Problem 1

You are given an array implementation of a binary max-heap containing \(n \) elements and a real number \(x \). Design an \(O(k) \) time algorithm to determine if the \(k \)th largest element in the heap is less than or equal to \(x \). (Hint: You are not asked to find the \(k \)th largest element itself)

Problem 2

You are given a directed acyclic graph \(G = (V, E) \) and two vertices \(s \) and \(t \). Design a linear time algorithm to count the number of directed paths from \(s \) to \(t \).

Problem 3

Let \(G = (V, E) \) be a connected, undirected graph. Design a linear time algorithm to find a vertex whose removal does not disconnect the graph.

Problem 4

Give an \(O(n \log k) \)-time algorithm to merge \(k \) sorted lists into one sorted list, where \(n \) is the total number of elements in all the input lists.

Problem 5

A graph \(G = (V, E) \) is called semi-connected if for all \(u, v \in V \) either there is a path from \(u \) to \(v \) or there is a path from \(v \) to \(u \). Design a linear time algorithm to test whether \(G \) is semi-connected. (Hint: Can you solve this problem easily on a DAG?)

Problem 6

When an adjacency matrix representation is used, most graph algorithms require time \(\Omega(n^2) \), but there are some exceptions. Show that determining whether a directed graph \(G \) contains a universal sink – a vertex with in-degree \(|V| - 1\) and out-degree 0 – can be determined in time \(O(V) \) given an adjacency matrix for \(G \).

1You may work with a partner, but you must submit your own solutions. You may NOT consult any textbook other than CLRS or the internet to aid in solving these problems.