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Abstract

Guided by a geometric understanding developed in earlieksvaf Wang and Young, we
carry out numerical studies of shear-induced chaos in akparallel but different situations.
The settings considered include periodic kicking of linyitkes, random kicks at Poisson times,
and continuous-time driving by white noise. The forcing @fuasi-periodic model describing
two coupled oscillators is also investigated. In all cagEsitive Lyapunov exponents are
found in suitable parameter ranges when the forcing islgyitdirected.

| ntroduction

This paper presents a series of numerical studies whiclstigete the use of shear in the pro-
duction of chaos. The phenomenon in question can be dedaloighly as follows: An external
force is applied to a system with tame, nonchaotic dynantiitke forcing is strategically applied
to interact with the shearing in the underlying dynamicgait sometimes lead to the folding of
phase space, which can in turn lead to positive Lyapunovrexs for a large set of initial condi-
tions. This phenomenon, which we calear-induced chag®ccurs in a wide variety of settings,
including periodically-forced oscillators. For a topicganeral as this, it is difficult to compile a
reasonable set of references. We have not attempted to tjdthianention that the first known
observation of a form of this phenomenon was by van der Polandier Mark 80 years ago [33].
Other references related to our work will be mentioned as avalgng.

The present work is motivated by a series of papers by Wangyandg [34, 35, 36, 37].
In these papers, the authors devised a method for provingxiseence of strange attractors and
applied their techniques to some natural settings. Of @déti relevance to us are [35, 36], in
which they identified a simple geometric mechanism thatarplhow under certain conditions
chaotic behavior comes about in periodically-kicked datks. This is an example of what we
call shear-induced chaos.
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tE-mail: Isy@cims.nyu.edu. L.-S. Y. is supported by a grant from the NSF.
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The aim of the present paper is a numerical investigatioree¢al situations parallel to but
different from those studied by Wang and Young. In each offitisé 3 studies in this paper, the
unforced system has a limit cycle as in [35, 36], but the fayes different. More precisely, because
of the perturbative nature of their analysis, the autho85f 36] considered only periodic kicks
with very long relaxation periods between kicks, so thabshdevelops on a very slow time scale.
In Study 1 here, we consider periodic kicks with short-todinen relaxation times; in Study 2,
we use random kicks that are applied at times given by a Roigsmess, and in Study 3, the
system is driven by white noise. In Study 4, our final studgrethe unforced system is different:
we consider the forcing (periodic and white-noise) of gymsiodic systems defined by a pair of
coupled oscillators.

In each of the studies described above, we demonstrate rathethat shear-induced chaos
occurs under suitable conditions, namely when the sheandghe amplitude of the forcing are
large enough to overcome the effects of damping. The nuserimur paper are relatively straight-
forward: trends appear quickly and decisively due to theistitess of the phenomena in question.
To our knowledge the results are new both in terms of docuimgitite scope of the phenomena
and in terms of pointing out the relationship among the faciio/olved.

On the physical level, the mechanism responsible for thduymrtion of chaos in all the situa-
tions considered is a common underlying geometry simildh&b in [35] and [36]. This is what
led us to predict the outcomes in our 4 studies to begin withindlating this geometric thinking
into formal mathematical analysis is a different matter. Mgt out that the settings considered
here are quite disjoint from those in previous analyticatiss. Closest to [35] and [36] is Study
1, but even there, the parameter ranges considered aredidy apd the rigorous analysis needed
to treat the parameter region considered here is entirdlporeach. Our findings in Study 4 —
which are consistent with the geometric ideas above — agefaefrom anything for which there
is hope of rigorous justification at the present time. Somsuofnumerical results in the stochastic
case (Studies 2 and 3), on the other hand, point to potenhé&atéms that may be more accessible.

We note that periodic kicks of the linear shear flow in Studie3 had been studied numerically
earlier; see [39]. It is the simplest system known to us tlagtures all the essential features of
typical oscillator models relevant to shear-induced chadsreover, these features appear in the
system in a way that is easy to control, and the effects ofingrgach are easy to separate. This
facilitates the interpretation of our theoretical findingsnore general settings in spite of the fact
that numerical studies necessarily involve specific models

Finally, we mention that our results on shear flows are patiytpplicable to a setting not
discussed here, namely that of the advection and mixing sdipa scalar tracers in (weakly com-
pressible) flows.

1 Rigorous Resultsand Geometric Mechanism

In this section, we review some rigorous results of Wang amehyg (mainly [35, 36], also [34, 37]).
We will explain in some detail the geometric mechanism fadoicing chaos identified in the first
two of these papers, focusing on the case of limit cycles. rEiselts reviewed in this section
will not be used in subsequent sections; the settings afereiift, and they simply do not apply.



However, to understand tlgeometrybehind our findings in Studies 1-4, we recommend starting
here, for the geometry of shear-induced chaos in the casermfdic kicks with long relaxation
times is the cleanest and most transparent of all.

1.1 StrangeAttractorsfrom Periodically-Kicked Limit Cycles

Consider a smooth flod, on a finite dimensional Riemannian manifal (which can b&R?), and
let~y be ahyperbolic limit cyclei.e. ~ is a periodic orbit ofd, with the property that if we linearize
the flow alongy, all of the eigenvalues associated with directions trarse/éo~ have strictly
negative real parts. THeasin of attractiorof , 3(v), is the sefx € M : &;(x) — v ast — oo}.

It is well known that hyperbolic limit cycles are robust, me&y small perturbations of the flow
will not change its dynamical picture qualitatively.

A periodically-kicked oscillators a system in which “kicks” are applied at periodic time in-
tervals to a flond, with a hyperbolic limit cycle. For now let us think of a “kickds a mapping
k : M — M. If kicks are appliedl’ units of time apart, then the time evolution of the kicked
system can be captured by iterating its tifi@nap Fr = &7 o . If there is a neighborhoad of
~ such that (i) C B(v), and the relaxation time is long enough that points (&) return toi/,
i.e, Fr(U) C U, thenl' = N> (U) is an attractor for the periodically kicked systérp. In a
sense]" = I'(k, T") is what becomes of the limit cyctewhen the oscillator is periodically kicked.
Since hyperbolic limit cycles are robust,s a slightly perturbed copy of if the kicks are weak.
We call it an “invariant circle.” Stronger kicks may “breattie invariant circle, leading to a more
complicated invariant set. Of interest in this paper is wheas a strange attractore., when the
dynamics irn/ exhibit sustained, observable chaos.

Two theorems are stated below. Theorem 1 is an abstract,réseilpurpose of which is to
emphasize the generality of the phenomenon. Theorem 2sdisswa concrete situation intended
to make transparent the relevance of certain quantitiesLélg-) denote the Lebesgue measure
of a set.

Theorem 1. [36] Let ®, be aC* flow with a hyperbolic limit cycle. Then there is an open set of
kick mapsC with the following properties: For each € K, there is a se\ = A(x) C R with
Leb(A) > 0 such that for eacll” € A, I is a “strange attractor” of F7.

The term “strange attractor” in the theorem has a well-ddfimathematical meaning, which
we will discuss shortly. But first let us take note of the fdwttthis result applies to all systems
with hyperbolic limit cycles, independent of dimension ter specifics of the defining equations.
Second, we remark that the kicks in this theorem are vergaufentj.e. T > 1, and that beyond
a certainly, the setA is roughly periodic with the same period as the cygle

The term “strange attractor” in Theorem 1 is used as shortHfar an attractor with a package
of well defined dynamical properties. These properties vestablished for a class of rank-one
attractors (see [34] for the 2-dimensional case; a prefoimthe n-dimensional case will appear
shortly). In [34, 37], the authors identified a set of coratis that imply the existence of such
attractors, and the verification of these conditions in th@ext of Theorem 1 is carried out in [36]
(see also [13] and [25] for other applications of these ileAg refer the reader to the cited papers



for more details, and mention only the following three clegggstics implied by the term “strange
attractor” in this section.

(1) There is a seV of full Lebesgue measure in the basin of attractiod’asuch that orbits
starting from every: € 1V have (strictly) positive Lyapunov exponents.

(2) Fr has an ergodic SRB measurgand for every continuous observahle

n—1

> o(Fp(x) — /ap dp  asn — oo foreveryz € V.

1=0

1
n

(3) The systen{F’r, 1) is mixing; in fact, it has exponential decay of correlatidos Holder
continuous observables.

An important remark before leaving Theorem 1: Notice thatekistence of “strange attrac-
tors” is asserted foF’; for only apositive measure sef T', not for all largeTl’. This is a reflection
of reality and not a weakness of the result: ebe the set of parameters asserted to have strange
attractors in Theorem 1. Itis not hard to show that theret existrarily largeT” in the complement
of A for which F has one or more sinks (or stable equilibria). For such paensiealmost ev-
ery orbit eventually tends to a sink, following possibly soohaotic behavior. This phenomenon,
known astransient chaosis caused by the co-existence of horseshoes and sinksestarss are
known to be present for all lardg; see [35, 36]. In contrast, properties (1)—(3) above repres
much stronger form of chaos which is both sustained in tinteaoserved for almost every initial
condition.

The next result has an obvious analog#dimensions (see [36]), but the 2-D version illustrates
the point.

Theorem 2. [36] Consider the system

0 = 14 oy )
y = —Ay+A-H@O) > 2 6(t—nT)

where(0,y) € S! x R are coordinates in the phase spaceg, A > 0 are constants, and/ :
S1 — R is anonconstansmooth function. If the quantity

shear . .
7.4 = . - kick “amplitude”
A contraction rate

is sufficiently large (how large depends on the forcing fiomct!), then there is a positive measure
setA C R* such that for alll’ € A, Frr has a strange attractor in the sense above.

Here, the term involving7 () defines the kick, and = S* x {0}. We explain intuitively the
significance of the quantitf A. As noted earlier, to create a strange attractor, it is rsacgdo
“break” the limit cycle. The more strongly attractiveis, the harder it is to break. From this we
see the advantage of havingsmall. By the same token, a stronger forcing,, larger A, helps.

4



F1T

} LIMIT CYCLE
KICK
SHEAR

—

Figure 1: The stretch-and-fold action of a kick followed leyaxation in the presence of shear.

The role ofo, theshear is explained pictorially in Fig. 1. Since the functidhis required to be
nonconstant, let us assume the kick drives some points dimtheycle v up and some down, as
shown. The fact that is positive means that points with larggicoordinates move faster in tide
direction. During the relaxation period, the “bumps” cezhby the kick are stretched as depicted.
At the same time, the curve is attracted back to the limiteydhus, the combination of kicks
and relaxation provides a natural mechanism for repeatettbing and folding of the limit cycle.
Observe that the larger the differential in speed infuirection,i.e. the largers, and the slower
the return toy, i.e. the smaller), the more favorable the conditions are for this stretch-aiua
mechanism.

1.2 Geometry and Singular Limits

In Eq. (1), the quantities, o and A appear naturally. But what about in general limit cycles,
where the directions of the kicks vary? What, for exampldl pay the role ofo, or what we
called shear in Eq. (1)? The aim of this subsection is to sigatdn the general geometric picture,
and to explain how the dynamics 6% for large’l’ can be understood.

Geometry of 7 and the Strong Stable Foliation

Let v be a hyperbolic limit cycle as in the beginning of Sect. 1.hroligh each: € ~ passes
the strong stable manifoldf =, denotediV**(z) [12]. By definition, W**(z) = {y € M :
d(®.(y), Pi(x)) — 0 ast — oo}; the distance betweed,(x) and ®,(y) in fact decreases ex-
ponentially. Some basic properties of strong stable mhtsfare: (i)1V*°(x) is a codimension
one submanifold transversal toand meets, at exactly one point, namely; (i) ®,(W*(x)) =
Wes(®,(x)), and in particular, if the period of is p, then®,(W**(z)) = W**(z); and (iii) the
collection{W*(x),z € ~} foliates the basin of attraction of, that is to say, they partition the
basin into hypersurfaces.

We examine next the action of the kick mam relation toll/**-manifolds. Fig. 2 is analogous
to Fig. 1; it shows the image of a segmepf v underFr = ¢ o k. For illustration purposes, we
assumey, is kicked upward with its end points held fixed, and assime np for somen € Z*
(otherwise the picture is shifted to another part/dfut is qualitatively similar). Sincé,,, leaves
eachl/**-manifold invariant, we may imagine that during relaxatite flow “slides” each point



Figure 2: Geometry of folding in relation to tH& **-foliation. Shown are the kicked image of a segment
70 and two of its subsequent images undgy,.

of the curver(~,) back towardy alongi¥**-leaves. In the situation depicted, the effect of the
folding is evident.

Fig. 2 gives considerable insight into what types of kicks emnducive to the formation of
strange attractors. Kicks alony**-leaves or in directions roughly parallel to thHé**-leaves will
not produce strange attractors, nor will kicks that esaéinttarry onell **-leaf to another. What
causes the stretching and folding is teriation in how far pointsx € ~ are moved byx as
measured in the direction transverse tothe&’-leaves. Without attempting to give a more precise
characterization, we will refer to the type of chaos thatiltsfrom the geometry above akear-
induced chaosWe emphasize that the occurrence of shear-induced chikes oa the interplay
between the geometries of the kicks and the dynamical stegbf the unforced system.

Returning to the concrete situation of Theorem 2, since Bqgwithout the kick term is linear,
it is easy to compute strong stable manifolds(drny)-coordinates, they are lines with slope /o.
Variations in kick distances here are guaranteed by theéHhatt is nonconstant. Witt fixed, it
is clear that the larger /A and A, the greater these variations. Note that the use of the wiokd k
“amplitude” in the statement of Theorem 2 is a little mislead for it is not the amplitude of the
kicks per sethat leads to the production of chaos.

Singular Limitsof FrasT — oo

WhenT > 1, i.e. when kicks are very infrequent, the map sends a small tub&; around~y
back into itself. This is an example of what is calledaak-one mapn [37]. Roughly speaking,
a rank-one map is a smooth map whose derivative at each gastitoingly contractive in all but
one of the directions. Rank-one maps can be analyzed usimgripa&tive methods if they have
well-defined “singular limits.” In the context of limit cye§, these singular limits do exist; they are
a one-parameter family of magg, : v O} obtained by letting” — oo in the following way: For
eacha € [0, p) (recall thatp = period ofv), let

fo(z) == lim ®,,4.(k(x)) forallz € . (2)
Equivalently, f,(z) is the unique poiny € ~ such thatx(x) € W**(y). Notice thatf,(z) =
fo(z) + a (mod 1), where we identify with [0, 1] (with the end points identified). For Eq. (1),
is easily computed to be

£.(0) :6’+a+§A-H(9), 3)



where the right side should again be interpreted as mod 1lth@érsetting of driven oscillators,
singular limits are sometimes known as “phase resettingestiy they have found widespread use
in e.g.mathematical biology [38, 11].)

It is shown in [34, 35, 36, 37] that a great deal of informat@nthe attractoi’ of Fr for
T > 1 can be recovered from these singular limit maps. The reatdtsummarized below. These
results hold for all singular limit maps satisfying the carahs in the references above, but as we
step through the 3 cases below, it is instructive to keep mdniiq. (1) and its singular limit (3),
with £ A increasing as we go along:

(i) If f,isinjective,i.e, itis a circle diffeomorphism, the attractDifor £ is an invariant circle.
This happens when the kicks are aimed in directions thatarproductive” (see above), or
when their effects are damped out quickly. In this case, tmpeting scenarios oh are
guasi-periodicity and “sinksj’e. the largest Lyapunov exponent bf is zero or negative.

(i) When f, loses its injectivity, the invariant circle is “broken”. Wh that first happens, the
expansion of the 1-D maf, is weak, and all but a finite number of trajectories tend t&sin
This translates into a gradient type dynamicsfpr

@ii) If f, is sufficiently expanding away from its critical poinfSs,contains horseshoes for all
large T. For an open set of thesk, the chaos is transient, while on a positive measure
set, Fr has a strange attractor with the properties described in €k These are the two
known competing scenarios. (They may not account fof'gliSincef, ~ Fr.,, for large
T, both sets of parameters are roughly periodic.

The analyses in the works cited suggest that when horsesinedsst formed, the set of
parameters with transient chaos is more dominant. The ggraihe expansion of,,, the
larger the set of parameters with strange attractors. litstecase, the largest Lyapunov
exponent offr may appear positive for some time (which can be arbitraghg)) before
turning negative. In the second case, it stays positivefimidey.

1.3 Limitationsof Current Analytic Techniques

Much progress has been made in hyperbolic theory in thedastiecades; sexg, [24, 19, 26, 27,
30, 18, 15, 9, 22, 29] in addition to the results reviewed is #ection. Still, there is a very large
discrepancy between what is thought to be true and what candved. Maps that are dominated
by stretch-and-fold behavior are generally thought to lpmstive Lyapunov exponents — although
this reasoning is also known to come with the following cavééaps whose derivatives expand
in certain directions tend to contract in other directicargg unless the expanding and contracting
directions are well separated (such as in Anosov systehesydntractive directions can conspire
to form sinks. This is how the transient chaos described ©t.S&.2 comes about. Still, if the
expansion is sufficiently strong, one would expect that tp@siLyapunov exponents are more
likely to prevail — even though for any one map the outcomegmaither wayProvingresults of
this type is a different matter. Few rigorous results exastsfystems for which one has agriori
knowledge of invariant cones, and invariant cones are alylilkh shear-induced chaos.



The rigorous results reviewed in the last two subsectione lige following limitations: (i)
They pertain tof7 for only very largeT’. This is because the authors use a perturbative theory
that leans heavily on the theory of 1-D maps. No non-pertubanalytic tools are currently
available. (ii) A larger than necessary amount of expansigaquired of the singular limit maps
f. inthe proof of strange attractors. This has to do with thigadilty in locating suitable parameters
called Misiurewicz points from which to perturb. (This pteim can be taken care of, however, by
introducing more parameters.) We point out that (i) andt@gether exacerbate the probleify:
is more expanding wheh is small, but if 7 = ®; o « is to be near its singular limit, thesr "
must be very smali,e. AT must be very large.

That brings us to the present paper, the purpose of whichsspply numerical evidence to
support some of our conjectured ideas regarding situabegsend the reach of the rigorous work
reviewed. Our ideas are based on the geometry outlined in E&¢but are not limited to periodic
kicks or to the folding of limit cycles.

2 Study 1: Periodically-Kicked Oscillators

Our first model is the periodic kicking of a linear shear flonttwa hyperbolic limit cycle. The
setting is as in Theorem 2 witH (9) = sin(276), i.e., we consider

6 = 1+ oy, 4)
y = —Ay+A-sin(270) > * 6t —nT),

where(6,y) € S* x R, S* = [0, 1] with the two end points of0, 1] identified. In the absence of
kicks,i.e., whenA = 0, ®,(z) tends to the limit cycles = S* x {0} forall = € S* x R. As before,
the attractor in the kicked system is denoted byl he parameters of interest are:

o = amount of shear,

A = damping or rate of contraction 18" x {0},
A = amplitude of kicks, and

T = time interval between kicks.

Our aim here is to demonstrate that the set of parameterscivitbtic behavior is considerably
larger than what is guaranteed by the rigorous resultsweden Sect. 1, and to gain some insight
into this parameter set. By “chaotic behavior,” we referhirs tsection to the property that- has

a positive Lyapunov exponent for orbits starting from adkdrset of initial conditionsi.e. a set

of full or nearly full Lebesgue measure in the basin of attcacof I'. More precisely, wassume
that such Lyapunov exponents are well defined, and procesmhtpute the largest one, which we
call A, ax.

We begin with some considerations relevant to the seargbdi@meters with,,.., > 0:

(@) Itis prudent, in general, to ensure that orbits do natystoo far from~. This is because
while the basin of attraction of in this model is the entire phase space, the basin is bounded
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in many other situations. We therefore try to kdegC {|y| < b} with relatively smallb.
This is guaranteed ifi is small enough that*" (b + A) < b; the bound is improved if, for
example, no point gets kicked to maximum amplitude two coutee iterates.

(b) Let(0r,yr) = Fr(fy,yo). A simple computation gives

Or = 90 + T+ % : [yo + Asin(27r«90)] . (1 — e_)‘T) (mOd 1), (5)
yr = ey + Asin(276p)] .

Forb relatively small, we expect the numb%f?(l — e~*T) to be a good indicator of chaotic
behavior: if it is large enough, thefi, folds the annulug|y| < b} with two turns and maps

it into itself. The larger this number, the larger the foldsganing the more each of the
monotonic parts of the image wraps around indkdirection. (Note that Eq. (5) is a version
of the map studied in [10].)

Summary of Findings.

() With the choice of parameters guided by (a) and (b) abowe,find that as soon as the
folding described in (b) is well formed; becomes “possibly chaotic”, meaning,,. is
seen numerically to oscillate (wildly) between positive aegative values a8 varies. We
interpret this to be due to competition between transient amstained chaos; see (iii) in
Sect. 1.2. For large£ A, i.e., as the stretching is stronger, and fBbeyond an initial range,
this oscillation stops and ..., becomes definitively positive for all the value§ afomputed.

(ii) As for the range of parameters with chaotic dynamics,fiwd thatA,,.. > 0 occurs under
fairly modest conditions, e.g., f&rA = 3, we findA,,.. > 0 starting from aboutl’ ~ 3,
to be compared to the’F — oo” in rigorous proofs. Also, while shear-induced chaos is
often associated with weak damping, we find that the phenemaecurs as well for larger
A, e.g., for\ ~ 1, provided its relation to the other parameters are favosabl

Supporting Numerical Evidencésigures 3 and 4 show the largest Lyapunov expongnt, of
Fr versus the kick period’. (Note that this is the expansion rate per kick period and isnes
the expansion rate per unit time. We have elected to plotdimadr as their graphs contain more
information: rates of expansion per unit time, while moreunal, necessarily tend to zero as
T increases.) In Fig. 3) and A are fixed, andr is increased. We purposefully start with too
small ac so that we may see clearly the gradual changes.in.. The results are in excellent
agreement with the description at the end of Sect. 1.2 (wbertains to regimes with very large
T), even though" is not so large here: In the top picture, whére is small, the plot confirms a
competition between quasi-periodicity and sinks; in thddte picture, we see firgt,,., becoming
increasingly negative, then transitions into a competitietween transient and sustained chaos,
with the latter dominating in the bottom picture. Fig. 4 sisdhe same phenomena in reverse order,
with o and A fixed and) increasing. Notice that even fer A and A leading to chaotic dynamics,
Awmax is Negative for small”. This is in agreement with the influence of the factor- e=*7) in

Eq. (5).



As explained in (a) above, whexil" is too small relative to4, orbits stray farther fromy.
Data points corresponding to parameters for which this apare marked by open squares. For
purposes of demonstrating the phenomena in question, itherething wrong with these data
points, but as explained earlier, caution must be exereiscthese parameters in systems where
the basin ofy is smaller.

Simulation Details.The numbers\ ., are computed by iterating the map in Eq. (5) and its Jaco-
bian, and tracking the rate of growth of a tangent vector. &4ux 10° iterates ofF in each
run. Mindful of the delicate situation due to competitiorivieeen transient and sustained chaos,
and to lower the possibility of atypical initial conditionsre perform 10 runs for each choice of
(o, A, X\, T), using for each run an independent, random (with uniforrnritigtion) initial condi-
tion (6o, v0) € [0, 1) x [—0.1,0.1]. Among the 10 values of,,.., computed, we discard the largest
and the smallest, and plot the maximum and minimum of the iling8. As one can see in Figs. 3
and 4, the two estimates occasionally do not agree. This mdebause not all initial conditions
in the system have identical Lyapunov exponents, or it mathbethe convergence to the true
value ofA,,., is sufficiently slow and more iterates are neededthere are long transients. These
occasional disagreements do not affect our conclusions.

3 Study 2: Poisson Kicks

We consider next a variant of Eq. (4) in which determinigbiesiodic kicks are replaced by “ran-
dom kicks.” Here, random kicks refer to kicks at random tiraed with random amplitudes. More
precisely, we consider

=1+ oy (6)
Y = —\y + sin(270) Z Aot —T,)

where the kick timed,, are such thaf',,,; — T,,,» = 0,1,2,--- , are independent exponential
random variables with meadfi, and the kick amplituded,, are independent and uniformly dis-
tributed over the intervgD.8 A, 1.2 A] for someA > 0. (We do not believe detailed properties
of the laws ofT and A have a significant impact on the phenomena being addresEael gnalog
here of the timef map in Study 1 is theandom mapl’ = &1 o K, whereT andA are random
variables.

By the standard theory of random maps, Lyapunov exponetksrespect to stationary mea-
sures are well defined and are nonrandpenthey do not depend on the sample path taken [16].
Notice that ifc # 0, the system (6) has a unique stationary measure which isuablyocontinu-
ous with respect to Lebesgue measureSérk R: starting from almost every, € S!' x R, after
one kick, the distribution acquires a density in {adirection; since vertical lines become slanted
under®, due too # 0, after a second kick the distribution acquires a (two-digi@mal) density.

In terms of overall trends, our assessment of the likelihobdhaotic behavior follows the
analysis in Study 1 and will not be repeated. We identify tioéving two important differences:
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Figure 3: Effect of increasing shear on the Lyapunov exptmefthe periodically-kicked linear shear flow.
Note thatA .« is the rate of expansion per kick. Squares indicate that dhespondingfr-orbits have
veered outside the regidn| < 0.15; circles indicate that they have not. Upper and lower esgmafA .«

are both shown (see Simulation Details). 11
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(a) Smooth dependence on paramet&ae to the averaging effects of randomness, we expect
Lyapunov exponents to vary smoothly with parameter, wittiba wild oscillations in the
deterministic case.

(b) Effects of large deviation®\ large number of kicks occurring in quick succession mayehav
the following effects:

(i) They can cause some orbits to stray far away from S x {0}. This is guaranteed
to happen, though infrequently, in the long run. Thus, ieigsonable to require only
that a large fraction — not all — of the stationary measurep@rhaps of theandom
attractorsI',) to lie in a prescribed neighborhood of

(ii) 1t appears possible, in principle, for a rapid burst afks to lead to chaotic behavior
even in situations where the shear is mild and kick amplgwate small. To picture this,
imagine a sequence of kicks sending (or maintaining) a segfaefrom -, allowing
the shear to act on it for an uncharacteristically long tidee can also think of such
bursts as effectively settingto near0 temporarily, creating a very larggA. On the
other hand, ifo is small, then other forces in the system may try to coax tistesy
to form sinks between these infrequent events. On the b&sieaeasoning in this
paragraph alone, there is no way to determine which scendfiprevail.

Summary of Findings. In terms of overall trends, the results are consistent withst in Study
1. Two differences are observed. One is the rapid convesyefit,,., and its smooth dependence
on parameters. The other is that positive Lyapunov expanfentF’ are found both for smaller
values off A and for apparently very small’ (which is impossible for periodic kicks), lending
credence to the scenario described in (b)(ii) above.

Supporting Numerical EvidencEig. 5 shows\,,.., as a function of the mean kick interval As in
Study 1, we first show the effects of increasingnd then the effects of increasing Without the
oscillations seen previously, the present plots are sttimigvard to interpret. In case one wonders
how A,,.. curves can switch from strictly-decreasing to strictlgreasing behavior, the middle
panel of Fig. 5(b) catches such a switch “in the act.” Squardgate that the orbit computed
spends> 20% of its time outside of the regiofiy| < 0.1}.

4 Study 3: Continuous-Time Stochastic Forcing

In this section, we investigate the effect of forcing by whitoise. The resulting systems are
described by stochastic differential equations (SDEs) c@Vesider two ways to force the system:

Study 3a: Degener ate white noise applied in chosen direction:
df = (14 oy)dt @)
dy = =Xy dt + asin(270) dB,

13



0=0.2,A=0.15,A=0.1 0=1.0,A=0.15,A=0.1 0=5.0,A=0.15,A=0.1

r 0.5
é 0.0 i é 0.4 é 15
< < 0.3 <
g o 1§ g 1
()] ()] ()]
S g 07 S
S -0.19 - g S od
- = 0.1 =
-0.2_| 1 1 1 1 1 1 1 o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 4 6 8101214161820 2 4 6 8 101214161820 2 4 6 8101214161820
Mean kick interval T Mean kick interval T Mean kick interval T

(a) Increasing shear

0=2.0,A=0.1,A=0.1 0=2.0,A=0.6,A=0.1 0=2.0,A=1.0,A=0.1
G T T T T T T T T T
1.29
0.03

8 8 s .
g 1 g g 0.1
< < <
g 073 g 0.0 g .07
(] Q (]
g 035 o o
S € oot 1l S 03
— 0.9 - -

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 _0'4

2 4 6 8101214161820 2 4 6 8101214161820 2 4 6 8101214161820

Mean kick interval T Mean kick interval T Mean kick interval T

(b) Increasing damping

Figure 5: Lyapunov exponents for the linear shear flow witlsgan kicks. Squares indicate the correspond-
ing orbit spends more than 20% of the time in the redign> 0.1.
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Study 3b: Isotropic white noise:

df = (14 oy) dt + asin(270) dB;} (8)
dy = —\y dt + asin(270) dB}

In Study 3a,B; is standard 1-dimensional Brownian motion (meaning wittarace= 1). In Study
3b, (B}, B?) is a standard 2-D Brownian motioie., they are independent standard 1-D Brownian
motions. For definiteness, we assume the stochastic teensf atd type. Notice that the two
parametersi andT in Studies 1 and 2 have been combined into one, namehe coefficient of
the Brownian noise.

By standard theory [1, 17], the solution process of an SDEbearepresented as a stochastic
flow of diffeomorphisms. More precisely, if the coefficierdsthe SDE are time-independent,
then for any time step\¢t > 0, the solution may be realized, sample path by sample patieas
composition of random diffeomorphisms - o f5 o f5 o fi, where thef; are chosen.i.d. with
a law determined by the system (tlieare timeAt flow-maps following this sample path). This
representation enables us to treat an SDE @mdom dynamical systeand to use its Lyapunov
exponents as an indicator of chaotic behavior. It is cleat siystem (8) has a unique invariant
density, which is the solution of the Fokker-Planck equatiBven though the stochastic term in
system (7) is degenerate, for the same reasons discussedlin it too has a unique stationary
measure, and this measure has a density. The Lyapunov expammsidered in this section are
with respect to these stationary measures.

Before proceeding to an investigation of the two systems@bwe first comment on the case
of purely additive noisei,e. Eq. (8) without thesin(276) factor in either Brownian term. In this
case it is easy to see that all Lyapunov exponentsiabefor the random maps are approximately
time-At maps of the unforced flow composed with random (rigid) tratn@hs. Such a system is
clearly not chaotic.

With regard to system (7), we believe that even though thatijasive estimates from Study
1 no longer apply, a good part of tiggalitative reasonindpehind the arguments continues to be
valid. In particular, we conjecture that

(a) trends, including qualitative dependencescemd )\, are as in the previous two studies;

(b) the effects of large deviations noted for Poisson kicksidy 2, item (b)) are even more
prominent here, given that the forcing now occurs contirslyoin time.

As for system (8), we expect it to be less effective in prodgahaosi.e. more inclined to form
sinks, than system (7). This expectation is based on theWolh reasoning: Suppose first that we
force onlyin the -direction,i.e., suppose théB? term in (8) is absent. Then the stochastic flow
leaves invariant the circlé® x {0}, which is the limit cycle of the deterministic part of the &ys.

A general theorem (se=g, [16]) tells us that when a random dynamical system on aechiak an
invariant density, its Lyapunov exponent is alway9); in this case, it is in fact strictly negative
because of the inhomogeneity caused by the sine functions e corresponding 2-D system
has “random sinks.” Now let us put tecomponent of the forcing back into the system. We have
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seen from previous studies that forcing thédirection alone may lead to chaotic behavior. The
tendency to form sinks due to forcing in thedirection persists, however, and weakens the effect
of the shear-induced stretching.

We now discuss the results of simulations performed to atdithese ideas.

Summary of Findings.

() Inthe case otlegeneratavhite noise, the qualitative dependencé\gf,, ono and A are as
expected, and the effects of large deviations are evidenpatticular, A,,., is positive for
very small values of, A anda provideds is large. This cannot happen for periodic kicks;
we attribute it to the effect of large deviations.

(i) Isotropic white noise is considerably less effectimeproducing chaos than forcing in the
y-direction only, meaning it produces a smaller (or more rtegg A, ..

(i) In both cases, we discover the following approximatalgg: Under the scaling transforma-
tions\ — kX, o — ko anda — Vka, Amax transforms approximately a$,,.x — kA max.
In the case of degenerate white noise, when boaimdg are not too small (e.g> 3), this
scaling gives excellent predictions &f,... for the values computed.

We remark that (iii) does not follow by scaling time in the SDiEdeed, scaling time by in
Eq. (7), we obtain

df = (k + koy) dt , (9)
dy = —kX\y dt + Vkasin(276) dB; .

Thus the approximate scaling in (iii) asserts that the Lysmmexponent of system (9), equivalently
k times theA,,., for Eq. (7), is roughly equal to that of the system obtainealhgnging the first
equation in (9) tald = (1 + koy)dt. In other wordsA ., seems only to depend minimally on the
frequency of the limit cycle in the unforced system.

Supporting Numerical EvidencPlots ofA ..., as functions of: are shown in Figs. 6 — 9.

In Fig. 6, the forcing is degenerate, and for fixed\ ... decreases with increasing damping as
expected. Notice that compared to the two previous studiesmewnhat larger damping is required
to maintain a good fraction of the attractor near

Fig. 7 shows thad .. is positive for values of and) as small a§.2 and0.01, and white noise
amplitudes: close ta). Notice first that this is consistent with the scaling cotyeed in (iii) above,
and second that in the case of periodic kicks, comparableesafoc and\ would require a fairly
substantial kick, not to mention long relaxation period=fobe chaotic behavior can be produced.
We regard this as convincing evidence of the significantedfef large deviations in continuous-
time forcing. (It must be pointed out, however, that in oustsyn, the basin of attraction is the
entire phase space, and a great deal of stretching is crel y| is large. That means system
(7) takes greater advantage of large deviations than cargee®d ordinarily.
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Figure 6: Lyapunov exponents for the linear shear flow drivgrmlegenerate white noise (Eq. (7)). Open
squares indicate that the corresponding orbits spend rhare20% of the time in the regiog| > 0.3;
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Figure 7: Lyapunov exponents for the linear shear flow drivgmlegenerate white noise, for small values
of o and \.

Fig. 8(a) shows\,,..« in the isotropic case for the same parameters as in Fig. 6. nfpaason
of the two sets of results confirms the conjectured tendemwgrtd negative exponents when the
forcing is isotropic. Fig. 8(b) shows that this tendency barovercome by increasing

Fig. 9 shows four sets of results, overlaid on one anothenotstrating the scaling discussed
in item (iii) above. Fixing$ = 6, we show the graphs of,,../c as functions of:/\/o for four
values ofo. The top two curves (correspondingdo= 6 and9) coincide nearly perfectly. Similar
approximate scalings, less exact, are observed for snvallees ofZ, both whenA ... is positive

and negative.
Simulation Details.We compute Lyapunov exponents numerically by solving threesponding
variational equations and tracking the growth rate of ag¢ahgector. We have found that an Euler

solver with time steps of0~° is sufficient for our purpose and that more complicated, &igh
order SDE solvers are unnecessary. To account for the ingp#oe realization of the forcing on
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Figure 8: Lyapunov exponent for the linear shear flow drivgnsotropic white noise (Eq. (8)). Squares
indicate that the corresponding orbits spend more than ZG¥edime in the regiory| > 0.3.

the computed exponents, for each choicéof\, a) we perform 12 runs in total, using 3 indepen-
dent realizations of the forcing and, for each realizatibimdependent initial conditions (again
uniformly-distributed in[0, 1) x [—0.1,0.1]). For almost all the parameter values, the estimates
agree to within a few percent, so we simply average overirgthnditions and plot the result.

Related Results. The asymptotic stability of dynamical systems driven byd@n forcing has
been investigated by many authors using both numerical aalytec methods. Particularly rele-
vant to our study are results pertaining to the random fgroihoscillators (such as Duffing-van
der Pol oscillators) and stochastic Hopf bifurcations;see [2, 3, 7, 5, 6, 8, 28, 23]. Most of the
existing results are perturbativieg., they treat regimes in which both the noise and the damping
are very small. Positive Lyapunov exponents are found uoel¢ain conditions. We do not know
at this point if the geometric ideas of this paper providel@xations for these results.

18



1 1 1 1 1
0=9.0
o 0=6.0
304 =30 -
£ 0=0.3
s c/A=6
3 03 i
o
S
>
= 0.2+ -
o
<@
It
?
2 o1 .
ad
1 1 1 1 1
0.1 0.2 0.3 0.4 0.5

Rescaled drive amplitude/ ¢ 2

Figure 9: Evidence of scaling: We fiand plotA,,... /o as functions of the rescaled drive amplitudg/o;
from top to bottom, the curves are in order of decreasing

5 Study 4: Sheared-Induced Chaosin Quasiperiodic Flows

Model and Background Information

In this section, we will show that external forcing can leadshear-induced chaos in a coupled
phase oscillator system of the form

as
I(t) ~N
Gfb
The governing equations are

0y = 1 + 2(0))[amg(82) + 1(1)] (10)
0 = vy + 2(02)[agg(61)].

This simple model arises from neuroscience [38, 32], andyitamics are explored in more de-
tail in [21]. The state of the system is specified by two anglés ¢,), so that the phase space
is the torusT?. The constants; andv, are the oscillators’ intrinsic frequencies; we set= 1
andv, = 1.1 (representing similar but not identical frequencies). €hastantsiy andag, gov-
ern the strengths of the feedforward and feedback coupliige oscillators are pulse-coupled:
the coupling is mediated by a bump functigrsupported or{—%, %] and normalized so that
folg(e) df = 1; specifically,g(d) « (1 —400-62)° for |§] < L. The functionz(6), which we
take to bex(9) = 5=[1 —cos(2n6)], specifies the sensitivity of the oscillators to perturixasiwhen
in phase). Finally, we drive the system with an external forcih@), which is applied to only the
first oscillator and will be taken to be either periodic kickswhite-noise forcing.

Let &, denote the flow of the unforced systeire., with /(t) = 0. Flowlines are roughly
northeasterly and are linear except in the stffs| < -} and{|6s] < 5}, where they are

bent according to the prescribed valuesugfandag,. Let p denote the rotation number of the
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first return map of®, to the cross-sectioffd, = 0}. It is shown in [20] that forag = 1, p

is monotonically increasing (constant on extremely shairivals) as one increaseg, until it
reached atag, = aj, ~ 1.4, after which it remains constant on a large interval.afit= af,, a
limit cycle emerges in which each oscillator completes aration per period; we say the system
is 1:1 phase-locked, or simpjyhase-locked In [20], it is shown numerically that forcing the
system by white noise after the onset of phase-locking léads,.. > 0. The authors of [20]
further cite Wang-Young theory (the material reviewed iictS&) as a geometric explanation for
this phenomenon.

In this section, we provide geometric and numerical evideoicshear-induced chaos both
before and after the onset of phase-locking@t= aj,. Our results foras, > af, support the
assertions in [20]. Foag, < af,, they will show thatimit cycles are not preconditions for shear-
induced chaos We will show that in Eqg. (10), the mechanism for folding isealdy in place
before the onset of phase-locking, where the system is-guegigidic or has periodic orbits of very
long periods; the distinction between these two situatisrieimaterial since we are concerned
primarily with finite-time dynamics. In the rest of this siect, we will, for simplicity, refer to the
regime prior to the onset of phase-locking as “near-peciddi

Folding: Geometric Evidence of Chaos

As discussed above, both periodic kicks and white-noisgrigrare considered. The dynamical
picture of kicks followed by a period of relaxation has a sienpmore clear-cut geometry than
that of continuous, random forcing. Thus we use the formeletmonstrate why one may expect
chaotic behavior in the relevant parameter ranges. Therkagkis denoted by as in Section 1.

Folding in the periodicite. phase-locked) regim&Ve will useaq, = 1.47 for illustration purposes;
similar behavior is observed over a rangeugf from 1.4 to 1.6. Note that the system is phase-
locked for a considerably larger interval beyangl= 1.6, but the strength of attraction grows with
increasingug,, and when the attraction becomes too strong, it is harddofding to occur.

Fig. 10 shows the limit cycle (thick, solid curve) of the unforced systemagt = 1.47; more
precisely, it shows a “lift” ofy to R?, identifying the torusT? with R?/Z2. Also shown is the
imagex(y) of the cycle after a single kick (dashed curve), where th& kiap~ corresponds to
I(t) = AY , 0(t —nT) with A = 1.5, i.e. xis given byx = lim._, k.(¢) wherex.(t) is the
solution off, = éz(&l), 0, = 0. Notice the special form of the kicks:acts horizontally, and does
not move points o; = 0. In particular,s fixes a unique point0, b) on the cycle; this point is, in
fact, not affected bynykick of the form considered in Eq. (10). Several segmentsrohg stable
manifolds (thin curves) of the unforced system are drawmtaRéhat if p is the period of cycle and
n € Z*, then®,,(x(z)) lies on thelV**-curve throughx(z) and is pulled toward the cycle as
increases (see Sect. 1.2). From the relation betweeWthiecurves and the cycle, we see that for
z € v, ®1(k(z)) will lag behind®,(z) during the relaxation period. Notice in particular thatrthe
are points onx(~y) above the ling, = b that are pulled toward the part ofbelowd, = b. Since
(0, b) stays put, we deduce that some degree of folding will ocdineitime interval between kicks
is sufficiently long.

Fig. 11 illustrates how this folding happens through threggpshots. We begin with a segment
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Figure 10: The strong-stable foliation of the system (10}Jhi@ phase-locked regime: Here the torus is
identified withR? /Z2. Solid curve:the limit cycle lifted toR?. Dashed curvethe image of the cycle after
a single kick. Some leaves of the strong-stable foliatioa ireighborhood of the limit cycle are shown. The
parameters are; = 1, v, = 1.1, ag = 1, andag, = 1.47.

v C v betweerd, = 0 andfy, = 1 (thick, solid curve) and its image after a single kick (dakhe
curve). Both curves are then evolved forward in time andrtimages at = 2.5 andt = 3.5

are shown. The dot marks the point enwhich does not move when kicked. Notice that these
pictures are shown inmoving frameo emphasize the geometry ®f(x (o)) relative tod; ().

Folding in the near-periodic regimerig. 12 shows snapshots of a similar kind &gy = 1.2; this
value ofag, puts the system in the near-periodic regime. The snapskgis lvith an (arbitrary)
orbit segmenty, and its image:(,); the location ofy, is near that of the limit cycle in Fig. 10.
The kicked segment clearly folds; indeed, the picture iditpiaely very similar to that of the
limit cycle case. Note that at;, = 1.2, the rotation number of the return map{6, = 0} is a
little below 1, so thatb,(x(~,)) has an overall, slow drift to the left when viewed in the fixeghfie
[0,1)2. This slow, left-ward drift is not especially relevant inramoving frame (which focuses
on the movement ob,(x(y)) relative to that of®,(v,)). The point is that after a few units of
time, ®,(x(v0)), which is folded, looks quite close to an orbit segment ofuithiorced flow. As it
moves around the torus, it is kicked periodically. In pautée, as it returns to the part of the torus
shown in the figure, and the sequence of actions depictedjiriLBiis repeated. We regard this as
geometric evidence of shear-induced chaos.

We have seen that in the phase-locked regime, the foldingeofimit cycle (when the time
interval between kicks is sufficiently large) can be deducesh the geometry of the strong stable
foliation. A natural question is: in the quasi-periodic ireg, are there geometric clues in the
unforced dynamics that will tell us whether the system isenrlikely to exhibit chaotic behavior
when forced? Since folding occurs in finite time, we belidwe answer lies partially in what we
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and its imagesDots: images of the (unique) point op not affected by the kick. The parameters are the

same as in Fig. 10.

call finite-time stable manifoldsa picture of which is shown in Fig. 13. Finite-time manifelthve
been studied by many authors; seg, [14, 34]. We first explain what these objects are before
discussing what they can — and cannot — tell us.

Fix t > 0. At eachz € T2 let V(z) be the most contracted direction of the linear map
D®,(z) if it is uniquely definedj.e. if v is a unit tangent vector atin the directionV'(z), then
|D®,(2)v| < |D®,(z)ul for all unit tangent vectors at z. A smooth curve is calledt@me+ stable
manifoldif it is tangent toV at all points; these curves together form timee+ stable foliation In
general, time-stable manifolds are not necessarily defined everywhesg\uary witht, and may
not stabilize ag increases. When “real’i.. infinite-time) stable manifolds exist, timestable
manifolds converge to them as— oc.

The thick, solid curves in Fig. 13 are two distinct orbit segns ofd,. The angles between
these segments and the timestable manifolds (thin curves) reflect the presence of shiear
example, if a kick sends points on the left segment to thet ritgen within5 units of time most
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Figure 12: Snapshots of an orbit segment and its image a$iaegke kick in a moving frame, for the system
(10) in a near-periodic regimeSolid curves:a segmenty, of an orbit and its forward imageB;(yy) at

t = 3.5, 5. Dashed curvesxk(vy) and its forward imagesDots: images of the (unique) point omy not
affected by the kick. The parameters ate= 1, v, = 1.1, ag = 1, andag, = 1.2.

points on the kicked segment will lag behind their countegpan the original orbit segment —
except for the point witld; = 0 at the time of the kick. Pinching certain points on an orbgirsent
while having the rest slide back potentially creates a stemin to that in Fig. 2; see Sect. 1.2.
Notice that the fact that finite-time stable manifolds areingariant is of no consequence: all that
matters is that a folding occurs in the first 5 units of timegj #mat once folded, there is no obvious
mechanism for it to become undone.

Whether or not the shear here is strong enough to cause tmation of folds in 5 units of
time cannot be determined from the foliation alone; moraitkd information such as contraction
rates are needed. What Fig. 13 tells us are the mechanisnharsthéapes of the folds if thejo
form. Notice also that shearing occurs in opposite directialong the two orbit segments. This
brings us to a complication not present previously: eacit oflsb, spends only a finite amount of
time near, say, the left curve before switching to the regiear the right curve, and when it does
S0, it also switches the direction of shear. Finite-timélgtdoliations for system (10) have also
been computed far € {3,5} and a sample afg, € (1.1, 1.6) (hot shown). They are qualitatively
similar to Fig. 13, with most of the leaves running in a noasterly direction.
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Figure 13: Finite-time stable foliation of the system (1®painear-periodic regim&.hick curves:two orbit
segmentsThin curves:time-5 stable foliation. The parameters here are the sanmeFag. 12.

In summary, fort not too large, time-stable foliations generally do not change quickly with
or with system parameters. They are good indicators of shatdo not tell us if there ienough
shear for folds to form. For the system defined by (10), given the finite-time stable manifolds
are nearly parallel to flowlines and the kick map acts uneveiith respect to this foliation, we
conclude the presence of shear. Fig. 12 and similar figurestifierag, (not shown) confirm that
folding does indeed occur when the system is forced in thepe@odic regime.

Computation of Lyapunov exponents

To provide quantitative evidence of shear-induced chatisisituations discussed above, we com-
puteA,.... Recall that while periodic kicks followed by long relaxais provide a simple setting
to visualize folding, it is not expected to give clean resudir A, because of the competition
between transient and sustained chaos (see Sect. 1.2)in@urg-time random forcing, on the
other hand, produces numerical results that are much aasrgerpret.

Study 4a: Stochastic Forcing. We consider system (10) with; = 1 andag, € [1.1,1.6]. The
forcing is of the form/(t) = a - d B, whereB, is standard Brownian motion.

Study 4b: Periodic kicks. The equation and parameters are as above, and the forcingeis g
byI(t)=A > 6(t—nT).

Summary of Findings. PositiveA,,., are found for stochastic forcing in the parameter interval
studied, both before and after the onset of phase-locking,at «;,. For periodic kicks with large
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spond to those in Figs. 10 and 12, respectively.
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Figure 15: Lyapunov exponent of the system (10) subjecteetiodic kicks. The parameters correspond to
those in Figs. 10 and 12, respectively. As in Study 1, botlreuppd lower estimates df,.,.. (which differ

in a few places) are shown.

enoughA andT, it appears that\ ., is positive for a fraction of the forcing periods tested, but
the results are hard to interpret due to the competition leemvtransient and sustained chaos.

Supporting Numerical Evidencerig. 14 shows some results for stochastic forcing. &or=
1.47, negative Lyapunov exponents are found for very small anmbdis of forcing, while slightly
stronger forcingé.g. a ~ 0.4) is needed beford .. > 0 can be concluded with confidence. In
contrast, even fairly small values of forcing seem to lead tQ. > 0 whenag, = 1.2, i.e. in the
near-periodic regime. This may be explained by the dampinige limit cycle case, especially for



largerag,. Notice also that in this model large amplitudes of forciryrobt lead to largef ...
This is due to the fact that unlike the system in Studies 1v&rg strong forcing merely presses
most of the phase space against the cifigle- 0, which is not very productive from the point of
view of folding phase space. Fig. 15 shows plots\gf,, for periodic kicks. Here, roughly 40%
of the kick periodsl” for which Lyapunov exponents were computed yield a posixgonent.
More generally, we find that .., > 0 for over 40% of kick intervald” as A varies over the range
[0.75,1.5]. See Simulation Details in Study 1.

Conclusions

Shear-induced chaos, by which we refer to the phenomenon exigrnal force interacting with
the shearing in a system to produce stretches and foldsursdfto occur for wide ranges of
parameters in forced oscillators and quasi-periodic systédighlights of our results include:

(i) For periodically kicked oscillators, positive Lyapunexponents are observed under quite
modest conditions on the unforced system and on the retaxéitne between kicks (in
contrast to existing rigorous results). These regimesaarexpected, interspersed with those
of transient chaos in parameter space.

(i) Continuous-time stochastic forcing is shown to be dsative in producing chaos as periodic
kicks. The gqualitative dependence on shear, damping antitadegoof forcing is also similar.
We find that suitably directed, degenerate white noise isidenably more effective than
isotropic white noise (and additive noise will not work). Wave also found evidence for an
approximate scaling law relating,,. to o, A, anda. Other types of random forcing such as
Poisson kicks are also studied and found to produce chaos.

(i) The shear-induced stretching-and-folding mechangan operate as well in quasi-periodic
systems as it does in periodic systems, limit cycles are not a precondition for shear-
induced chaos. We demonstrate this through a pulse-co@piedillator system. Chaos is
induced under both periodic and white noise forcing, andaargric explanation in terms
of finite-time stable manifolds is proposed.

The conclusions in (i) and (ii) above are based on systematiterical studies of a linear shear
flow model. As this model captures the essential featuregpatal oscillators, we expect that our
conclusions are valid for a wide range of other models. Ounerical results, particularly those
on stochastic forcing, point clearly to the possibility aiamber of (rigorous) theorems.
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