Problem Set #3

Due monday 30 September in Class

Exercise 1: (∗) 2 points
Find all solutions of the congruence $12x \equiv 3 \pmod{45}$.

Solution:
Since $\gcd(12, 45) = 3$ and $3 \equiv 0 \pmod{3}$, the equation has exactly three solutions in $\mathbb{Z}/45$. To find a solution, we need to solve:

$$4x \equiv 1 \pmod{15} \quad (1)$$

The inverse of 4 in $\mathbb{Z}/15$ can be found by Euclidean algorithm:

$$15 = 3 \cdot 4 + 3$$
$$4 = 1 \cdot 3 + 1$$

and Euclidean equations performed backward are:

$$1 = 1 \cdot 4 - 1 \cdot 3$$
$$= 4 \cdot 4 - 1 \cdot 15$$

Thus, $4^{-1} \equiv 4 \pmod{15}$, and a solution of the equation (1) is $x \equiv 4 \pmod{15}$. Hence,

$$12x \equiv 3 \pmod{45} \iff x \equiv 4, 19, \text{ or } 34 \pmod{45}$$

Exercise 2: (**) 4 points
Find a solution of the system of congruences

$$2x \equiv 1 \pmod{5}$$
$$3x \equiv 4 \pmod{7}$$

Solution:
By applying Euclidean algorithm, we can find that $2^{-1} \equiv 3 \pmod{5}$ and $3^{-1} \equiv 5 \pmod{7}$. Thus, we need to solve:

$$x \equiv 3 \pmod{5}$$
$$x \equiv 6 \pmod{7}$$

Let $x = 5y + 7z$. Then, the above system of equation becomes

$$2z \equiv 3 \pmod{5}$$
\[5y \equiv 6 \mod 7 \]

Solve these equations like what we did in the previous problem, then we have \(y \equiv 4 \mod 7 \) and \(z \equiv 4 \mod 5 \). Hence, \(x \equiv 5 \cdot 4 + 7 \cdot 4 \equiv 13 \mod 35 \).

Exercise 3: (*) 5 points**

Prove that for each \(n \geq 1 \), there are exactly four non-negative integers of \(n \) digits such that the last \(n \) digits of its square is equal to itself. In this problem, we also consider 000 or 021 as integers of 3 digits. When \(n = 3 \), non-negative integers satisfying such property are 000, 001, 376, and 625. Find these integers for \(n = 5 \).

Solution:

First, note that in this problem, an integer \(m \) is a non-negative integer of \(n \) digits if and only if \(0 \leq m < 10^n \) is true. Suppose that \(m \) is a non-negative integer of \(n \) digits such that the last \(n \) digits of \(m^2 \) is \(m \). This means that \(10^n | m^2 - m = m(m - 1) \). Neither 2 nor 5 can divide two consecutive numbers, so there are only four cases;

- Case 1: \(10^n | m \),
- Case 2: \(10^n | m - 1 \),
- Case 3: \(5^n | m \) and \(2^n | m - 1 \),
- Case 4: \(2^n | m \) and \(5^n | m - 1 \).

Case 1: Since \(m < 10^n \), we can conclude that \(m = 0 \). **Case 2:** Again, since \(m < 10^n \), we can conclude that \(m = 1 \). **Case 3:** Write \(m = 5^n r \). Then, since \(m < 10^n \), \(1 \leq r < 2^n \). Also, we are assuming that \(2^n | m - 1 \), so this implies that

\[5^n r \equiv 1 \mod 2^n \]

This equation has the unique solution in \(\mathbb{Z}/2^n \) because \(\gcd(5^n, 2^n) = 1 \). **Case 4:** Write \(m = 2^n r \). Then, since \(m < 10^n \), \(1 \leq r < 5^n \). Also, we are assuming that \(5^n | m - 1 \), so this implies that

\[2^n r \equiv 1 \mod 5^n \]

This equation has the unique solution in \(\mathbb{Z}/5^n \) because \(\gcd(5^n, 2^n) = 1 \). Thus, for each case, there is exactly one non-negative integer of \(n \) digits satisfying the required property. Note that this proof shows us how to find these integers. For \(n = 5 \), these integers are:

Case 1: 00000, **Case 2:** 00001, **Case 3:** 90625, **Case 4:** 09376

Exercise 4: () 4 points**

1. If \(m \) is an odd integer, show that \(m^2 \equiv 1 \mod (8) \).
2. Let \(m \) be an odd integer. Show \(m^{2^n} \equiv 1 \mod (2^{n+2}) \) for all positive natural numbers \(n \).

Solution:
1. In the light of the Division Algorithm, there exists an integer k such that $$m = 2k + 1$$

We calculate $$m^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4k(2k+1) + 1$$

Observing $k(k+1)$ is even, since k (respectively, $k+1$) is even when k is even (respectively, odd), we deduce

$$8|4k(k+1)+1$$

hence

$$m^2 \equiv 1 \mod (8)$$

2. We will prove the result using induction on n. The base case $n = 1$ is covered by part 1. above. Assume $k \geq 1$ and suppose $$m^{2^k} \equiv 1 \mod (2^{k+2})$$

By definition, there exists an integer q such that $$m^{2^k} = 1 + 2^{k+2}q$$

Therefore,

$$m^{2^{k+1}} = m^{2^k \times 2} = (m^{2^k})^2 = (1 + 2^{k+2}q)^2 = 1 + 2 \times 2^{k+2}q + (2^{k+2}q)^2 = 1 + 2^{k+3}q + 2^{2(k+2)}q^2 = 1 + 2^{k+3}(q + 2^{k-1}q^2)$$

Since $k \geq 1$, the expression $q + 2^{k-1}q^2$ is an integer, hence the preceding calculation allows us to conclude

$$m^{2^{k+1}} \equiv 1 \mod 2^{k+3}$$

(PMI) allows us to conclude

$$m^{2^n} \equiv 1 \mod 2^{n+2}$$

for all positive integers n.

Exercise 5: (⋆) 4 points
Show that no perfect square has 2, 3, 7, or 8 as its last digit. (Hint: work modulo 10).

Solution:

If $$m = a_k...a_1a_0$$
is the decimal expansion of \(m \) then
\[
 m - a_0 = a_{k} \ldots a_1 0 = 10 \cdot a_k \cdot \ldots \cdot a_1
\]

This shows \(m \) is congruent modulo 10 to its last digit. Since an integer \(m \) is congruent modulo 10 to its last digit \(a_0 \), the fact congruence behaves well with respect to multiplication yields
\[
 m^2 \equiv a_0^2 \pmod{10}
\]

In particular, the last digit of \(m^2 \) is congruent to that of \(a_0^2 \). Using the following table, the last digit of \(a_0^2 \), \(0 \leq a_0 \leq 9 \) cannot equal 2, 3, 7, or 8; the preceding discussion allows us to conclude that none of the listed numbers can occur as the last digit of a perfect square.

\[
\begin{array}{cccccccc}
 a_0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 a_0^2 & 0 & 1 & 4 & 9 & 16 & 25 & 36 & 49 & 64 & 81 \\
 \text{last digit} & 0 & 1 & 4 & 9 & 6 & 5 & 6 & 9 & 4 & 1 \\
\end{array}
\]

\(^1\)\((*) = \text{easy, } (**) = \text{medium, } (***) = \text{challenge} \)