Problem Set #11

Exercise 1: (∗) 12 points

Questions are linked one to the others, lot of the times so always remember what you have proven.

1. Prove that the norm is multiplicative.
2. If \(\beta | \alpha \) in \(\mathbb{Z}[i] \) then \(N(\beta) | N(\alpha) \) in \(\mathbb{Z} \).
3. Prove that the unit of \(\mathbb{Z}[i] \) are precisely the elements of norm 1 and then \(\pm 1, \pm i \).
4. Let \(\alpha \in \mathbb{Z}[i] \), \(\alpha \) is a Gaussian prime if and only if \(\beta | \alpha \) implies \(N(\beta) = 1 \) or \(N(\beta) = N(\alpha) \).
5. Let \(\alpha \in \mathbb{Z}[i] \), \(\alpha \). If \(N(\alpha) \) is prime then \(\alpha \) is a Gaussian prime.
6. Let \(\alpha \in \mathbb{Z}[i] \) be a non-zero, non-unit. Then \(\alpha \) factors into a finite product of Gaussian primes. (Do as we have done for \(\mathbb{Z}! \))
7. Let \(p \in \mathbb{N} \) be prime. Then \(p \) is also prime in \(\mathbb{Z}[i] \) if and only if \(p \) is not the sum of two squares.
8. Suppose \(p \in \mathbb{N} \) is prime in \(\mathbb{Z} \) but factors as \(p = \alpha \beta \), where \(\alpha, \beta \) are non-units in \(\mathbb{Z}[i] \). Show \(\beta = \bar{\alpha} \).
9. Suppose \(p \in \mathbb{N} \) is prime and \(p = a^2 + b^2 \). Then \(\alpha = a + ib \) and \(\bar{\alpha} = a - ib \) are prime in \(\mathbb{Z}[i] \).
10. Suppose \(\alpha = \mu \beta + \rho \) where \(N(\rho) < N(\beta) \). Then \(\rho = 0 \) iff \(\beta | \alpha \). (Same as in \(\mathbb{Z} \))
11. Suppose \(\alpha = \mu \beta + \rho \) wher \(N(\rho) < N(\beta) \). If \(\rho = 0, \beta \) is a gcd for \(\alpha \) and \(\beta \). If not, a gcd for \(\beta \) and \(\rho \) is also a gcd for \(\alpha \) and \(\beta \) (and vice versa). (Same as in \(\mathbb{Z} \))
12. Let \(\pi, \beta \in \mathbb{Z}[i] \) and \(u \) be a unit of \(\mathbb{Z}[i] \). Show that \(\pi | u \beta \) if and only if \(\pi | \beta \).
13. Let \(\pi \) be a prime in \(\mathbb{Z}[i] \). If \(\pi | \alpha \beta \) then \(\pi | \alpha \) or \(\pi | \beta \). (Same as in \(\mathbb{Z} \))
14. Suppose \(\pi \) and \(\pi' \) are primes of \(\mathbb{Z}[i] \). Show \(\pi | \pi' \) implies \(\pi = u \pi' \) where \(u \) is a unit of \(\mathbb{Z}[i] \).
15. Let \(\alpha \neq 0 \) be a non-unit in \(\mathbb{Z}[i] \). Suppose \(\alpha = \pi_1 \ldots \pi_m \) and \(\alpha = \pi'_1 \ldots \pi'_n \) are two factorizations of \(\alpha \) into Gaussian prime \(\pi_i \) and \(\pi'_j \). Then \(m = n \), and up to a reordering of \(\pi'_j \)'s, we have

\[
\pi_i = u_i \pi'_i
\]

(Same as in \(\mathbb{Z} \)) for each \(i \), where \(u_i \) is a unit in \(\mathbb{Z}[i] \).
16. The Gaussian primes, up to units, are precisely the following:

(a) prime \(p \in \mathbb{N} \) not of the form \(x^2 + y^2 \),
(b) \(\alpha = a + bi \) where \(N(\alpha) \) is prime in \(\mathbb{N} \).

(Use the Unicity of the factorization in prime element proved in the previous question.)

Exercise 2: (⋆⋆) 5 points
Show that for any \(c > 2 \) there are only finitely many pairs of integers \(a, b \) with

\[|\sqrt{2} - \frac{a}{b}| < \frac{1}{b^c} \]

Exercise 3: (⋆) 3 points
Let \(p \) be prime and suppose \(u^2 \equiv -1 \mod p \), (so \(p \equiv 1 \mod 4 \)). Let \([a_0, ..., a_n]\) be the continued fraction expansion of \(\frac{u}{p} \), and let \(i \) be the largest integer with \(k_i \leq \sqrt{p} \). Show that \(|\frac{h_i}{k_i} - \frac{u}{p}| < \frac{1}{k_i \sqrt{p}} \) and \(|h_i p - k_i u| < \sqrt{p} \). Setting \(x = k_i \) and \(y = h_i p - u k_i \), show that \(p|x^2 + y^2| \) and \(x^2 + y^2 < 2p \), so \(x^2 + y^2 = p \).

\(^1\) (⋆) = easy, (⋆⋆) = medium, (⋆⋆⋆) = challenge