# ON DETTMANN'S 'HORIZON' CONJECTURES 

DOMOKOS SZÁSZ

## BUDAPEST UNIVERSITY OF TECHNOLOGY


#### Abstract

In the simplest case consider a $\mathbb{Z}^{d}-$ periodic ( $d \geq 3$ ) arrangement of balls of radii $<1 / 2$, and select a random direction and point (outside the balls ). According to Dettmann's first conjecture the probability that the so determined free flight (until the first hitting of a ball) is larger than $t \gg 1$ is $\sim \frac{C}{t}$ where $C$ is explicitly given by the geometry of the model. In its simplest form, Dettmann's second conjecture is related to the previous case with tangent balls (of radii $1 / 2$ ). The conjectures are established in a more general setup: for $\mathcal{L}$-periodic configuration of convex bodies with $\mathcal{L}$ being a non-degenerate lattice. These questions are related to Pólya's visibility problem (1918), to the results of BourgainGolse (1998-) and of Marklof-Strömbergsson (2010-). The results, joint with P. Nándori and T. Varjú, also provide the asymptotic covariance of the periodic Lorentz process assuming it has a limit in the super-diffusively scaling, a fact if $d=2$ and the horizon is infinite.


