Problem Set #7

Exercise 1: (⋆⋆) 4 points
Obtain three consecutive integers, each having a square factor.

Exercise 2: (⋆) 4 points
Show by induction that if \(n \) is a positive integer, then \(4^n \equiv 1 + 3n \pmod{9} \).

Exercise 3: (⋆) 4 points
Determine which integers \(a \), where \(1 \leq a \leq 14 \), have an inverse modulo 14, and find the inverse of each of these integers modulo 14.

Exercise 4: (⋆) 4 points
Show that if \(p \) is an odd prime and \(a \) is a positive integer not divisible by \(p \), then the congruence \(x^2 \equiv a \pmod{p} \) has either no solution or exactly two incongruent solutions.

Exercise 5: (⋆) 4 points

1. Let \(a \) be an integer, \(u, v, n, m \) natural numbers. We assume that \(m \) and \(n \) are relatively prime, that \(a^u \equiv 1 \pmod{m} \) and that \(a^v \equiv 1 \pmod{n} \). Show that \(a^{\text{lcm}(u,v)} \equiv 1 \pmod{mn} \).

2. Let \(a \) be an integer relatively prime to 63. Show that \(a^{36} \equiv 1 \pmod{63} \).

3. Using question (a), show that we can improve the result in (b), by proving that for any integer relatively prime to 63, \(a^6 \equiv 1 \pmod{63} \).

\(^1\) (⋆) = easy, (⋆⋆) = medium, (⋆⋆⋆) = challenge