs. (S1.1) and (S1.3) in S1 Text; fluid velocity is in μm/sec,

viscosity is in Pa�s, hence the force is in pN/μm). The interpretation is as follows: the 2D

approximation is the planar cross-section of the 3D space, and the “per micron” factor appears

in the force because this force is “per unit length in the direction perpendicular to the 2D

plane.” Simply speaking, to estimate the physical force in 3D space, one has to multiply the

pN/μm force in the 2D model by the characteristic cell size, 10 μm. These considerations affect

the choice of the mechanical model parameters.

There is, as expected, a significant variability in the reported mechanical characteristics of

the ECM, nucleus, and cell cortex. In our 2D model, the ECM spring constant, kECM, is mea-

sured in units of pN/μm2, so that when multiplied by the spring extension or shortening (in

μm), the force on the point-like node has unit of pN/μm. The Young’s modulus of the collagen

mesh and ECM can vary from 1 to hundreds of Pa [12, 40–42]. We choose an ECM spring

stiffness of kECM = 50 pN/μm2, which corresponds to the Young modulus within the range of

values reported in the literature. This parameter is constant in all simulations.

The elastic and contractile force densities of the cell cortex and nucleus contours have

dimensions pN/μm2 in our 2D model, which, when multiplied by the characteristic distances

Δs between the discretization nodes in the contours, turn into forces with dimension pN/μm

applied to the fluid. These force densities are spatial derivatives of the tensions along the con-

tours, so these tensions have dimensions of pN/μm. Note that in Eq (3), the arc length s is

dimensional, in μm, while in Eq (4) the expression for strain in brackets is non-dimensional.

The same considerations apply to the nuclear mechanics in the model. Thus, kc and kn are the

dimensional proportionality coefficients in the cortex and nuclear contours’ tensions, respec-

tively, in pN/μm (the tensions are these proportionality coefficients times the non-dimensional

strain). These proportionality coefficients are effectively spring constants for the respective
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contours, which correspond to respective Young moduli (measured in pN/μm2 in 3D) after

being divided by the characteristic cell size, 10 μm.

The mechanical modulus of the nucleus can vary from tens of Pa [43] to hundreds of Pa

[40, 44] to thousands of Pa [45], which corresponds to values of kn from units to hundreds

of pN/μm. In the simulations, we vary the nuclear stiffness in a range even wider than that

reported, from 1 to 10000 pN/μm, with 1—10 pN/μm corresponding to ‘soft’,� 100 pN/μm

corresponding to baseline, and 1000—10000 pN/μm corresponding to ‘stiff’ nucleus. In the

tables below, we report the nuclear stiffness ~kn ¼ kn=10 mm, to make consistent comparison

with the ECM stiffness.

The tension of the cell cortex (in units of pN/μm, which directly corresponds to our param-

eters kc,r for a contracting cortex) was reported in the range from� 100 pN/μm [46] to� 1000

pN/μm [47]. We use the value kc,r varying up to 1000 pN/μm, except in one of the numerical

experiments, where we simulate an exceedingly weak cortex with krc ¼ 10 pN/μm (in which

case, the cortex is still contracting due to a decrease in its tangent vector rest length r). For con-

sistent comparison with the ECM stiffness, in the tables below we report ~kc;r ¼ kc;r=10 μm. We

use the value kc,s = 10 pN/μm for the loose, relaxed cortex, which corresponds to ~kc;s ¼ 1 pN/

μm2. Further discussion of the mechanics of nucleus and cortex can be found in [17, 48].

The last physical parameter we have in the model is the fluid viscosity. The actual physical

value does not matter for the simulations, because the viscosity simply determines the time

scale, even in the case of variable viscosities between the interstitial fluid, cytoplasm, and nucle-

oplasm. In the simulations, the viscosity is normalized to 1 and does not vary across the inter-

stitial fluid, cytoplasm, and nucleoplasm. This is for simplicity of numerical computation, as

variable viscosities complicate the equations and numerical simulations. Nevertheless, it is

instructive to discuss the physical values of the viscosity of the nucleoplasm, cytoplasm and

interstitial fluid which could be one to three, and even four orders of magnitude greater than

the viscosity of water [41, 42, 49–51]. In physical units, this means viscosities from 0.01 to 10

Pa�s. In the process of 3D cell migration, the timescale of viscous relaxation was observed to be

on the order of tens of seconds [44]. In our simulations, characteristic net tensions of� 10

pN/μm (greater elastic and contractile forces largely equilibrate, so the net force is relatively

small), characteristic sizes of 10 μm and characteristic viscosities of 10 Pa�s result in a� 10 s

time scale which compares well with observations reported in [44]. Of course, the additional

processes of developing and relaxing protrusions, adhering to the ECM, and contracting can

add a significant time to this estimate; no wonder that 3D motile cycles were reported to take

tens of minutes [52].

Numerical parameters. The number of grid points for both the cortex, Nc, and nucleus,

Nn, contours in the simulations were varied depending on the motility mechanism. In general,

we set Nc = Nn = 80 for mechanism 1 and Nc = 120, Nn = 80 for mechanism 2. The number of

cortex points is larger for mechanism 2 because the cell gets closer to the ECM nodes, which

can leak inside the cell if the cortical boundary is insufficiently resolved. While the fluid techni-

cally prevents this from happening, there is still discretization error in our model. Since the

discretization of each contour has a finite number of points, discrete ECM and nucleus points

could pass through regions between the cortex nodes and ruin the geometry of our simula-

tions. We remedy this in two ways. First, if the nucleus in the model has zero physical bending

rigidity, we add a small computational bending rigidity with an equispaced reference configu-

ration as described in the S1 Text, Section S2. We do this only when the protrusions are form-

ing, and not when the cell is in a contractile state, so that the computational bending forces

prevent the nucleus from being squeezed into thin protrusions. Second, we check, at every

timestep, whether an ECM node is inside the polygon that defines the discrete cortex. If there
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is such a node, we move it a distance � in a random direction until it is outside the polygon

defining the cortex. We do the same for cortex nodes inside the nucleus, and then proceed to

the next timestep.

The maximum stable time step is dictated by ECM stiffness and is 0.001 (in dimensionless

time units) for kECM = 50 pN/μm2. We decrease this timestep down to 0.0002 for a short period

of time (Oð0:1Þ time units) when the cortex stiffens as it binds to the ECM nodes.

Mechanism 2 is much more challenging numerically than mechanism 1 because of the

changing spring rest length r in Eq (4). Once the cortex binds to the ECM nodes, grid points

behind the ECM nodes begin to pack very close together due to the shorter rest length. Mean-

while, points that span the front section of the cortex between the two ECM nodes grow apart

quickly as the entire nucleus squeezes through the two nodes. The region in front of the two

nodes therefore becomes under-resolved, and dynamic remeshing is required to keep a stable

configuration of the cortex and nucleus. This remeshing takes place every Oð100Þ time steps

and only when the cell is attached to two ECM nodes. Because the nucleus interacts with the

cortex via hydrodynamic forces, it too becomes under-resolved at the front, so the remeshing

is applied to both the cortex and the nucleus.

Our goal is to dynamically update the discretization so that the spacing between the grid

points stays roughly constant through time. We accomplish this as follows. Given a current set

of the grid points on the cortex/nucleus Xj with reference points X0

j , we use the positions Xj

to construct a continuous cumulative arclength function, defined as s(j), where j is the point

index (for non-integer values of j, we compute s(j) by linear interpolation between the two

closest integer values). We then sample s(j) at equal lengths in s. Each of these samples corre-

sponds to a value of j. We denote the set of equally spaced arc lengths as S(jeq). Then the new

point positions are given by X(S(jeq)) and the corresponding new reference points are given by

X0(S(jeq)). Since X is only known at indices Xj, we use linear interpolation to obtain X(S(jeq)) if

jeq is not an integer. We then update the positions of the grid points along with their reference

configurations according to the new positions X(S(jeq)) and X0(S(jeq)). The reference configu-

rations are then used to compute elastic and bending forces as described in Section S2, S1

Text. At the start of each mechanism 2 cycle, the cortex reference configuration is reset to be

equispaced so that each cycle begins similarly. See Section S3 of S1 Text for more details about

the remeshing algorithm.

Results

Cells can use both mechanisms to move through a sparse ECM

Simulations of a cell moving through a sparse ECM (20 nodes; the mesh size is greater than the

cell size) over one motility cycle are shown in Fig 2. Additional time values are provided in S2

Fig for a cell migrating with the push-pull mechanism and in S1 Video. A cell migrating with a

rear-squeezing mechanism in a sparse ECM is shown in S3 Video. The figures and movies

show that the cell is able to move through the ECM with minor deformation. In this regime,

the limiting factor is not mechanics, but rather the timing of developing protrusions and

attachments to the ECM. In particular, simulation data show that the cell can move without

deforming its nucleus or the ECM. It can therefore move effectively regardless of the nuclear

stiffness and contractile force.

Experimentally, it was observed that, in sparse matrices, cells use mechanisms entirely dif-

ferent from the ones we are considering. These include wrapping tightly around one ECM

fiber and moving along it [4, 53], which intuitively is a much more logical way to move than

trying to search for far away ECM nodes. Consequently, we do not investigate the sparse ECM

further and turn to the case of a dense ECM of 60 nodes (see Fig 1(b)).
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Mechanism 1 performs best for high tension and soft nucleus

We next consider a denser ECM (60 nodes; the ECM mesh size is roughly half the cell size)

and a few characteristic regimes of the parameters and analyze the cellular motion therein.

There are three characteristic force scales in the process: (1) T, the characteristic contractile

tension in the cortex, the order of magnitude of which is given by the parameter kc,r. (2) E, the

characteristic tension of the ECM deformed by the nucleus squeezing through it. This tension

is of the order of the ECM spring coefficient kECM multiplied by the cell size minus the average

ECM mesh size. (3) N, the characteristic tension in the deformed nuclear envelope, which is of

the order of the nuclear stiffness kn. In this section we consider all qualitatively different rela-

tions between these three forces.

Table 1 gives the parameter choices for each of these regimes. We note that the ratio of the

forces with respect to one another, rather than their actual physical values, is used to character-

ize different parameter regimes. The actual value of the model parameters for E, T, and N to

simulate a particular motility regime may depend on other model parameters. For example,

in simulations where the diameter of the nucleus is halved, we show that the regime where

nuclear force is dominant, N> T> E, cannot be simulated in the model (since the nucleus is

too small to be the stiffest component).

We begin by discussing a regime in which the cell cannot move. This regime is actually

composed of two orderings of the forces: E> N> T and N> E> T. In either case, both the

force required to deform the nucleus and the force required to deform the ECM are greater

than the contractile force. In this case, the position of the cortex, nucleus, and ECM at two

time values are shown in Fig 3I(a). Additional simulation time values are shown in S3 Fig

and in S2 Video. Results show that the cell becomes “stuck” in the ECM and is unable to pass

through the small gaps in the dense ECM.

We next consider the case T> E> N, when the contractile force is the largest and the

nuclear force is the weakest. The positions of the cell and ECM from a simulation are shown

in Fig 3I(b) with more time values provided in S4 Fig. Data show that the nucleus is highly

deformable and can easily slide through the gaps between the ECM nodes for these parameter

values. The strong contractile force contracts the cell rear, so that the entire cell is able to slide

through the ECM efficiently.

When the force required to deform the nucleus increases, the cell moves by deforming the

ECM. The cell and ECM positions from simulations in the parameter regime T> N> E are

shown in Fig 3I(c) and S5 Fig. The difference between the regimes T> N> E and T> E> N
can be seen in Fig 3 (compare I(c) to I(b)), where the ECM nodes are further displaced

from their original locations (shown as black ×’s) in the former regime than the latter. In the

Table 1. Parameter values for the different forcing regimes for both migration mechanisms.

Push-pull mechanism Rear squeeze mechanism

Regime ~kn (pN/μm2) ~kc;r (pN/μm2) Regime ~kn (pN/μm2) ~kc;r (pN/μm2)

E> T, N> T 100 1 E> T, N> T 10 1

T > E > N 1 100 T > E > N 0.1 100

T > N> E 10 100 T > N> E 10 100

N> T> E 100 50 N> T> E 1000 100

E> T > N 1 1 E> T > N 0.1 10

Additional simulation information: there are 60 ECM nodes and kECM = 50 pN/μm2.

https://doi.org/10.1371/journal.pcbi.1008160.t001
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Fig 3. Results from simulating cell migration using the push-pull mechanism. Panel I shows the position of the cortex (green), nucleus (magenta), ECM

nodes (blue), and initial position of the ECM (black ×’s) over a range of parameter values listed in Table 1. Simulation time values are located above each panel.

The bottom panel II shows the normalized distance of the cell from its initial location (distance is normalized by the cell diameter at rest). The average distance

traveled over one cycle is shown in (a). The average distance per simulation (total displacement over 6 cycles) for each of the parameter regimes simulated is

shown in (b). The data show a stronger contractile force T leads to maximum displacement for both measurements. (c) The mean aspect ratio over time, defined
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T> N> E regime, the net displacement of the nucleus is reduced by about 10% compared to

the regime T> E> N (see S2 Table).

Similarly, we observe displacement of the ECM in the parameter regime N> T> E, when

the nuclear stiffness is relatively largest. In this case, the cell has the roundest shape of all

parameter regimes simulated, and the cell migrates by deforming the ECM, as shown in S6

Fig. In fact, the maximum ECM displacement for the data in S6 Fig is approximately 60%

larger than that for the parameter regime T> N> E (data shown in S5 Fig). The net dis-

placement of the nucleus in Fig 3I(d) is also reduced by about 30% compared to Fig 3I(c)

(see S2 Table). Overall, the relatively large stiffness of the nucleus causes the cell to maintain

a round shape during migration. Therefore, the ECM must deform more than in other

parameter regimes for successful motility, and hence the effectiveness of motion in this

regime is reduced.

For a cell with a smaller nucleus, the parameter regime N> T> E cannot be simulated,

even with a stiff nucleus, because the nucleus is not large enough to limit motility at the simu-

lated ECM density. To show this, we simulate again with the N> T> E parameters in Table 1,

but with the nuclear diameter reduced by half. As shown in Fig 3I(f) and S8 Fig, simulation

data on cell shape and distance traveled are consistent with simulations with a larger nucleus

in the T> N> E parameter regime. Therefore, we label the small nucleus simulation as T> N
> E since cortical tension contributes most significantly to migration in this case.

Finally, we consider the case when the nucleus is easy to deform, but there is not enough

tension to deform the ECM. This is the parameter regime E> T> N, and under these parame-

ters simulation data in Fig 3I(e) show essentially rigid ECM nodes that do not deviate from

their original positions. The cell must therefore move by deforming its nucleus. Position data

in Fig 3I(e) (additional time values for the positions of the cortex, nucleus, and ECM nodes are

provided in the S7 Fig) show that the nucleus is able to slide through the gaps by assuming a

long and thin shape, but the relatively weaker contractile force is sometimes unable to effi-

ciently contract the rear of the cell. Several motility cycles are necessary for the entire cell to

squeeze through a gap in the ECM.

Quantitative comparison of parameter regimes. To generalize our results to random

migrations, we performed 8 simulations for the parameter regimes listed in Table 1, where the

cell undergoes 6 protrusion cycles (protrude, bind, release, relax, repeat) per simulation (the

total number of protrusions is 48). We measure the net distance moved per cycle and the net

distance moved at the end of the simulation (total displacement) for the different parameter

regimes. Distances are measured by tracking the center of mass of the nucleus (mean coordi-

nates of the discrete points around the nuclear contour). To compare the morphology of the

cells, we also measure the mean aspect ratio of the cortex in each regime. We define

a ¼
xmax � xmin

ymax � ymin
; ð7Þ

as the discrete aspect ratio of the cell, where the maximum and minimum are taken over the

discrete points of the cortex contour. In Fig 3II(c), we show the mean and standard deviation

over time of max(a, 1/a) (this last maximum is used so that the aspect ratio is always larger

than 1).

Quantitative data in Fig 3II show the optimal parameter regimes for cell migration are T>
E> N and T> N> E. The total distance the cell moves averaged over six cycles (Fig 3II(b)) in

in Eq (7), provides a measurement of how elongated the cortex becomes during a simulation. Data show that the regime E> T> N is characterized by the

longest, thinnest cell. Error bars are a single standard error in the mean in each direction (70% confidence intervals).

https://doi.org/10.1371/journal.pcbi.1008160.g003
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these regimes is larger than for other simulated parameter regimes. The data for an average

over one cycle do not conclusively separate the regimes (Fig 3II(a)). Results from our simula-

tions show that cells with large enough cortical tension are able to overcome the characteristic

force required to deform the nucleus and/or ECM.

Less effective parameter regimes are characterized by relatively reduced cortical tension.

Between the low-tension regimes N> T> E and E> T> N, the regime with a stiffer nucleus

appears to perform slightly better. One reason for this might be the cell’s large aspect ratio

when E> T> N. As shown in Fig 3II(c), the parameter regime E> T> N is characterized by

the largest aspect ratio, meaning that the cell is long and thin when migrating. Since the front

of the cell is always bound to an ECM node, larger aspect ratios imply that the cell’s center of

mass travels a smaller distance than for other parameter regimes.

To summarize the results from the first mechanism, simulations of cell migration using

parameter regimes with high tension are able to migrate most effectively, regardless of the

force required to deform the ECM. When the nuclear force or ECM force exceeds the tension

on the cortex, the cell can still migrate, but it covers substantially less distance.

Mechanism 2 results in robust cell migration

We analyze five different parameter regimes representing combinations of three characteristic

forces for cells migrating using mechanism 2. Parameter values and combinations are listed in

Table 1. We again point out that the actual parameter values of E, T, and N that characterize

each regime in Table 1 may change with other model parameters. For example, when the

diameter of the nucleus is halved, the nuclear force N becomes much smaller (see S15 Fig).

Likewise, when the nucleus is given a finite bending rigidity, the nuclear force N increases (see

S16 Fig).

Simulation results show that for a sparse ECM, a cell is able to successfully migrate as long

as it can find two nodes to bind to (see S3 Video). The positions of the membrane, cortex, and

ECM during a simulation of one motility cycle in this case are shown in Fig 2II.

For a dense ECM, the cell is unable to migrate in the parameter regime E> T and N> T.

The positions of the cortex, nucleus, and ECM at two time values from a simulation are shown

in Fig 4I(a) with several more time values provided in S10 Fig. A movie showing the position

of the cell and ECM during a simulation is provided in S4 Video. The data show that when

the cortex contraction is too weak to deform either the nucleus or ECM, the cell is not able to

squeeze through the ECM gap.

When the contractile tension on the cortex is increased, for example in the parameter

regime T> E> N, the cell is easily able to pass through the ECM network. In this case the cell

and ECM position during migration are graphed in Fig 4I(b) with more time values provided

in S11 Fig. The cortex contracts at the rear and squeezes the nucleus through the gap between

ECM nodes.

When the nucleus is relatively stiffer in the parameter regime T> N> E, the cell does not

completely pass through the ECM after one motility cycle (compare Fig 4I(c) to 4I(b)). The

nucleus in Fig 4I(c) (top panel) appears to “buckle” under high cortical tension (more time val-

ues from a simulation in the parameter regime T> N> E are shown in S12 Fig and S5 Video).

This buckling, which is an artifact of the stretching energy Eq (3) penalizing stretching but not

shear or bending, may be biologically irrelevant because such deformations of the nucleus

could be prevented by a structure such as the perinuclear actin cap [54]. That said, S4 Table

shows the difference in the nucleus’ center of mass is < 1% between Fig 4I(b) and 4I(c). Thus

our simulations show that mechanism 2 is approximately equally effective if T> E, regardless

of nuclear stiffness.
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Fig 4. Results from simulating cell migration using the rear squeezing mechanism. Panel I shows the position of the cortex (green), nucleus (magenta),

ECM nodes (blue), and initial position of the ECM (black ×’s) over a range of parameter values listed in Table 1. Simulation time values are located above

each panel. Panel II shows the normalized distance traveled by the cell from its initial location (distance is normalized by the cell diameter at rest). The

average distance moved over one cycle is shown in (a). The average distance per simulation (total displacement over 4 cycles) for each of the parameter

regimes simulated is shown in (b). (c) The mean aspect ratio over time, defined in Eq (7), provides a measurement of how elongated the cortex becomes
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The cell also migrates effectively in the parameter regime N> T> E, where the nuclear

stiffness is large relative to other parameters, but the cell has enough tension to deform the

ECM. Fig 4I(d) shows an overall round cell during a successful motility cycle (additional simu-

lation time values are provided in S13 Fig). The cell migrates by deforming the relatively soft

ECM nodes. Note the increased stiffness of the nucleus prevents the buckling seen in Fig 4I(c).

While the cell’s passage in Fig 4I(d) through the ECM gap is not complete, S4 Table shows the

decrease in the mean nuclear displacement is only about 5% compared to the regime T> E>
N. Our results show that the cell migrates robustly with respect to nuclear stiffness for simula-

tions in the parameter regimes T> E. For this reason we refer to mechanism 2 as more robust
to changes in parameters than mechanism 1.

As in mechanism 1, the parameter regime N> T> E is defined in part by the large size of

the nucleus, since simulations with a smaller nucleus do not fall into this regime regardless of

nuclear stiffness. To show this, we use the N> T> E parameters in Table 1 and reduce the

nuclear diameter by half to simulate a stiff, small nucleus. As shown in Fig 4II(e) and S15 Fig,

simulation data on cell shape and distance traveled are consistent with simulations with a

larger nucleus in the regime of weakest nuclear force, T> E> N. Therefore, we label the small

nucleus simulation as T> E> N since cortical tension contributes most significantly to migra-

tion in this case.

When the tension on the cortex T is less than the required force to deform the ECM E, the

cell’s migration is reduced and the cell’s shape is characterized by a larger aspect ratio, similar

to results from mechanism 1. Fig 4I(f) shows a highly deformed nucleus as the cell migrates

through a gap (additional time values graphed in S14 Fig). While migration is successful, the

cortex and nucleus do not completely clear the gap after one motility cycle because contraction

on the cortex is not large enough relative to ECM stiffness. In this case, the nucleus’ center of

mass travels about 80% of the distance it travels when T> E> N (see S4 Table).

Quantitative comparison of parameter regimes. As for mechanism 1, we perform 8 sim-

ulations, where for each simulation the cell goes through 4 cycles of mechanism 2 (we perform

4 cycles because the distance per cycle is larger than in mechanism 1). We again measure the

net distance migrated per cycle and the net distance moved (total displacement) at the end of

the simulation across the different parameter regimes listed in Table 1. There are a total of 32

total cycles analyzed. Results are shown in Fig 4II.

Results from simulation data show that mechanism 2 is robust to changes in nuclear stiff-

ness. The total distance per protrusion (Fig 4II(a)) and total distance per cycle (Fig 4II(b)) are

the same within error for the three parameter regimes with T> E. Similar to results from

mechanism 1, there is a reduction in motility when E> T as the cell becomes more elongated

and more cycles are required to achieve the same amount of motion (see aspect ratios in Fig

4II(c)).

Comparing quantitative results from simulations where the cell uses mechanism 1 (push-

pull) to mechanism 2 (rear-squeezing), mechanism 2 results in relatively increased distance

traveled over a range of parameter values. Although the total distance traveled in the regime

E> T> N is approximately 60% of the distance traveled when T> E> N in both mecha-

nisms, mechanism 2 performs much more robustly when the nuclear stiffness changes. In par-

ticular, mechanism 2 shows no significant drop in the total distance moved as nuclear stiffness

changes, as long as T> E (Fig 4II(b)). This is in contrast to mechanism 1, which shows the

distance traveled dropping significantly as the force to deform the nucleus N increases

during a simulation. Data show that the regime E> T> N is characterized by the longest, thinnest cell. Error bars are a single standard error in the mean in

each direction (70% confidence intervals).

https://doi.org/10.1371/journal.pcbi.1008160.g004
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(Fig 3II(b)). For this reason, we describe mechanism 2 as more robust than mechanism 1. Fur-

thermore, in all regimes, the displacements of the cell are greater for mechanism 2 than for

mechanism 1. That said, we note that a cell migrating using mechanism 2 experiences

increased cortical tension compared to mechanism 1 because the rest length of the cortex at

the back of the cell in this mechanism is decreased by 90%.

Mechanism 2 is aided by hydrodynamics

Pressure, velocity, and speed during a motility cycle for both mechanisms of motility during

comparable stages are shown in Fig 5 for the parameter regimes E, N> T (Fig 5(a)) and T> E
> N (Fig 5(b)) listed in Table 1. When cortical tension is relatively small, the cell fails to

migrate. Regions of high pressure develop near the ECM nodes (Fig 5I and 5II(a)), the cell is

sterically inhibited from migrating through the nodes, and the speed of the fluid is relatively

small.

Data in Fig 5I and 5II(b) show the case when cortical tension is the dominant force, and the

cell migrates effectively. The cell in Fig 5I(b) is in the ‘ECM pull’ stage of mechanism 1 (see Fig

2I(d)), and the cell in Fig 5II(b) is in the ‘squeezing through nodes’ stage of mechanism 2

shown in Fig 2II(d). When there is a favorable pressure gradient, fluid flows from regions of

high to low pressure, but fluid flow can still occur from low to high pressure. One example

occurs in flow past an airfoil [55]. Fig 5II(b) shows there is a favorable pressure gradient with

high pressure in the cell rear along with low pressure in the front of the cell for mechanism 2.

In mechanism 2, the active tension on the rear of the cell membrane results in a pressure

jump, as shown in Fig 5II(b). No pressure jump is observed at the front of the membrane

because of reduced tension at the leading edge of the cell. The pressure gradient, which results

from compression of the fluid at the rear of the cortex in mechanism 2, induces an additional

fluid velocity in the direction of migration. Thus, hydrodynamics and incompressibility of the

fluid aid migration in mechanism 2.

The opposite scenario is observed for the push-pull mechanism of motility, where the pres-

sure is low in the cell rear and high at the front of the cell near the protrusion (see Fig 5I). The

fluid is compressed at the front of the cell due to the cortical deformation at the leading protru-

sion as well as from the deformation of the ECM node. In spite of this adverse pressure gradi-

ent, the horizontal component of the cell’s velocity (as well as that of the fluid) is positive

(Fig 5(a), bottom) so that the cell is migrating from left to right. The Stokes equations (see

Eq. (S1.1) in Section S1 in S1 Text) are a force balance so that the restoring force of the ECM

overcomes the pressure gradient force, enabling the cell to migrate. A simple analogy is to con-

sider a rubber band that is stretched in a direction parallel to a pressure-driven background

flow. Once the rubber band is sufficiently stretched and released, it will move in a direction

opposite the fluid flow (from low to high pressure), dragging fluid with it. Fig 5 shows that the

ECM acts as this kind of rubber band in the push-pull mechanism of motility.

Discussion

In this study, we have considered two mechanisms of cell migration: a mesenchymal-like

push-pull and an amoeboid-like rear-squeezing mechanism. The three primary mechanical

parameters of the model are the elasticities of the ECM and nucleus and the contractile tension

of the cortex. The elasticity of the ECM determines the characteristic force required to stretch

the ECM gap to the size of the undeformed nucleus, and the nuclear stiffness determines the

force required to squeeze the nucleus to the width of the undeformed ECM gap. We find that

the relation between three forces—the cortex’s contractile force and the characteristic forces of

the ECM and nucleus deformations—determine the effectiveness of cell migration for densely
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packed ECMs where the gap size is smaller than the nuclear diameter. The cell migrates most

effectively when the contractile force exceeds both characteristic deformation forces, but the

cell can also migrate persistently even if its tension is too weak to deform a near-rigid ECM, as

long as the cortex’s contraction is sufficient to deform the nucleus. The cell can also migrate

even if it fails to deform a stiff nucleus, but then the cell has to be able to sufficiently deform

the ECM. Thus, the intuitive conclusion is that the cell has to contract enough to deform either

the ECM or the nucleus, but not necessarily both. While the cell’s motion is reduced when

contraction is reduced, a non-trivial conclusion of our study is that the regime when the cell

can deform the nucleus but not the ECM is least effective for migration. We showed that these

Fig 5. Pressure, velocity, and speed for a for a cell using the push-pull (I) and rear-squeezing (II) mechanisms of motility. The position of the cortex (green),

nucleus (magenta), and ECM nodes (blue) are also shown. Note the velocity vectors are scaled to show the direction of the flow, while the speed measures the

magnitude of the velocity vectors. Data in (a) correspond to simulation parameters E, N> T in Table 1 when the cell cannot move. Data in (b) are generated using

simulation parameters corresponding to T> E> N in Table 1.

https://doi.org/10.1371/journal.pcbi.1008160.g005
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deformations result in elongated cells with high aspect ratios, and that several cycles of protru-

sions are necessary to move the rear of the cell through the ECM. Thus we showed that large

aspect ratios lead to smaller distances traveled.

Another nontrivial prediction is that the rear-squeezing motility performs better than the

push-pull mechanism in that the distance traveled per cycle is larger and experiences less varia-

tion when the nuclear stiffness changes. One reason for this prediction is the geometry of the

model: in the push-pull mode, it is more likely, but not necessarily given, that the protrusion

is made to the nearest node in front of the cell. The cell is then pulled to that node, and in a

dense ECM network, the distance between the cell and the node is smaller than the cell diame-

ter. In the rear-squeezing mode, the cell is squeezed forward in between and through two

nodes that are closer originally to the cell front, and so the cell often advances almost one body

length. This prediction has to be used with caution: in reality, push-pull protrusions could be

made to far-away nodes, in which case the push-pull mode would become more effective. Con-

versely, the rear-squeezing mechanism could be less effective if two random attachments to

ECM nodes were used. Suppose in particular that the cell attempted to use two non-adjacent

nodes to pass through a “gap” containing another node. In this case, the elasticity of the center

node would block the cell from moving, since at some point the elastic force on the center

node will push against the motion of the cell. In this study, we tried to exclude these cases by

mandating that protrusions be 15-45˚ apart on the cortex contour.

Another relevant note is that we only investigated the mechanical constraints for the migra-

tion, not kinetic ones, as we did not examine how the speed of migration varies with changing

parameters. In this setting a sparse ECM would fare poorly since the cell migration cycles would

be prolonged by making protrusions that fail to bind to any nodes. In fact, it was observed that

when a cell encounters just one fiber, the cell adopts a spindle-like morphology and migrates

effectively in 1D along this fiber [53, 56]. Our conclusion that the rear-squeezing motility per-

forms better than the push-pull mechanism is also limited to the mechanical performance of the

cell, and does not take into account the time needed to extend protrusions in the right direc-

tions and establish adhesions with the ECM fibers. For the rear-squeezing motility mechanism,

more than one such successful protrusion/adhesion processes have to occur, compared to just

one in the push-pull mechanism, and it is entirely possible that these processes take much lon-

ger time in rear-squeezing motility. In addition, differences between efficiencies of signaling

processes regulating the protrusion/adhesion activity at the cell rear versus front are unknown.

An important feature of our model is the underlying fluid and hydrodynamic forces. The

hydrodynamic forces and movements effectively determine the interaction between the

nuclear and cortical boundaries, as well as the interaction of each of these with the ECM. For

example, in the rear-squeezing mode, a higher tension is required because the contraction at

the rear must overcome the elasticity of the nucleus, which resists the contraction of the cortex

through the hydrodynamic forces. Furthermore, because of the hydrodynamic forces, when

the cell is stuck in the ECM, it truly is stuck, as any motion of the cell must carry the ECM with

it due to the underlying fluid. The cell cannot slip away from the ECM unless there is sufficient

space between it and the nodes. In this sense, we effectively model the parameter regimes

where the cell is sufficiently loose to stay away from the ECM. Also, many previous studies

have used artificial viscous dashpots to account for the movements and deformations gener-

ated by the elastic and contractile forces. In our case, the movements and deformations are

mediated by actual viscous fluid. As a consequence, the presence of the fluid determines a

timescale of the migration via a physical parameter, the viscosity, which can be measured

experimentally. Lastly, our approach allows simulating the fluid pressure, the significance of

which is highlighted by the prediction of the importance of nucleoplasmic pressure in pushing

the nucleus through the ECM [40]. In our study, we determined that a favorable pressure
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gradient aids migration for cells using a rear-squeezing mechanism. We showed that intracel-

lular pressure is high in the cell rear and low in the cell front so that the hydrodynamic contri-

bution from fluid incompressibility aids migration. In contrast, we observe an adverse

pressure gradient for the push-pull mechanism of migration.

The conclusions of our model are in qualitative agreement with a number of experimental

studies. For example, dendritic cells of the immune system have soft and deformable nuclei,

allowing them to move at a rapid speed of a few microns per minute in 3D [16]. By contrast,

fibroblasts have stiffer nuclei and move through the ECM at a rate slower than one micron per

minute [4]. Cells reportedly move faster in softer ECM [12]. Cells were observed to move slower

or even get stuck in conditions with stiffer nucleus or smaller ECM mesh size [57]. In fact, the

problem of nuclear deformation is so dramatic that cells are known to use actomyosin cytoskele-

tal networks to actively deform the nucleus when migrating through narrow gaps [58]. Cells

even use the elastic nucleus as a gauge to measure pore sizes and go to the least resistance path

[59]. Last, but not least, one report supports the predicted advantage of the rear-squeezing mech-

anism: when neutrophils migrated through small holes, actin was seen to concentrate mostly at

the cell rear, and myosin contraction was necessary to propel the cells through the holes [58].

Our simple model has, of course, a number of limitations. The main one is that we investi-

gated a 2D caricature of the 3D geometry; the full 3D simulation would be prohibitively com-

putationally expensive for multiple parameter sweeps. The structure of the cell in the model

is simplified; for example, the model does not include mechanical connections between the

lamin-based nucleoskeleton and the cytoskeleton, which facilitate force transmission between

the nucleus and the extracellular matrix [60]. We have not explored in detail dependence of

the motile behavior on mesh size and adhesion characteristics. The ECM, cortex and nucleus

in our model are a linear elastic network, while the mechanical properties of actual ECM, cor-

tex and nucleus are very complex [38, 61]. Needless to say, we have not investigated how cells

change migration mode in response to the ECM properties [62], and we have not considered

other modes of motility, such as blebbing [34] and chimneying [63]. More advanced problems,

like mechanosensing [64], ECM remodeling and its feedback with cell mechanics [65], coordi-

nation of traction forces with ECM stiffness [11], proteolytic activity to melt down and rarefy

the ECM in front of the cell [2, 5, 66], and nuclear damage in passages through small ECM

gaps [67] are beyond the scope of the model. For example, in low-elasticity ECMs, cells migrate

by developing nascent adhesions only, presumably applying very low traction forces in order

not to deform the ECM too much [68]. What, if any, effect the cell nucleus has on migration in

these cases is an open question.

The great modern surge in experimental research on 3D cell migration [4] has fittingly

been accompanied by modelling studies that begin to address relevant mechanical questions

[27, 62]. Very recently, modelling and experiments on 3D migration have merged [69–71].

Our study, hopefully, will contribute to the understanding of the general mechanical principles

of 3D motility.

Supporting information

S1 Text. This file contains four sections. Sections S1 and S2 describe the fluid dynamics and

numerical methods used to solve the model equations. The remeshing algorithm used to simu-

late mechanism 2 is described in Section S3. Section S4 contains 16 figures showing the cell

and ECM position at several time values for the parameter regimes listed in Table 1. An analy-

sis of the sensitivity of the results to changes in nuclear size and bending rigidity of the cortex/

nucleus is also described in Section S4.

(PDF)
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S1 Fig. Test on the remeshing algorithm with N = 50 points. (a) Cell before remeshing. The

back of the cell (red diamonds) is rigid with k = 100 pN/μm and r = 0.5, while the front of the

cell (blue circles) is looser with k = 1 pN/μm and r = 1. (b) The arclength function s(j) is sam-

pled at equal distances to give the new node locations, which are interpolated from the old loca-

tions. (c) After remeshing, we note how the points are now evenly distributed. The point of

interest in the error calculation is the first counter-clockwise red point in the second quadrant

of the cell. (d) The new reference locations used to calculate the elastic force after remeshing.

(EPS)

S2 Fig. Push-pull mechanism of motility through a sparse ECM. The position of the cortex

(green), nucleus (magenta), and ECM nodes (blue) at several time values during a simulation.

Time values increase from left to right and top to bottom. Key parameter values for each simula-

tion are indicated in the figure captions using bold text. See Table 1 for exact parameter values.

The cell migrates easily through the sparse network (same as the network shown in Fig 1(a)).

(EPS)

S3 Fig. Mechanism 1: E> T and N> T. The cell becomes stuck in the ECM during the simu-

lation.

(EPS)

S4 Fig. Mechanism 1: T> E> N. The cell migrates by squeezing the nucleus, which is rela-

tively more deformable than the cortex and ECM.

(EPS)

S5 Fig. Mechanism 1: T> N> E. The cell moves using a combination of nuclear and ECM

deformation.

(EPS)

S6 Fig. Mechanism 1: N> T> E. The cell moves by a combination of nuclear and ECM defor-

mation. However, in this parameter regime, the cell must deform the ECM to migrate because

the nucleus is relatively stiffer (compare to the data in S7 Fig). Black ×’s are used to show the ini-

tial position of the key ECM nodes, which achieve their maximum displacement at t = 4.53.

(EPS)

S7 Fig. Mechanism 1: E> T> N. The cell moves by squeezing the nucleus because of rela-

tively reduced tension in the cortex. Note the elongated cell shape for this parameter regime.

(EPS)

S8 Fig. Mechanism 1: N> T> E for a small nucleus. We use the same parameters as in S6

Fig, but halve the diameter of the nucleus. The behavior is qualitatively more similar to the

T> N> E regime shown in S5 Fig. Thus halving the nuclear size simply decreases the charac-

teristic force N required to deform the nucleus.

(EPS)

S9 Fig. Mechanism 1: Varying the bending energy in the parameter regime E> T> N. (a)

Simulation results with no bending energy (where the bending rigidity Kb = 0), and (b) results

at comparable time values to (a) where the bending rigidity was increased to Kb = 0.05

throughout the entire nucleus, and in the cortex after binding to an ECM node. Distance trav-

eled increases when bending is included for this parameter regime. The rounder nucleus in (b)

results in a decrease in N relative to T. The rounder cortex at the leading edge increases T, pull-

ing the cell forward.

(EPS)
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S10 Fig. Mechanism 2: E> T and N> T. When the contraction of the cell cortex is too weak

to deform either the nucleus or ECM, the cell is not able to squeeze through a gap in the ECM.

(EPS)

S11 Fig. Mechanism 2: T> E> N. The cell can easily pass through the gap between the fibers

because the nucleus is soft compared to the cortex and ECM.

(EPS)

S12 Fig. Mechanism 2: T> N> E. The nucleus begins to buckle (bottom row) because of

high cortical tension and increased cortical stiffness. After releasing the nodes, the nucleus par-

tially regains its rounded shape (compare the position of the nucleus at t = 5.18 to t = 4.14).

(EPS)

S13 Fig. Mechanism 2: N> T> E. In spite of the nucleus’ relatively large stiffness, the cell is

still able to migrate through the ECM. However, the cell is unable to entirely pass through the

gap after one motility cycle.

(EPS)

S14 Fig. Mechanism 2: E> T> N. Although the cell makes some progress, there is not

enough force to drive it completely through the gap. After one motility cycle, the cell retracts

slightly after releasing the nodes.

(EPS)

S15 Fig. Mechanism 2: N> T> E for a small nucleus. We use the same parameters as in

S13 Fig, but halve the diameter of the nucleus. The behavior is qualitatively more similar to the

T> E> N regime shown in S11 Fig.

(EPS)

S16 Fig. Mechanism 2: Varying the bending energy in the parameter regime E> T> N. (a)

Simulation results with no bending energy (where the bending rigidity Kb = 0), and (b) results

at comparable time values to (a) where the bending rigidity was increased to Kb = 0.05 in the

stiff (rear) region of the cortex and throughout the entire nucleus. Increasing the strength of

the force due to bending increases the nuclear force (represented by the parameter N) and

prevents the cell from moving through the ECM. Results are similar to those from the regime

E> N> T, where the cell was unable to migrate through the ECM.

(EPS)

S1 Table. Errors to show convergence of the remeshing algorithm. Errors in the final posi-

tion of the first red node in the second quadrant (in counterclockwise order). Test problem

described in Section S3 of S1 Text.

(XLSX)

S2 Table. Mechanism 1: Distance traveled after the first cycle in S4–S8 Figs computed by

tracking the nucleus’ center of mass. Penetration is calculated using the fraction of points on

the nucleus and cortex that move past the line dividing the two ECM nodes that the cell moves

past, approximately located at the points (0.5, ±0.5). Data indicated by � are simulated with a

small nucleus (rnuc = 0.225).

(XLSX)

S3 Table. Mechanism 1: Distance and penetration data with bending energy included on

both the nucleus and cortex. The bending rigidity Kb = 0.05, and the bending energy is com-

puted using the preferred curvature of a circle. Bending energy on the cortex is only included

after the cell binds to an ECM node, while it is always included on the nucleus. Percentages are
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the percentage change from the data in S2 Table.

(XLSX)

S4 Table. Mechanism 2: Distance traveled after the first cycle in S11–S15 Figs computed by

tracking the nucleus’ center of mass. Penetration is calculated using the fraction of points on

the nucleus and cortex that move past the line dividing the two ECM nodes approximately

located at the points (0.5, ±0.5). Data indicated by � are simulated with a small nucleus

(rnuc = 0.225).

(XLSX)

S5 Table. Mechanism 2: Distance and penetration data with bending energy included on

both the nucleus and cortex. The bending rigidity Kb = 0.05, and the bending energy is com-

puted using the preferred curvature of a circle. Bending energy on the stiff part of cortex is

only included after the cell binds to an ECM node, while it is always included on the nucleus.

Percentages are the percentage change from the data in S4 Table.

(XLSX)

S1 Video. Mechanism 1 through sparse ECM. The cell migrates through a sparse ECM using

mechanism 1 without deforming its nucleus.

(AVI)

S2 Video. Failure for mechanism 1. The cell becomes lodged in the ECM in simulations of

the parameter regimes E> N> T and N> E> T using mechanism 1.

(AVI)

S3 Video. Mechanism 2 through sparse ECM. The cell migrates through a sparse ECM using

mechanism 2 without deforming its nucleus.

(AVI)

S4 Video. Failure for mechanism 2. The cell becomes stuck in the ECM for parameter

regimes E> N> T and N> E> T while migrating using mechanism 2.

(AVI)

S5 Video. Nuclear buckling and relaxation. A simulation of the parameter regime T> N> E
(using mechanism 2) shows the cell nucleus wrinkles, or buckles, under high tension in the

rear. After the cell detaches from the ECM nodes, the nucleus relaxes, which induces a flow

that inhibits the cell’s forward progress through the ECM.

(AVI)
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Supporting Text

Computational estimates of mechanical constraints on cell migration
through the extracellular matrix

Ondrej Maxian, Alex Mogilner, and Wanda Strychalski

S1. Fluid dynamics

For cellular motility problems, small length scales (microns) and slow movements (microns per
minute) lead to extremely small Reynolds numbers [1], and the fluid permeating the cell and ECM
obeys the Stokes equations:

µ∆u−∇p = −f (S1.1)

∇ · u = 0. (S1.2)

Here µ is the fluid viscosity, p is the pressure, u is the fluid velocity, and f is an external force
(which comes from any immersed solid structures). For simplicity, we assume that the nucleoplasm,
cytoplasm and interstitial fluids all have the same viscosity.

S1.1. Solution method: regularized Stokeslets

Because the Stokes equations are linear, boundary integral methods can be used to solve the
system in Eqs. (S1.1) and (S1.2). In particular, the solution to the Stokes equations in free space
can be determined by convolving the external force function f against the free space Green’s function
for Stokes flow over the interface or immersed structure where the force is applied [2]. However,
the singularity of the Green’s function at the point where the force is applied must be treated with
accurate quadrature rules, or the singular integral must be regularized. We choose to regularize the
problem with the method of regularized Stokeslets [3]. In particular, we suppose that the external

force of strength F̂ 0 is distributed over a small ball centered on a point x0 (rather than confined
exclusively to the point x0), so that

f(x) = F̂ 0φε(x− x0). (S1.3)

The solution to the Stokes equations with external forcing given by Eq. (S1.3) can be derived from
the form of the “blob” or “cutoff” function φε. For example, if

φε(x) =
3ε3

2π(‖x‖2 + ε2)5/2
, (S1.4)

then

pε(x,x0) =
1

2π
(F̂ 0 · (x− x0))

(
r20 + 2ε2 + ε

√
r20 + ε2

(
√
r20 + ε2 + ε)(r20 + ε2)3/2

)
, (S1.5)

and

uε(x,x0) =− F̂ 0

4πµ

(
ln

(√
r20 + ε2 + ε

)
− ε(

√
r20 + ε2 + 2ε)

(
√
r20 + ε2 + ε)

√
r20 + ε2

)

+
1

4πµ
(F̂ 0 · (x− x0))(x− x0)

√
r20 + ε2 + 2ε

(
√
r20 + ε2 + ε)2

√
r20 + ε2

(S1.6)

are the pressure and velocity that result from the force in Eq. (S1.3), where r0 = ‖x− x0‖. The
derivation of these expressions can be found in [3]. An equivalent formulation is to write the result
of Eq. (S1.6) as a matrix-vector product, so that

u(x) = M(x,x0)F̂ 0, (S1.7)
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where the matrix M is determined from the locations of the points x and x0.
The key point here is that given the external forcing term(s) F̂ 0, the velocity at any point x in

the domain can be determined by Eq. (S1.7). The units in Eq. (S1.6) imply that the “force” F̂ 0 has
units pN/µm.

S1.2. Stokes’ paradox and force imbalances in 2D

A complication arises when modeling objects that have nonzero net forcing in 2D. Here we wish
to consider an extracellular matrix (ECM) composed of fibers that are tethered together by springs.
In that case, it is virtually impossible for the net force on the ECM to be zero during a dynamic
simulation, where by definition the fibers are moving and the resulting forces are changing. A net
force on the domain inevitably results from our model of the ECM. The fundamental solutions of
Stokes flow in free space (regularized in Eq. (S1.6)) contain a logarithmic term so that net force
imbalances result in velocities as ||x|| → ∞. Thus the “usual” free space boundary condition of
zero velocity at ∞ is incompatible with the net forcing, and a new boundary condition must be
imposed [4]. One option is to specify a rigid ECM, which leads to a no-flow boundary condition on
the surface of the ECM fibers. Here we study the effect of ECM elasticity and want to account for
fiber flexibility. We therefore follow our previous work [5] and impose the boundary condition of
zero mean flow on a large circle of radius R that surrounds the domain. As R→∞, this boundary
condition is equivalent to the usual free space boundary condition. We use the value of R = 1000
(cell diameters) as in [5].

The boundary condition on the large circle of radius R allows for net nonzero forcing within the
domain and can be enforced by adding a constant velocity throughout the domain of flow. In [5],
we derived this velocity for a single point force as

uR(f0) = − F̂ 0

4πµ

(
1

2
− lnR

)
. (S1.8)

If there are N points where force is applied, each with force F̂ k, the constant velocity added through-
out the domain is

uR =

N∑
k=1

uR
(
F̂ k

)
= −

N∑
k=1

F̂ k
4πµ

(
1

2
− lnR

)
. (S1.9)

This ensures that the additional boundary condition is satisfied and yields a well-posed problem.
The full numerical scheme is therefore as follows: given a collection of N points with applied

forces F̂ k, Eq. (S1.7) is used to compute an intermediate velocity at each of the N points. Then
the boundary condition is enforced through the addition of a constant velocity in Eq. (S1.9), so that
the total fluid velocity at each point is the sum of the two. Explicit first-order time-stepping is then
used to update the positions of the points.

One of the numerical parameters in the model is ε, the width of the blob function in hydrodynamic
Eq. (S1.4). As discussed in [3] and [6], ε should be on the order of the spacing of the grid in the
system. We set ε = 0.075 cell diameters.

S2. Elastic forces

In this section, we describe how forces due to stretching and bending on the cortex and nucleus
are implemented in our numerical algorithm.

Defining notation first, we denote byXm the mth point on a fiberX; i.e. Xm = X(sm), where s
is a parameterization in reference arclength coordinates and m = 1, . . . N . Any function φ is defined
at the mth point by φm. The reference point corresponding to Xm is defined as X0

m.
We begin by defining a central difference operator to approximate the (reference arclength)

derivatives along the periodic fiber [7]

Dsφ =
φm+1/2 − φm−1/2∥∥∥X0
m+1/2 −X

0
m−1/2

∥∥∥ . (S2.1)
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All indices are interpreted in the periodic sense, so that if m = N , the number of fiber points, the
index m+ 1 maps to index 1. In the case of an equispaced reference configuration, the denominator
of Eq. (S2.1) becomes ∆s = 2πr/N , where r is the radius of the contour in its circular configuration.

For the case of elastic energy due to stretching, we define the tangent vectors as

τm+1/2 =
Xm+1 −Xm∥∥X0
m+1 −X

0
m

∥∥ , (S2.2)

and the tension is
Tm+1/2 = km+1/2

(∥∥τm+1/2

∥∥− rm+1/2

)
. (S2.3)

Notice that km+1/2 and rm+1/2 are the tension constant and rest length at sm+1/2. In mechanism 2,
these change as a function of the position on the fiber. The unit tangent vector τ is dimensionless
and k has units of pN/µm. The elastic force density at point m in pN/µm2 is then defined as [7]

F el
m =

Tm+1/2τm+1/2 − Tm−1/2τm−1/2∥∥∥X0
m+1/2 −X

0
m−1/2

∥∥∥ . (S2.4)

To obtain a force density in pN/µm from force density in pN/µm2, we multiply by
∥∥∥X0

m+1/2 −X
0
m−1/2

∥∥∥,

F̂
el

m = Tm+1/2τm+1/2 − Tm−1/2τm−1/2. (S2.5)

The calculation for equispaced reference nodes is the same, but the denominator of τm+1/2 can be
simplified to ∆s in that case.

We model bending energy with a preferred curvature. Let the cortex/nucleus radius in the
reference state be given by r. We model the preferred curvature κ = 1/r. The bending energy (units
of pN·µm) is then defined as [7],

Eb =
1

2

N∑
m=1

Kb,m (‖DsDsXm‖ − κ)
2
∥∥∥X0

m+1/2 −X
0
m−1/2

∥∥∥ . (S2.6)

In 2D simulations, we define the bending constant to have dimensions pN·µm. The notation Kb,m

indicates the bending constant depends on the node index. For mechanism 2, the bending constant
can be zero in regions where the cortex is loose and relaxed, and its value can be nonzero where the
cortex is stiff.

Carrying out the numerical differentiation in Eq. (S2.1) twice, we have

DsDsXm =
1∥∥∥X0

m+1/2 −X
0
m−1/2

∥∥∥
(
Xm+1 −Xm∥∥X0
m+1 −X

0
m

∥∥ +
Xm−1 −Xm∥∥X0
m−1 −X

0
m

∥∥
)
. (S2.7)

Differentiating the (negative of the) energy with respect toX`, we have the force density (in pN/µm),

F̂
b

` =

N∑
m=1

Kb,m∥∥∥X0
m+1/2 −X

0
m−1/2

∥∥∥2
(
Xm+1 −Xm∥∥X0
m+1 −X

0
m

∥∥ +
Xm−1 −Xm∥∥X0
m−1 −X

0
m

∥∥
)(

1− κ

‖DsDsXm‖

)
(S2.8)(

− δm+1,`∥∥X0
m+1 −X

0
m

∥∥ − δm−1,`∥∥X0
m−1 −X

0
m

∥∥ +
δm,`∥∥X0

m+1 −X
0
m

∥∥ +
δm,`∥∥X0

m−1 −X
0
m

∥∥
)∥∥∥X0

m+1/2 −X
0
m−1/2

∥∥∥ .
Unlike for elastic forces, the denominator

∥∥∥X0
m+1/2 −X

0
m−1/2

∥∥∥, which is unknown, no longer van-

ishes. We therefore approximate

X0
m+1/2 −X

0
m−1/2 ≈

1

2

(
X0
m+1 −X

0
m−1

)
, (S2.9)
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so that the force in pN/µm at node ` is given by

F̂
b

` =

N∑
m=1

Kb,m
2DsDsXm∥∥X0
m+1 −X

0
m−1

∥∥
(

1− κ

‖DsDsXm‖

)
(S2.10)

(
− δm+1,`∥∥X0

m+1 −X
0
m

∥∥ − δm−1,`∥∥X0
m−1 −X

0
m

∥∥ +
δm,`∥∥X0

m+1 −X
0
m

∥∥ +
δm,`∥∥X0

m−1 −X
0
m

∥∥
)
.

For the case of equispaced nodes in the reference configuration, Eq. (S2.10) simplifies to

F̂
b

` =

N∑
m=1

Kb,m

∆s4
(Xm−1 − 2Xm +Xm+1)

(
1− κ∆s2

‖Xm−1 − 2Xm +Xm+1‖

)
(−δm+1,` − δm−1,` + 2δm,`) ,

(S2.11)
which is the form of [7, Eq. (17)], modified to include a preferred curvature.

S3. Remeshing algorithm

Here we test our remeshing algorithm outside of the cell motility simulations. We consider a
closed elastic fiber (representing the cell cortex or nuclear envelope) of radius 1 discretized with
N = 50 points, sitting by itself in a domain of fluid of viscosity µ = 1 Pa·s inside and outside.
The back half of the cell (points dN/4e to b3N/4c) is stiff with k = 100 pN/µm and resting spring
length r = 0.5, while the front of the cell (blue circles) is loose, with k = 1 pN/µm and r = 1 (these
constants refer to the tension equation, (4) in the main text). These parameters are similar as those
used in the mechanism 2 simulations, with the exception that we choose here to keep r = 0.5 so that
the dynamics of the back of the cell are similar to those shown in mechanism 2 simulations. Elastic
forces using a remeshed configuration are computed as described in Section S2. The key ingredient
is to resample the reference configuration of the nodes, so that deviations from the original circular
configuration (with all nodes equispaced) are penalized by the elastic forcing.

We simulate the dynamics of the circle within the method of regularized Stokeslets with ε equal
to the initial point spacing. We begin by simulating the cell to steady state (t = 7 with ∆t = 0.01)
without remeshing. Fig. S1(a) shows the deformed shape at this point. The original back half
of the cell (points dN/4e to b3N/4c marked with red diamonds) has collapsed down, leaving the
front-half potentially unresolved. Fig. S1(b) shows the corresponding arclength function s(j) at this
point in the algorithm as a blue line. From indices 13 to 37 (dN/4e to b3N/4c), the slope of the
arclength function changes drastically because the points are more tightly packed. In Fig. S1(b),
the new sample locations are shown as red circles. These locations are more sparse in the region of
decreased slope. This indicates that the arclength function s(j) is being sampled at equally spaced
node indices, S (jeq). Indeed, as shown in Fig. S1(c), the points X(S (jeq)) are equally spaced on
the cell after they are remeshed (we always keep the 2 points bound to the ECM nodes). Finally,
Fig. S1(d) shows the new reference configurations, X0(S (jeq)), which become more sparse at the
back of the cell.

The remesher always includes the two points bound to ECM nodes. Because of this, an ideal test
for the remesher is to consider the displacement of one of these points with and without remeshing.
That is, we vary the number N of points on the cortex and simulate to t = 7 (empirically determined
to be steady state) with ∆t = 0.01 as before. Next, we simulate to t = 8 with and without remeshing
(only once at t = 7) and determine how much the first red point in the second quadrant (moving
counterclockwise) has moved relative to not remeshing (i.e., the error is the norm of the position
of the point at t = 8 with remeshing minus the position without remeshing). Table S1 shows the
results of this test. It appears that our remesher makes an error on the order O(10−4) for ≈ 100
points, which is what we use in our simulations. This error could be decreased by increasing the
number of points.
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Figure S1: Test on the remeshing algorithm with N = 50 points. (a) Cell before remeshing. The back of the cell (red
diamonds) is rigid with k = 100 pN/µm and r = 0.5, while the front of the cell (blue circles) is looser with k = 1
pN/µm and r = 1. (b) The arclength function s(j) is sampled at equal distances to give the new node locations,
which are interpolated from the old locations. (c) After remesh. We note how the points are now evenly distributed.
The point of interest in the error calculation is the first counter-clockwise red point in the second quadrant of the cell.
(d) The new reference locations used to calculate the elastic force after remeshing.
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The procedure for remeshing the nucleus is exactly the same as that described for the cortex,
with the exception that there are no “bound points” that must be preserved by the remesher. Thus
the sampling of the arclength function is truly uniform in this case.

N 25 50 100 200

Error 5.5× 10−3 1.6× 10−3 4.1× 10−4 1.2× 10−4

Table S1: Errors in the final position of the first red node in the second quadrant (in counterclockwise order).
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S4. Supporting Figures

The figures in this section show the position of the cortex (green), nucleus (magenta), and ECM
nodes (blue) at several time values during a simulation. Time values increase from left to right and
top to bottom for figures in this section. Key parameter values for each simulation are indicated in
the figure captions using bold text. See Table 1 in the main text for exact parameter values.

S4.1. Push-pull mechanism of motility
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Figure S2: Sparse ECM: The cell migrates easily through the sparse network (same as the network shown in Fig.
1(a) of the main text).
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Figure S3: E > T and N > T . The cell becomes stuck in the ECM during the simulation.
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Figure S4: T > E > N : The cell migrates by squeezing the nucleus, which is relatively more deformable than the
cortex and ECM.
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Figure S5: T > N > E. The cell moves using a combination of nuclear and ECM deformation.
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Figure S6: N > T > E: The cell moves by a combination of nuclear and ECM deformation. However, in this
parameter regime, the cell must deform the ECM to migrate because the nucleus is relatively stiffer (compare to the
data in Fig. S7). Black ×’s are used to show the initial position of the key ECM nodes, which achieve their maximum
displacement at t = 4.53.
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Figure S7: E > T > N : The cell moves by squeezing the nucleus because of relatively reduced tension in the cortex.
Note the elongated cell shape for this parameter regime.
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Figure S8: N > T > E for a small nucleus: We use the same parameters as in Fig. S6, but halve the diameter of
the nucleus. The behavior is qualitatively more similar to the T > N > E regime shown in Fig. S5. Thus halving the
nuclear size simply decreases the characteristic force N required to deform the nucleus.

Quantifying migration distance

We quantify the distance moved by the nucleus and the amount that the nucleus and cortex
penetrate the ECM. The nuclear displacement is measured by tracking the mean of the coordinates
on the nuclear contour (the nucleus is centered at the origin at the start of the simulation). In
Figs. S4−S9, the cell begins migrating by moving through a gap between two ECM nodes. We
quantify penetration into the network by measuring the fraction of nucleus and cortex points that
pass through this gap (past the two nodes). Table S2 shows these statistics at the end of the first
motility cycle.

The data in Table S2 show that halving the diameter size of the nucleus with the N > T > E
parameters, i.e., keeping all other parameters fixed at k̃c,r = 50, k̃n = 100, results in a larger distance
moved and more penetration into the network. While the nuclear penetration is larger (since the
nucleus is smaller), the total distance moved by the nucleus is similar to the T > N > E regime
with the original larger nucleus. We conclude that halving the nuclear diameter for mechanism 1 is
equivalent to reducing the force required to move the nucleus.

Parameters Distance Nucleus penetration Cortex penetration

T > E > N 1.12 0.88 0.80

T > N > E 0.97 0.78 0.70

N > T > E 0.66 0.51 0.49
∗N > T > E 0.92 1.00 0.69

E > T > N 0.58 0.45 0.43

Table S2: Distance traveled after the first cycle in Figs. S4−S8 computed by tracking the nucleus’ center of mass.
Penetration is calculated using the fraction of points on the nucleus and cortex that move past the line dividing the
two ECM nodes that the cell moves past, approximately located at the points (0.5,±0.5). Data indicated by ∗ are
simulated with a small nucleus (rnuc = 0.225).
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Bending rigidity

We determine the effect of bending rigidity by performing simulations using the same parameters
as in Table S2, but including a finite bending rigidity of Kb = 0.05 (and preferred curvature of a
circle) for both the nucleus and cortex. For the cortex, we introduce the bending energy only after
the cell binds to an ECM node.

Table S3 shows the percentage change for distance and penetration when bending energy is
included. We see that the measurements are generally within ±10% of the data from Table S2, with
the exception of E > T > N . Surprisingly, the distance increases when bending rigidity is included
for this regime. Simulation results in Fig. S9 show the cortex becomes rounder at the front and back.
Increased migration distance results when the round cortex at the leading edge fills out the empty
space and pulls the nucleus forward. Rounding at the cell rear also pushes the nucleus through the
gap between the ECM nodes.

Parameters Distance Nucleus Penetration Cortex penetration

T > E > N −4% −4% −5%

T > N > E +1% 0% +2%

N > T > E +12% +10% +8%

E > T > N +37% +25% +21%

Table S3: Distance and penetration data for mechanism 1 with bending energy included on both the nucleus and
cortex (Kb = 0.05, preferred curvature of a circle). Bending energy on the cortex is only included after the cell binds
to an ECM node, while it is always included on the nucleus. Percentages are the percentage change from the data in
Table S2.
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Kb = 0(a)

(b) Kb = 0.05

Figure S9: Varying the bending energy using mechanism 1 in the parameter regime E > T > N . (a)
Simulation results with no bending energy (where the parameter Kb = 0), and (b) results at comparable time values
to (a) where the bending stiffness parameter was increased to Kb = 0.05 throughout the entire nucleus, and in the
cortex after binding to an ECM node. Distance traveled increases when bending is included for this parameter regime.
The rounder nucleus in (b) results in a decrease in N relative to T . The rounder cortex at the leading edge increases
T , pulling the cell forward.
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S4.2. Rear-squeezing mechanism of motility
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Figure S10: E > T and N > T : When the contraction of the cell cortex is too weak to deform either the nucleus
or ECM, the cell is not able to squeeze through a gap in the ECM.
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Figure S11: T > E > N : The cell can easily pass through the gap between the fibers because the nucleus is soft
compared to the cortex and ECM.
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Figure S12: T > N > E: The nucleus begins to buckle (bottom row) because of high cortical tension and increased
cortical stiffness. After releasing the nodes, the nucleus partially regains its rounded shape (compare the position of
the nucleus at t = 5.18 to t = 4.14).
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Figure S13: N > T > E: In spite of the nucleus’ relatively large stiffness, the cell is still able to migrate through
the ECM. However, the cell is unable to entirely pass through the gap after one motility cycle.
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Figure S14: E > T > N : Although the cell makes some progress, there is not enough force to drive it completely
through the gap. After one motility cycle, the cell retracts slightly after releasing the nodes.
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Figure S15: N > T > E for a small nucleus: We use the same parameters as in Fig. S13, but halve the diameter
of the nucleus. The behavior is qualitatively more similar to the T > E > N regime shown in Fig. S11.
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Quantifying migration distance

As in the previous section, we quantify the distance traveled and the penetration of the nucleus
and cortex into the ECM network. We measure distance (nuclear displacement) by computing the
center of mass of the nuclear contour (since the nucleus is centered at the origin at the start of the
simulation). In Figs. S11−S16, the cell begins migrating by binding to two ECM nodes and moving
through the gap between them. We quantify penetration into the network by measuring the fraction
of nucleus and cortex points that pass through this gap (past the nodes). Table S4 shows these data
at the end of the first motility cycle.

The nucleus travels a larger distance when its size is reduced. Data in Table S4 show that halving
the nuclear diameter while keeping the parameters from the N > T > E regime in mechanism 2
(k̃c,r = 100, k̃n = 1000) results in behavior more characteristic of the T > E > N regime in
simulations with the original larger nucleus. In mechanism 2, decreasing the diameter allows the
nucleus to move more easily because the fluid from the back of the cell is able to push the nucleus
forward.

Parameters Distance Nucleus penetration Cortex penetration

T > E > N 1.12 1.00 0.92

T > N > E 1.11 0.94 0.83

N > T > E 1.06 0.90 0.78
∗N > T > E 1.34 1.00 0.94

E > T > N 0.88 0.71 0.65

Table S4: Distance traveled after the first cycle in Figs. S11−S15 computed by tracking the nucleus’ center of mass.
Penetration is calculated using the fraction of points on the nucleus and cortex that move past the line dividing the
two ECM nodes approximately located at the points (0.5,±0.5). Data indicated by ∗ are simulated with a small
nucleus (rnuc = 0.225).

Bending rigidity

We analyze the importance of bending rigidity for mechanism 2 by including a finite bending
rigidity of Kb = 0.05 on both the nucleus and cortex (with preferred curvature of a circle). Bending
energy is included in the cortex in the stiff cell rear after it binds to the two nodes. Other simulation
parameters are the same as used to generate data in Table S4. Table S5 shows the relative distances
travelled with bending stiffness are approximately the same as those in Table S4, with the exception
of the regime E > T > N . We note this is the same parameter regime where bending forces cause
increased distance traveled in mechanism 1. In contrast to mechanism 1, motility decreases when
the nucleus has bending energy in mechanism 2. Data in Fig. S16 show the nucleus is unable to
deform enough to squeeze through the gap between the ECM nodes. The qualitative behavior of the
cell with bending rigidity is similar to simulations without bending rigidity in the parameter regime
E > N > T where migration fails.

Parameters Distance Nucleus penetration Cortex penetration

T > E > N −3% −10% −11%

T > N > E −7% −13% −8%

N > T > E +3% +11% +4%

E > T > N −61% −56% −50%

Table S5: Distance and penetration data for mechanism 2 with bending energy included on both the nucleus and
cortex (Kb = 0.05, preferred curvature of a circle). Bending energy on the stiff part of cortex is only included after
the cell binds to an ECM node, while it is always included on the nucleus. Percentages are the percentage change
from the data in Table S4.
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Figure S16: Varying the bending energy using mechanism 2 in the parameter regime E > T > N . (a)
Simulation results with no bending energy (where the parameter Kb = 0), and (b) results at comparable time values
to (a) where the bending stiffness parameter was increased to Kb = 0.05 in the stiff (rear) region of the cortex
and throughout the entire nucleus. Increasing the strength of the force due to bending increases the nuclear force
(represented by the parameter N) and prevents the cell from moving through the ECM. Results are similar to those
from the regime E > N > T , where the cell was unable to migrate through the ECM.
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