Problem Set # 8

Due Friday November 8th in Recitation

Exercise 1(⋆): 40 points
Prove that if \(x \) and \(y \) are two constructible numbers, then \(x \pm y, xy, x/y \) with \(y \neq 0 \) are also constructible.

Exercise 2(⋆): 80 points
Let \(F \) be any subfield of the real number

1. Prove that a line in \(F \) has an equation of the form \(y = mx + p \) with \(m \) and \(p \) in \(F \).

2. Prove that a circle in \(F \) has an equation of the form \((x - a)^2 + (x - b)^2 = c\) with \(a, b \) and \(c \) in \(F \).

3. Prove that two lines in \(F \), which intersect in the real plane, intersect at a point in the plane of \(F \).

4. Prove that a line in \(F \) and a circle in \(F \) which intersect in the real plane do so at a point either in the plane of \(F \) or in the plane of \(F(\sqrt{\gamma}) \) where \(\gamma \) is a positive number in \(F \).

Exercise 3(⋆): 20 points
Prove that square roots of positive rational number are constructible.

Exercise 4(⋆): 20 points
Prove that the polynomial \(f(x) = 8x^3 - 6x - 1 \) is irreducible over the field of rational numbers. (Hint: Argue by contradiction, let \(r \) be a root of \(f(x) \) in \(\mathbb{Q} \) then prove that \(v = 2r - 1 \) is a root of the polynomial \(X^3 + 3X^2 - 3 \) and conclude.)

Exercise 5(⋆⋆): 40 points

1. Prove that \(f(x) = x^3 + x^2 - 2x - 1 \) is irreducible in \(\mathbb{Q} \) by contradiction.

2. Prove that \(2\cos(2\pi/7) \) satisfies \(f(x) = x^3 + x^2 - 2x - 1 \). (Hint: \(2\cos(2\pi/7) = e^{2i\pi/7} + e^{-2i\pi/7} \).)