Practice for the FINAL

ADVISE

• Please make sure that your understanding of the question has a mathematical sense.
• Ask yourself if you have a complete answer to a question before moving to another one.
• Think about all the ways at your disposal to answer the question, try to find out, which one has most chances to succeed.
• Make sure all the assumption of the theorem you want to use are in the exercise before using it.
• Do not forget that there can be connection between the questions. this can make you win a lot of time.
• Start with a problem that you know how to solve to build confidence.
• Remember that partial answers, as long as they make sense, can earn you come points.

You must know well: Finite fields, constructible number, Galois theory.

Exercise 1: (∗)
Show that

1. if \(\cos(\theta) \) is constructible, so is \(\sin(\theta) \).
2. if \(\cos(\theta_1) \) and \(\cos(\theta_2) \) are constructible, so is \(\cos(\theta_1 + \theta_2) \)
3. if \(\cos(2\theta) \) is constructible, so is \(\cos(\theta) \). (The converse, of course, follows from (b))

Solution: Everything here is a straightforward consequence of the fact that the constructible numbers form a field closed under taking square roots of positive elements.

1. If \(\cos \theta \) is constructible, then \(1 - \cos^2 \theta \) is constructible and non-negative, so \(\sin \theta = \pm \sqrt{1 - \cos^2 \theta} \) is constructible.
2. We use
 \[
 \cos(\theta_1 + \theta_2) = \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2.
 \]
 Since \(\cos \theta_1, \sin \theta_1, \cos \theta_2, \sin \theta_2 \) are all constructible – by hypothesis and part (a) – \(\cos(\theta_1 + \theta_2) \) is constructible.
3. We use
\[
\cos(2\theta) = 2\cos^2 \theta - 1, \quad \text{so} \quad \cos \theta = \pm \sqrt{(\cos(2\theta) + 1)/2},
\]

Since \(\cos(2\theta)\) is constructible, \((\cos(2\theta)+1)/2\) is constructible, so \(\sqrt{(\cos(2\theta) + 1)/2}\) is the square root of a non-negative constructible number and hence constructible.

Exercise 2: (**) Let \(p = 2k + 1\) be an odd prime. Set \(\epsilon = e^{2\pi i/p}\) and set \(K = \mathbb{Q}(\epsilon)\). Let \(\tau\) denote complex conjugation and set \(H = \{1, \tau\}\). Let \(L\) denote the set of real numbers in \(K\).

1. Show that \(L = K^H\).
2. Find \([L : \mathbb{Q}]\).
3. Set \(\gamma = \epsilon + \epsilon^{-1}\). Show \(G_{\mathbb{Q}(\gamma)} = H\).
4. Find the degree of minimal polynomial \(f(x) \in \mathbb{Q}[x]\) with \(\cos(2\pi/p)\) as a root.

Solution:

1. \(\alpha \in K^H\) if and only if \(\text{Id}(\alpha) = \alpha\) and \(\tau(\alpha) = \alpha\). But \(\text{Id}(\alpha) = \alpha\) always so the condition is that \(\alpha\) equals its complex conjugate which occurs precisely when \(\alpha\) is real.
2. As \([K : \mathbb{Q}] = p-1\) we again apply the Galois Correspondence Theorem with values so that \([L : \mathbb{Q}] = [K^H : \mathbb{Q}] = |Gal(K, \mathbb{Q})|/|H| = (p-1)/2\).
3. As \(\epsilon^{-1} = \tau(\epsilon), \tau(\epsilon + \epsilon^{-1}) = \epsilon^{-1} + \epsilon\) so \(\tau \in Q(\gamma^*)\). The elements of \(\text{Gal}(K, \mathbb{Q})\) are given by \(\sigma_j, 1 \leq j \leq p-1\), where \(\sigma_j(\epsilon) = \epsilon^j\). If \(\sigma_j(\gamma) = \gamma\) we have \(\epsilon + \epsilon^{-1} = \epsilon^j + \epsilon^{-j}\). We can suppose \(j \leq (p-1)/2\) as otherwise we could replace it by \(p-j\). Multiplying by \(\epsilon^j\): \(\epsilon^{j+1} + \epsilon^{j-1} = \epsilon^{2j} + 1\). With \(j < (p-1)/2\) this contradicts the independence of \(1, \epsilon, \ldots, \epsilon^{p-2}\). With \(j = (p-1)/2\) you’d have \(\epsilon^{j+1} + \epsilon^{j-1} = \epsilon^{p-1} + 1\). Replacing \(\epsilon^{p-1}\) with \((-1 + \epsilon + \ldots + \epsilon^{p-2})\) one again contradicts the independence of \(1, \epsilon, \ldots, \epsilon^{p-2}\).
4. As \(|G_{\mathbb{Q}(\gamma)}| = 2\), \([\mathbb{Q}(\gamma) : \mathbb{Q}] = (p-1)/2\). But \(\cos(2\pi/p) = \gamma/2\) so \([\mathbb{Q}(\cos(2\pi/p) : \mathbb{Q}] = (p-1)/2\) and so the minimal polynomial has degree \((p-1)/2\). It is an interesting trigonometry problem, using formulae for multiple angles, to find the polynomial.

Exercise 3: (*)
Let \(f(x) = x^7 - 2\). Since \(f'(x) > 0\) for \(x \neq 0\), it follows from calculus that \(f(x)\) has no real root other than the familiar one \(2^{1/7}\). Let \(\lambda\) be a nonzero rational number, and write \(\gamma\) for \(2^{1/7} + \lambda \cdot 2^{1/2}\)

1. Using the uniqueness of the real root of \(f(x)\), find the (monic) greatest common divisor of \(x^2 - 2\) and \(f(\gamma - \lambda x)\) in \(\mathbb{Q}(2^{1/2}, 2^{1/7})[x]\).
2. Show that \(\mathbb{Q}(\gamma) = \mathbb{Q}(2^{1/2}, 2^{1/7})\), i.e., that \(2^{1/7} + \lambda \cdot 2^{1/2}\) is a primitive element for the field extension \(\mathbb{Q} \subset \mathbb{Q}(2^{1/2}, 2^{1/7})\).

Solution: Write \(g(x)\) for \(x^2 - 2\) and \(h(x)\) for \(f(\gamma - \lambda \cdot x)\). Over the field \(\mathbb{Q}(2^{1/2})\), \(g(x)\) factorizes as \((x + 2^{1/2})(x - 2^{1/2})\). Polynomials of degree 1 are always irreducible, so this
is also the factorization of $g(x)$ into irreducibles over $\mathbb{Q}(2^{1/2}, 2^{1/7})$. Now

$$h(2^{1/2}) = f(2^{1/7} + \lambda \cdot 2^{-1/2} - \lambda \cdot 2^{-1/2}) = f(2^{1/7}) = 0,$$

so $x - 2^{1/2}$ divides $h(x)$ over $\mathbb{Q}(2^{1/2}, 2^{1/7})$. On the other hand $x + 2^{1/2}$ does not divide $h(x)$ because

$$h(-2^{1/2}) = f(2^{1/7} + \lambda \cdot 2^{1/2} - \lambda \cdot (-2^{1/2})) = f(2^{1/7} + 2\lambda \cdot 2^{1/2}) \neq 0,$$

since $2^{1/7}$ is the only real root of $f(x)$. Thus, $x - 2^{1/2}$ is the only irreducible divisor of $g(x)$ in $\mathbb{Q}(2^{1/2}, 2^{1/7})$ which also divides $h(x)$, so the monic greatest common factor of $g(x)$ and $h(x)$ over $\mathbb{Q}(2^{1/2}, 2^{1/7})$ is $x - 2^{1/2}$. But $g(x)$ and $h(x)$ both have coefficients in $\mathbb{Q}(\gamma)$, so their greatest common divisor over $\mathbb{Q}(\gamma)$ is the same as over the larger field $\mathbb{Q}(2^{1/2}, 2^{1/7})$, so $x - 2^{1/2} \in \mathbb{Q}(\gamma)[x]$, so $2^{1/2} \in \mathbb{Q}(\gamma)$. But then $2^{1/7} = \gamma - \lambda \cdot 2^{1/2}$ is also in $\mathbb{Q}(\gamma)$ — remember that $\lambda \in \mathbb{Q}$, so both $2^{1/2}$ and $2^{1/7}$ are in $\mathbb{Q}(\gamma)$, so $\mathbb{Q}(2^{1/2}, 2^{1/7}) \subset \mathbb{Q}(\gamma)$. The opposite inclusion is immediate, so $\mathbb{Q}(2^{1/2}, 2^{1/7}) = \mathbb{Q}(\gamma)$ i.e., γ generates $\mathbb{Q}(2^{1/2}, 2^{1/7})$ over \mathbb{Q}.

Exercise 4: ()**

In this exercise, p denotes an odd prime, i.e., any prime other than 2.

1. Let a be an integer not divisible by p. Show that the congruence

$$x^2 \equiv a \pmod{p}$$

has a solution in \mathbb{Z} if and only if

$$a^{(p-1)/2} \equiv 1 \pmod{p}.$$

Hint: Since \mathbb{F}_p^\times is a cyclic group of order $p - 1$, this is purely a question about the structure of this cyclic group.

2. Using the result of (a), determine whether

(a) 3 is a square mod 17

(b) 10 is a square mod 13

3. Again using the result of (a), show that -1 is a square modulo p if and only if $p \equiv 1 \pmod{4}$.

Solution:

1. It is a good idea to invoke the fact that the multiplicative group \mathbb{F}_p^\times is isomorphic to the additive group $\mathbb{Z}/(p - 1)\mathbb{Z}$. Since p is odd, $p - 1$ is even, so, for given n, the congruence $n \equiv 2m \pmod{p - 1}$ has a solution m is and only if n is even. We can write

$$p - 1 = 2^k q \quad \text{with } q \text{ odd;}$$

from this — and the uniqueness of the factorization of integers into primes — it follows that $n \cdot (p - 1)/2 = n \cdot 2^{k-1} \cdot q$ is divisible by $(p - 1) = 2^k \cdot q$ if and only
if “n provides a factor of 2”, i.e., if and only if n is even. Thus: The congruence
\(n \equiv 2m \mod (p - 1) \) can be solved if and only if \(n \cdot (p - 1)/2 \) is divisible by \(p - 1 \).
Translated back into the multiplicative notation, this says that the equation \(a = x^2 \)
has a solution in \(\mathbb{F}_p \) if and only if \(a^{(p-1)/2} = 1 \) (again, in \(\mathbb{F}_p \)).

2. (a) By (a), 3 is a square mod 17 – \(p = 17 \) so \((p-1)/2 = 8 \) – if and only if \(3^8 \equiv 1 \) (mod 17). This is a routine calculation:

\[
3^2 = 9, \quad 3^4 = 81 = 5 \cdot 17 - 4 \equiv -4, \quad 3^8 \equiv (-4) \cdot (-4) = 16 \equiv -1 \neq 1,
\]

so 3 is not a square in \(\mathbb{F}_{17} \).

(b) 10 is a square mod 13 if and only if \(10^6 \equiv 1 \) (mod 13):

\[
10^2 = 100 = 13 \cdot 7 + 9 \equiv 9, \quad 10^3 \equiv 10 \cdot 10^2 \equiv 90 = 13 \cdot 7 - 1 \equiv -1, \\
10^6 = 10^3 \cdot 10^3 \equiv (-1) \cdot (-1) = 1,
\]

so 10 does turn out to be a square mod 13.

3. Again by (a), \(-1\) is a square mod \(p \) if and only if \((-1)^{(p-1)/2} \equiv 1 \) (mod \(p \)), which is the case if and only if \((p-1)/2 \) is even, which is the case if and only if \((p-1)/2 \)
has the form \(2k \), i.e., if and only if \(p \) has the form \(4k + 1 \).

Exercise 5: (⋆) Let \(p \) be a prime integer, \(m \) an integer \(\geq 1 \). As in lecture, we denote
by \(\mathbb{F}_{p^m} \) the (essentially unique) field with \(p^m \) elements. Let \(\sigma \) denote the Frobenius
amorphism of \(\mathbb{F}_{p^m} \), i.e., \(\sigma(a) = a^p \).

1. Show that, \(a \in \mathbb{F}_{p^m} \) is in the prime field \(\mathbb{F}_p \) if and only if it is left fixed by \(\sigma \).

2. Show that the powers of \(\sigma \) form a cyclic group of order \(m \), i.e., that \(\sigma^m \) is the
identity mapping and the powers \(\sigma, \sigma^2, \ldots, \sigma^m \) are all distinct.

Solution: By the general theory of finite fields, applied in the simple case \(m = 1 \),
says that all elements of \(\mathbb{F}_p \) are roots of \(x^p - x \), and that there are no more roots in
any extension field. Put into the language of the Frobenius homomorphism, this says
extactly that every element of \(\mathbb{F}_p \) is left fixed by \(\sigma \), and no element outside \(\mathbb{F}_p \) in any
extension is. In particular: \(a \in K \) is left fixed by \(\sigma \) if and only if \(a \in \mathbb{F}_p \).

By the general theorem proved in lecture, \(a^{p^m} - a = 0 \) for all \(a \in K \). Expressed
in terms of the Frobenius homomorphism, this says that \(\sigma^m(a) = a \) for all \(a \in K \), which
means that \(\sigma^m \) is the identity mapping on \(K \). Thus, the order of \(\sigma \) in the group of
amorphisms of \(K \) divides \(m \). We need to show that it is actually equal to \(m \). If its
order is \(k < m \), then \(\sigma^k(a) = a \) for all \(a \in K \). Translating back: \(a^{p^k} - a = 0 \) for all \(p^m \)
a’s in \(K \). But the polynomial \(x^{p^k} - x \) has at most \(p^k \) roots, while \(K \) has \(p^m \) elements,
so \(k < m \) is not possible.

Exercise 6: (★★) Let \(f(x) \) be an irreducible cubic polynomial over a field \(F \), and
let \(K \) be an extension field of \(F \) of degree 2. Show that \(f(x) \) is (still) irreducible over
\(K \).

Solution: Since \(f(x) \) is cubic, if it is not irreducible over \(K \), it must have a root
in K. But if α is a root of $f(x)$ (in any extension field of K), its degree over F must be 3. Since $[K : F] = 2$, no element of K can have degree 3 over F.

Exercise 7: (⋆⋆) Preliminaries: Let $f(x)$ be a monic cubic polynomial over a subfield F of C. We can then factorize

$$f(x) = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3) \quad \text{with } \alpha_1, \alpha_2, \alpha_3 \text{ in } \mathbb{C}.$$

The **discriminant** of $f(x)$ is defined as

$$D := (\alpha_1 - \alpha_2)^2(\alpha_1 - \alpha_3)^2(\alpha_2 - \alpha_3)^2$$

It has been shown (or will be shown) in lecture that D is in the base field F, and you can assume this fact for these exercises.

Define also

$$\delta := (\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_3), \quad \text{so } \delta^2 = D.$$

The quantity δ is in the splitting field for $f(x)$; it may or may not be in the base field F, and it changes sign if the labeling of the roots is subjected to an odd permutation.

Recall that, by analysis, a cubic polynomial with real coefficients has either three real roots (which may coincide, i.e., may be a single root of multiplicity 3), or one real root and a complex-conjugate pair of non-real roots.

1. Let $f(x)$ be an irreducible cubic polynomial over a field F, and let K be an extension field of F of degree 2. Show that $f(x)$ is (still) irreducible over K.
2. Show that, if the monic cubic $f(x)$ is irreducible over F, then $D \neq 0$.
3. If $f(x)$ has real coefficients, show that $D < 0$ if and only if $f(x)$ has only one real root.

The polynomial $f(x) = x^3 - 2$ was analyzed in some detail in lecture. We review here the main points: Its roots are

$$\alpha_1 := \sqrt[3]{2} =: \alpha, \quad \alpha_2 := \omega \alpha_1, \quad \alpha_3 := \omega^2 \alpha_1,$$

with

$$\omega := e^{2\pi i/3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}.$$

For brevity, we denote by K its splitting field $\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3)$. We showed – modulo one step, to be filled in below – that the group of automorphism of the field extension K/\mathbb{Q}, regarded as acting on the labels of the roots α_i, is the full symmetric group S_3 on three objects. One of these automorphisms is complex conjugation, which interchanges α_2 and α_3, leaving α_1 fixed. This exercise concerns the polynomial $f(x) = x^3 - 2$.

1. Compute δ for this polynomial directly from the definition above, and verify that it is not in \mathbb{Q} but that its square is (as it must be, by the general theory.) Show that

$$\mathbb{Q}(\delta) = \mathbb{Q}(\omega).$$
2. Filling in a point left without proof in lecture: Show that there is an automorphism
\(\sigma \) of \(\mathbb{Q}(\omega, \alpha)/\mathbb{Q}(\omega) \) sending \(\alpha_1(=\alpha) \) to \(\alpha_2 = \omega \alpha \).

3. Show that
\[
1, \alpha, \alpha^2, \omega, \omega \alpha, \omega \alpha^2
\]
form a basis for \(K := \mathbb{Q}(\omega, \alpha) \) over \(\mathbb{Q} \).

4. Show that \(\beta \in K \) is left fixed by complex conjugation if and only if \(\beta \in \mathbb{Q}(\alpha) \).

5. Show that the set of elements of \(K \) left fixed by all of \(G(K/\mathbb{Q}) \) is exactly \(\mathbb{Q} \).

6. Let \(H \) denote the subgroup of \(G(\mathbb{Q}(\omega, \alpha)/\mathbb{Q}) \) leaving all elements of \(\mathbb{Q}(\omega) \) fixed.
 Show that the action of \(H \) on the roots of \(f(x) \), represented by permutations of the labels, is the cyclic subgroup
 \[
 \{ \epsilon, (123), (132) \} \subset S_3
 \]

 From Algebra I, this is a normal subgroup of \(S_3 \); it is in fact the alternating group \(A_3 \) in this simple case. Show that \(S_3/H \) is isomorphic to \(G(\mathbb{Q}(\omega)/\mathbb{Q}) \).

Solution:

1. Using \(\omega^2 = \overline{\omega} \) (complex conjugate):

\[
\delta = (\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_3) \\
= \alpha(1 - \omega) \cdot \alpha(1 - \overline{\omega}) \cdot \alpha(\omega - \overline{\omega}) \\
= (\alpha^3)[1 - \omega^2](\omega - \overline{\omega}) \\
= 2 \cdot ((3/2)^2 + (\sqrt{3}/2)^2)(i \sqrt{3}) \\
= 2 \cdot 3 \cdot i \sqrt{3} = 6i \sqrt{3},
\]

which indeed is not in \(\mathbb{Q} \) but whose square \(-108\) is. Since

\[
i \sqrt{3} = 2\omega + 1 = \delta/6,
\]

\[
\mathbb{Q}(\omega) = \mathbb{Q}(i \sqrt{3}) = \mathbb{Q}(\delta).
\]

2. Write \(L := \mathbb{Q}(\omega) \) and \(K := \mathbb{Q}(\omega, \alpha) \); then \(K = L(\alpha_1) = L(\alpha_2) \).
 Since \([L : \mathbb{Q}] = 2\), \(x^3 - 2 \) is irreducible over \(L \) by exercise 1. As argued in lecture, there are isomorphisms

(a) \(L[x]/(f(x)) \rightarrow L(\alpha_1) = K \) sending \(x \) to \(\alpha_1 \)

(b) \(L[x]/(f(x)) \rightarrow L(\alpha_2) = K \) sending \(x \) to \(\alpha_2 \).

Composing the inverse of the first of these with the second is an isomorphism \(K \rightarrow K \) sending \(\alpha_1 \) to \(\alpha_2 \) and leaving elements of \(L \) fixed.

3. We can write \(K = L(\alpha) \). \(\{1, \omega\} \) is a basis for \(L \) over \(\mathbb{Q} \), and \(\{1, \alpha, \alpha^2\} \) a basis for \(L(\alpha) \) over \(L \). By the proof of the Tower Theorem, the set of products of one factor from \(\{1, \omega\} \) and a second from \(\{1, \alpha, \alpha^2\} \) forms a basis for \(K \) over \(\mathbb{Q} \).
4. This time we write $K = (\mathbb{Q}(\alpha))(\omega)$ and use the fact that $\{1, \omega\}$ is a basis for K over $\mathbb{Q}(\alpha)$. We can thus write the general element of K as $\beta = a + b\omega$, with a, b in $\mathbb{Q}(\alpha) \subset \mathbb{R}$. Complex conjugation maps this general element

$$\beta = a + b\omega \mapsto a + b\bar{\omega} = a + b\omega + b(\bar{\omega} - \omega) = \beta + b(\bar{\omega} - \omega).$$

Since $\bar{\omega} - \omega \neq 0$, $\beta = a + b\omega$ is left fixed by complex conjugation if and only if $b = 0$, i.e., if and only if $\beta \in \mathbb{Q}(\alpha)$

5. By the preceding part, if $\beta \in K$ is left fixed by complex conjugation, it must have the form $c_1 + c_2\alpha + c_3\alpha^2$ (with $c_1, c_2, c_3 \in \mathbb{Q}$). By part (b), there is a $\sigma \in G(K/\mathbb{Q})$ such that $\sigma(\alpha) = \omega\alpha$. Then

$$\sigma(\beta) = c_1 + c_2\sigma(\alpha) + c_3(\sigma(\alpha))^2 = c_1 + c_2\omega\alpha + c_3\omega^2\alpha^2.$$

By the linear independence of $1, \alpha, \alpha^2$ over $\mathbb{Q}(\omega)$, $\sigma(\beta)$ cannot be equal to β unless $c_2 = c_3 = 0$, i.e., unless $\beta \in \mathbb{Q}$.

6. If σ be the automorphism of K/\mathbb{Q} constructed in (b). Then, by that construction, $\sigma(\alpha_1) = \alpha_2 (= \omega\alpha_1)$. Further, σ leaves ω fixed, so

$$\sigma(\alpha_2) = \sigma(\omega\alpha_1) = \sigma(\omega)\sigma(\alpha_1) = \omega \cdot \omega\alpha_1 = \alpha_2$$

$$\sigma(\alpha_3) = \sigma(\omega^2\alpha_1) = \omega^2 \cdot \omega \cdot \alpha_1 = \alpha_1$$

Thus, expressed in terms of its action on the indices on the roots, σ is the cyclic permutation (123), so $\sigma^2 = (123)(123) = (132)$. Now let τ be any automorphism of K/\mathbb{Q} leaving ω fixed. Then τ must map α_1 to a root, i.e, there are three possibilities

(a) $\tau(\alpha_1) = \alpha_1$, which implies $\tau = \text{id}$

(b) $\tau(\alpha_1) = \alpha_2$, which implies $\tau = \sigma$

(c) $\tau(\alpha_1) = \alpha_3$, which implies $\tau = \sigma^2$.

Thus, the subgroup of the group of automorphisms of K/\mathbb{Q} leaving ω fixed is $\{\text{id}, (123), (132)\}$, i.e., the alternating group A_3. The full symmetric group S_3 has 6 elements, so the above cyclic subgroup has index 2 in S_3, so the quotient group S_3/A_3 is isomorphic to the cyclic group with 2 elements C_2, which in turn is isomorphic to the group of automorphisms of $\mathbb{Q}(\omega)/\mathbb{Q}$ (since this latter is a field extension of degree 2.)

Exercise 8: (⋆) Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) \subset \mathbb{R}$

1. Determine the degree $[K : \mathbb{Q}]$

2. Show that K/\mathbb{Q} is a normal extension

3. Find the Galois group of K/\mathbb{Q}. Describe each automorphism by saying how it acts on the generators $\sqrt{2}, \sqrt{3}, \sqrt{5}$, and also identify the group “abstractly.”
4. Find all fields intermediate between K and \mathbb{Q}.

Solution:

K is the splitting field of $(x^2 - 2)(x^2 - 3)(x^2 - 5)$ over \mathbb{Q}; hence, is a normal extension of \mathbb{Q}. To determine the degree of the extension, and its Galois group, we use the results about biquadratic extensions proved in lecture. To start with: $K_1 := \mathbb{Q}(\sqrt{2}, \sqrt{3})$ has degree 4 over \mathbb{Q}, and K is obtained by adjoining $\sqrt{5}$ to K_1. Thus $[K : \mathbb{Q}]$ is 4 if $\sqrt{5} \in K_1$ and 8 otherwise. We argue that $\sqrt{5} \notin K_1$, from which it will follow that $[K : \mathbb{Q}] = 8$.

From the theory of biquadratic extensions:

- $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is a basis for K_1 over \mathbb{Q}
- the Galois group for K_1/K has four elements; the three elements other than the identity can be labeled as σ_1, σ_2, $\sigma_3 = \sigma_1\sigma_2$ which are characterized by:

$$
\begin{align*}
\sigma_1 &: \begin{cases}
\sqrt{2} &\mapsto -\sqrt{2} \\
\sqrt{3} &\mapsto \sqrt{3}
\end{cases} \\
\sigma_2 &: \begin{cases}
\sqrt{2} &\mapsto \sqrt{2} \\
\sqrt{3} &\mapsto -\sqrt{3}
\end{cases} \\
\sigma_3 &: \begin{cases}
\sqrt{2} &\mapsto -\sqrt{2} \\
\sqrt{3} &\mapsto -\sqrt{3}
\end{cases}
\end{align*}
$$

Now suppose that there is an element β of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ with $\beta^2 = 5$, i.e., a root of $x^2 - 5$. Then β can be written as

$$
\beta = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}
$$

with a, b, c, d in \mathbb{Q}. But then also $-\beta, \pm \sigma_1\beta, \pm \sigma_2\beta, \pm \sigma_3\beta$ are all roots of $x^2 - 5$, i.e., all expressions of the form $\pm a \pm b\sqrt{2} \pm c\sqrt{3} \pm d\sqrt{6}$ are roots of $x^2 - 5$. There can only be two roots, so only one of a, b, c, d can be different from 0. It is then easy to rule out each of these possibilities. For example, if d is rational, then $(d\sqrt{6})^2 = 6d^2 = 5$, which is impossible because $\sqrt{5/6}$ is not rational (because $6x^2 - 5$ is irreducible over \mathbb{Q}, by the Eisenstein criterion with $p = 5$). By three more similar arguments: $\sqrt{5}$ cannot be written in the form (*), so $[K : \mathbb{Q}] = 8$. Since K/\mathbb{Q} is normal and has degree 8, $G := G(K/\mathbb{Q})$ has 8 elements. We are going to show that it is isomorphic to $C_2 \times C_2 \times C_2$. We can write K as $\mathbb{Q}(\sqrt{2}, \sqrt{3})(\sqrt{5})$ so there is an automorphism σ_3 of K reducing to the identity on $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ with $\sigma_3(\sqrt{5}) = -\sqrt{5}$. Similarly, there exist automorphisms σ_1 and σ_2 of K with

$$
\begin{align*}
\sigma_1 &: \begin{cases}
\sqrt{2} &\mapsto -\sqrt{2} \\
\sqrt{3} &\mapsto +\sqrt{3} \\
\sqrt{5} &\mapsto +\sqrt{5}
\end{cases} \\
\sigma_2 &: \begin{cases}
\sqrt{2} &\mapsto +\sqrt{2} \\
\sqrt{3} &\mapsto -\sqrt{3} \\
\sqrt{5} &\mapsto +\sqrt{5}
\end{cases} \\
\sigma_3 &: \begin{cases}
\sqrt{2} &\mapsto +\sqrt{2} \\
\sqrt{3} &\mapsto +\sqrt{3} \\
\sqrt{5} &\mapsto -\sqrt{5}
\end{cases}
\end{align*}
$$

Since an automorphism of K/\mathbb{Q} is uniquely determined by its action on the generators $\sqrt{2}, \sqrt{3}, \sqrt{5}$, it is easy to check that

$$
\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = e,
$$

that the σ_i commute, and that

$$
\{e, \sigma_1, \sigma_2, \sigma_3, \sigma_1\sigma_2, \sigma_1\sigma_3, \sigma_2\sigma_3, \sigma_1\sigma_2\sigma_3\}
$$
are distinct automorphisms of K/Q. Since there are only 8 automorphisms, these are all of them, which shows that $G(K/Q)$ is the internal direct product of the 2-element subgroups $\{e, \sigma_1\}, \{e, \sigma_2\}, \{e, \sigma_3\}$. The (proper) intermediate fields are in one-one correspondence with the (proper) subgroups of $G \cong C_2 \times C_2 \times C_2$. Since G has 8 elements, the possible orders of proper subgroups are 2 and 4. A 2-element subgroup has the form $\{e, \tau\}$ with τ an element of G other than the identity, and every subset of this form is a 2-element subgroup. Thus, there are 7 2-element subgroups. If H is a 2-element subgroup, and if L is the fixed field of H, then $[K:L] = |H| = 2$, so $[L:Q] = [K:Q]/[K:L] = 4$, so there are 7 intermediate fields of degree 4 over Q. It is a straightforward – but tedious – matter to work out the correspondence between e, τ and the fixed field of $\{e, \tau\}$. To do just one example: Let $\tau = \sigma_1\sigma_2$, and abbreviate $\{e, \tau\}$ by H and the fixed field of H by L. Then $\tau(\sqrt{5}) = \sqrt{5}$, and

$$\tau(\sqrt{6}) = \tau(\sqrt{2})\tau(\sqrt{3}) = (\sqrt{2})(\sqrt{3}) = 2\sqrt{3} = \sqrt{6}$$

so $\sqrt{5}$ and $\sqrt{6}$ are in L, so $Q(\sqrt{5}, \sqrt{6})$ is an intermediate field contained in L and with degree 4 over Q, which is the same as the degree of L over Q, so it coincides with L: If $H = \{e, \sigma_1\sigma_2\}$ then $K^H = Q(\sqrt{5}, \sqrt{6})$. The fixed fields of the other 6 2-element subgroups can be worked out similarly. The question of 4-element subgroups: By the same sort of degree calculation done above, the fixed field of any 4-element subgroup has degree 2 over Q, i.e., is a quadratic extension of Q. Given any two distinct elements τ_1, τ_2 of $G \setminus \{e\}$, $\{e, \tau_1, \tau_2, \tau_1\tau_2\}$ is a 4-element subgroup, and every 4-element subgroup has this form. The number of two element subsets of $G \setminus \{e\}$ is $(7 \cdot 6)/2 = 21$. Each 4-element subgroup has 3 different labelings by 2-element subsets; for example, $\{\sigma_1, \sigma_2\}$, $\{\sigma_1, \sigma_1\sigma_2\}$, $\{\sigma_2, \sigma_1\sigma_2\}$ give the same 4-element subgroup $\{e, \sigma_1, \sigma_2, \sigma_1\sigma_2\}$. Thus, the number of 4-element subgroups is $21/3 = 7$. On the other hand, the 7 elements

$$\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{6}, \sqrt{10}, \sqrt{15}, \sqrt{30}$$

generate distinct degree-2 subfields of K, so these are all of them. Again, the concrete correspondence between 4-element subgroups and quadratic intermediate fields can be worked out in a routine way. For example, if $H = \{e, \sigma_1\sigma_2, \sigma_1\sigma_3\}$, then $\sqrt{5}$ is in the fixed field of H so – “by counting dimensions” – the fixed field of H is $Q(\sqrt{5})$.

Exercise 9: *(*) Let K be a normal extension of Q such that $G(K/Q)$ is isomorphic to $C_2 \times C_2$ (where C_2 denotes the cyclic group of order 2.) Show that K can be written as $Q(\sqrt{a}, \sqrt{b})$ with a, b rational. (More precisely: Show that $K = Q(\alpha, \beta)$, with $\alpha^2 (= a)$ and $\beta^2 (= b)$ rational.)

Solution: Since the Galois group of K/Q has 4 elements, $[K:Q] = 4$. A group isomorphic to $C_2 \times C_2$ can be written as $\{e, \sigma_1, \sigma_2, \sigma_1\sigma_2\}$ with

$$\sigma_1^2 = \sigma_2^2 = (\sigma_1\sigma_2)^2 = e.$$

Corresponding to the subgroup $\{e, \sigma_1\}$ is a intermediate field not equal to Q or K. This intermediate field must have degree 2 over Q, so it must have the form $Q(\alpha)$ with $\alpha^2 \in Q$. Similarly, the fixed field for σ_2 must have the form $Q(\beta)$ with $\beta^2 \in Q$. The intersection of $Q(\alpha)$ and $Q(\beta)$ is a proper subfield of $Q(\alpha)$, so can only be Q, so $\beta \notin Q(\alpha)$,
so $\mathbb{Q}(\alpha, \beta)$ – which is contained in K – also has degree 4 over \mathbb{Q} so is equal to K.

Exercise 9: (⋆) Let K be a normal extension of \mathbb{Q} such that $G(K/\mathbb{Q})$ is isomorphic to $C_2 \times C_2$ (where C_2 denotes the cyclic group of order 2.) Show that K can be written as $\mathbb{Q}(\sqrt{a}, \sqrt{b})$ with a, b rational. (More precisely: Show that $K = \mathbb{Q}(\alpha, \beta)$, with $\alpha^2 (= a)$ and $\beta^2 (= b)$ rational.)

Solution: Since the Galois group of K/\mathbb{Q} has 4 elements, $[K : \mathbb{Q}] = 4$. A group isomorphic to $C_2 \times C_2$ can be written as $\{e, \sigma_1, \sigma_2, \sigma_1 \sigma_2\}$ with

$$\sigma_1^2 = \sigma_2^2 = (\sigma_1 \sigma_2)^2 = e.$$

Corresponding to the subgroup $\{e, \sigma_1\}$ is a intermediate field not equal to \mathbb{Q} or K. This intermediate field must have degree 2 over \mathbb{Q}, so it must have the form $\mathbb{Q}(\alpha)$ with $\alpha^2 \in \mathbb{Q}$. Similarly, the fixed field for σ_2 must have the form $\mathbb{Q}(\beta)$ with $\beta^2 \in \mathbb{Q}$. The intersection of $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ is a proper subfield of $\mathbb{Q}(\alpha)$, so can only be \mathbb{Q}, so $\beta \notin \mathbb{Q}(\alpha)$, so $\mathbb{Q}(\alpha, \beta)$ – which is contained in K – also has degree 4 over \mathbb{Q} so is equal to K.

Exercise 9: (⋆) Convince yourself that $\mathbb{Q}(i, \sqrt{2})/\mathbb{Q}$ is a normal extension and figure out what its Galois group is.

1. Find the orbit of $i + \sqrt{2}$ under the action of $G(\mathbb{Q}(i, \sqrt{2})/\mathbb{Q})$.
2. Find – using Galois theory – the monic minimal polynomial for $i + \sqrt{2}$ over \mathbb{Q}.

Solution: The Galois group is generated by two automorphisms, one of which maps i to $-i$ leaving $\sqrt{2}$ fixed, and the other of which maps $\sqrt{2}$ to $-\sqrt{2}$ leaving i fixed.

1. Hence the orbit of $\zeta := i + \sqrt{2}$ is

$$\{i + \sqrt{2}, i - \sqrt{2}, -i + \sqrt{2}, -i - \sqrt{2}\} = \{\zeta_1, \zeta_2, \zeta_3, \zeta_4\}$$

2. The minimal polynomial of ζ is given by

$$(x - \zeta_1)(x - \zeta_2)(x - \zeta_3)(x - \zeta_4)$$

i.e., the product of linear factors over the orbit. Now

$$(x - (i - \sqrt{2}))(x - (i - \sqrt{2})) = (x - i)^2 - (\sqrt{2})^2 = x^2 - 2ix - 1 - 2 = x^2 - 2ix - 3,$$

and

$$(x - (-i + \sqrt{2}))(x - (-i - \sqrt{2})) = (x + i)^2 - 2 = x^2 + 2i - 3,$$

so the minimal polynomial is

$$(x - i - \sqrt{2})(x - i + \sqrt{2})(x + i - \sqrt{2})(x + i + \sqrt{2})$$

$$= (x^2 - 2ix - 3)(x^2 + 2i - 3) = (x^2 - 3)^2 - (2ix)^2$$

$$= x^4 - 6x^2 + 9 + 4x^2 = x^4 - 2x^2 + 9$$

\[\text{(⋆)} = \text{easy}, \ (⋆⋆) = \text{medium}, \ (⋆⋆⋆) = \text{challenge}\]