Problem Set #3

Due Monday 23 September in Class

Exercise 1 (⋆⋆**)** 4 points:
Let \(p \) be a prime number and define the **cyclotomic polynomial** \(\Phi_p \) of order \(p \) by
\[
\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + ... + x + 1 \in \mathbb{Z}[x]
\]
Show that \(\Phi_p(x) \) is irreducible over \(\mathbb{Z} \). (Hint: First compute \(\Phi_p(x+1) \) using the binomial formula and prove it is irreducible using use Eisenstein’s Criterion, then conclude about the irreducibility of \(\Phi_p(x) \).)

Exercise 2 (⋆**)** 4 points:
Let \(I = (2, x) \) be the ideal of \(\mathbb{Z}[x] \) generated by 2 and \(x \). Show that \(I \) is not a principal ideal. (Remark: This proves that \(\mathbb{Z}[x] \) is not a principal ideal ring, so in particular it is not Euclidean.)

Exercise 3 (⋆**)** 4 points:
1. Prove that \(p(x) = x^4 + 1 \) is irreducible over \(\mathbb{Q} \) using Eisenstein criterion on \(p(x+1) \).
2. Find the irreducible factors of \(x^8 - 1 \) in \(\mathbb{Q}[x] \).

Exercise 4 (⋆**)** 4 points:
Determine if the following sets are subspaces of \(\mathbb{R}^3 \) (Give a complete justification to your answer):
1. \(V = \{(x, y, z)|x, y, z \in \mathbb{R} \text{ and } x + y = 1\} \).
2. \(V = \{(x, y, z)|x, y, z \in \mathbb{R} \text{ and } x + 2y + z = 0\} \).

Exercise 5 (⋆**)** 4 points:
Let \(F \subset K \), both fields, and consider \(K \) as a vector space over \(F \). Let \(\alpha \in K - \{0\} \). Prove that the map \(T_\alpha : K \to K \) given by \(T_\alpha(\beta) = \alpha \beta \) is a homomorphism. Prove further that it is an isomorphism between \(K \) and itself. \(^1\)

\(^1(⋆) = \text{easy}, (⋆⋆) = \text{medium}, (⋆⋆⋆) = \text{challenge} \)