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Abstract. We review some recent results surrounding a general mech-
anism for producing chaotic behavior in periodically kicked oscillators.
The key geometric ideas are illustrated via a simple linear shear model.

Introduction

This paper reviews some recent results on a topic with a considerable his-
tory: the periodic forcing of limit cycles. Some 80 years ago, van der Pol
and van der Mark [26] observed that irregularities developed when certain
electrical circuits exhibiting stable oscillations were periodically forced. Their
work stimulated a number of analytical studies; see, e.g., [5, 13, 12, 9]. An-
other classical example of driven oscillators is the FitzHugh–Nagumo neuron
model [6]; the response of this and other models of biological rhythms to ex-
ternal perturbations have been extensively studied (see, e.g., [33]). As a topic
of mathematical study, the dynamics of forced oscillations is well motivated:
Oscillatory behavior are ubiquitous in physical, biological, and engineered
systems, and external forcing, whether artificially applied or as a way to
model forces not intrinsic to the system, is also commonplace.

In this article, we are not concerned with modeling specific physical phe-
nomena. Instead, we consider a generic dynamical system with a limit cycle
and seek to understand its qualitative behavior when the system is period-
ically disturbed. To limit the scope of the problem, we restrict ourselves to
periodic kicks, or forcings that are turned on for only short durations, leaving
the limit cycle ample time to restore itself during the relaxation period. We
are interested in large-time behavior, particularly in questions of stability
and chaos.

As we will show, one of the properties of the limit cycle that plays a key
role in determining whether the kicked system is stable or chaotic is shear,
by which we refer to the differential in speed (or angular velocity) for orbits
near the limit cycle. A central theme of this article is that under suitable
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conditions, the impact of a kick can be substantially magnified by the under-
lying shear in the unforced system, leading to the formation of horseshoes and
strange attractors. This does not always happen, however: some limit cycles
are more vulnerable, and some types of kicks are more effective than others.
These ideas are discussed in [29, 30] and [14], the material which forms the
basis of the present review.

Even though we seek to provide insight into dynamical mechanisms that
operate under general conditions, we have found the ideas to be most trans-
parent in a very simple linear shear model, to which we will devote a nontriv-
ial part of the paper. Section 1 introduces this example and familiarizes the
reader with the various parameters (including the one which measures shear);
it also reports on results of a numerical study on Lyapunov exponents. Sec-
tions 2 and 3 are organized around explaining these simulation results. Along
the way, we take the opportunity to review a number of mathematical ideas
which clearly go beyond this one example. Some of the rigorous results re-
viewed, notably those on Sinai–Ruelle–Bowen (SRB) measures for a relevant
class of strange attractors [28, 31, 32], are recent developments. With the
main ingredients of the linear shear model and the relevant mathematical
background in hand, we return to a discussion of general limit cycles in the
final section.

1. Increasing shear as a route to chaos

This section introduces the main example we use in this review, and ac-
quaints the reader with the various parameters in the model and how they
impact the dynamics. Of particular interest to us is the effect of increasing
shear. Numerically computed Lyapunov exponents as functions of shear are
presented in Section 1.3. They will serve as a focal point for some discussions
to follow.

1.1. Periodic kicking of a linear shear flow

Our main example is the periodic kicking of a linear shear flow with a hy-
perbolic limit cycle. This two-dimensional (2D) model was studied rigorously
in [29, 30] and numerically in [14, 35]. Though exceedingly simple in appear-
ance, it already exhibits rich and complex dynamical behaviors.

The model is given by

θ̇ = 1 + σy,

ẏ = −λy +A · sin(2πθ) ·
∞∑

n=−∞
δ(t− nτ),

(1)

where (θ, y) ∈ S1 × R, S1 ≡ R/Z, and σ, λ,A, and τ are constants with
σ, λ, τ > 0. We will refer to equation (1) with A = 0 as the unforced equa-
tion, and the term involving A as the forcing or the kick. Here δ is the
usual δ-function, that is to say, the kicks occur instantaneously at times
0, τ, 2τ, 3τ, . . . .
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More precisely, let Φt denote the flow corresponding to the unforced
equation. It is easy to see that for all z ∈ S1 × R, Φt(z) tends to the limit
cycle γ = {y = 0} as t → ∞. The precise meaning of equation (1) is as
follows. Let κ(θ, y) = (θ, y + A sin(2πθ)) be the kick map; it represents the
action of the forcing term. Then assuming we start with a kick at time 0, the
time-τ map of the flow generated by equation (1) is

Ψτ = Φτ ◦ κ,
and the evolution of the system is defined by iterating Ψτ . We generally
assume that τ is not too small, so that during the relaxation period between
kicks, the flow Φt of the unforced equation “restores” the system to some
degree.

The parameters of interest are

σ = amount of shear,

λ = rate of contraction to γ,

A = amplitude of kicks, and

τ = time interval between kicks.

Our aim in the remainder of this section is to understand—via geometric
reasoning and numerical simulations—the meanings of these quantities, and
the roles they play in questions of stability and chaos. Our line of reasoning
follows [29, 14].

1.2. Geometry of Ψτ

A simple way to gain intuition on the geometry of Ψτ is to study the Ψτ -
image of γ, the limit cycle of the unforced system. We will do so by freezing
some of the parameters and varying others.

Effects of varying σ, λ, and A. To begin with, let us freeze λ, A, and τ . To
fix ideas, let us take λ to be relatively small, so that the rate of contraction is
weak, and choose τ large enough that e−λτ is a nontrivial contraction. This
is when the effects of shear are seen most clearly. In Figure 1, λ = A = 0.1,
and τ = 10. Here Ψτ (0, 0) = (0, 0) because the limit cycle γ has period 1 and
τ is an integer multiple of this period; for noninteger τ the picture is shifted
horizontally.

Figure 1(b) shows four images of γ under Ψτ for increasing shear. The
larger σ, the greater the difference in velocity between two points with differ-
ent y coordinates. This applies in particular to the highest and lowest points
in κ(γ) in Figure 1(a). For σ small enough, order in the θ-direction is pre-
served; i.e., for z1 = (θ1, 0) and z2 = (θ1 + ε, 0), Ψτ (z1) will continue to have
a slightly smaller θ-coordinate than Ψτ (z2). As σ increases, some points in
γ may “overtake” others, spoiling this order. As σ gets larger still, the total
distances traveled in τ units of time vary even more, and a fold develops. This
fold can be made arbitrarily large: we can make it wrap around the cylinder
as many times as we wish by taking σ large enough.
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(a) The limit cycle γ and its image κ(γ) after one kick.

(b) Ψτ (γ) for τ = 10.

Figure 1. Effect of increasing shear. Here, λ = A = 0.1.

If we had fixed σ instead, and increased λ starting from λ = 0.1, the
resulting sequence of pictures would be qualitatively similar to Figure 1(b)
but in reverse order: The smallest λ would correspond to the bottom-right
image in Figure 1(b), and the largest λ to the top-left—provided τ is scaled
so that λτ remains constant. This is because for λ small, κ(γ) returns to γ
very slowly, giving the shear a great deal of time to act, while for larger λ,
κ(γ) is brought back to γ more quickly. Thus all else being equal, σ and λ,
i.e., shear and damping, have opposite effects.

The consequence of varying A while keeping the other parameters fixed
is easy to see: the stronger the kick, the greater the difference in y-coordinate
between the highest and lowest points in κ(γ), and the farther apart their
θ-coordinates will be when flowed forward by Φτ .

What we learn from the sequence in snapshots in Figure 1 is that A
acts in concert with σ to promote fold creation, while λ works against it.

Formulas for Ψτ . Since the unforced equation is easy to solve, one can in
fact write down explicitly the formulas for Ψτ . Let (θτ , yτ ) = Ψτ (θ0, y0). A
simple computation gives

θτ = θ0 + τ +
σ

λ
· [y0 +A sin(2πθ0)] · (1− e−λτ ) (mod 1),

yτ = e−λτ [y0 +A sin(2πθ0)].
(2)
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The reader can easily check that equation (2) is in agreement with the intu-
ition from earlier.

Note the appearance of the ratio σ
λA, or rather σA

λ (1 − e−λτ ), in the
nonlinear term in the equation for θτ : the size of this term is a measure
of the tendency for a fold to develop in Ψτ (γ). As is well known to be the
case, stretch-and-fold is a standard mechanism for producing chaos. One can,
therefore, think of the ratio

σ

λ
A =

shear

contraction
· kick amplitude

as the key to determining whether the system is chaotic, provided λτ is large
enough that the factor 1− e−λτ is not far from 1.

Trapping region and attractor. From the above, it is evident that much of the
action takes place in a neighborhood around γ. Let U = {|y| ≤ A(eλτ−1)−1},
so that Ψτ (U) ⊂ U , and define

Γ = ∩n≥0Ψ
n
τ (U)

to be the attractor for the system in equation (1). The basin of attraction
of Γ is the entire cylinder S1 × R, since every orbit will eventually enter
U . This usage of the word “attractor” implies no knowledge of dynamical
indecomposability (a condition required by some authors).

1.3. Lyapunov exponents

Another measure of chaos is orbital instability, or the speed at which nearby
orbits diverge. In this subsection, we focus on the larger of the two Lyapunov
exponents of Ψτ , defined to be

Λmax(z) = lim
n→∞

1

n
log ‖DΨn

τ (z)‖ = sup
v �=0

lim
n→∞

1

n
log ‖DΨn

τ (z) · v‖.

Leaving technical considerations for later (see Section 3.1), we compute nu-
merically Λmax for the systems in question, sampling at various points z ∈ U .
Notice that Λmax measures the rate of divergence of nearby orbits per kick,
not per unit time.

Each of the plots in Figure 2 shows Λmax as a function of τ for the values
of σ, λ and A specified. In all six plots, we have fixed λ = A = 0.1, while σ
varies from plot to another. The first 4 values of σ used in Figure 2 are the
same as those used in Figure 1(b). In each plot, 10 randomly chosen initial
conditions are used, the largest and smallest computed values of Λmax are
discarded, and the largest and smallest of the remaining 8 values are shown,
the smallest as a solid black dot, and the largest, if visibly different than
the smallest, as an open square. The plots show τ ∈ [5, 15]. We give some
idea of the rates of contraction and sizes of the trapping regions U for these
parameters: at τ = 5, e−λτ = e−0.5 ≈ 0.61, and U = {|y| � 0.15}; at τ = 15,
e−λτ = e−1.5 ≈ 0.22, and U = {|y| � 0.03}.
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(f) σ = 4

Figure 2. Lyapunov exponents Λmax as functions of kick
period τ for increasing shear σ. The other parameters are
λ = A = 0.1. For each (σ, τ), we simulate 10 orbits with
random initial conditions, iterating each for 4 × 106 steps.
We then drop the outliers and plot the remaining estimates,
as described in the text.

Observations from simulation results. The discussion in Section 1.2 suggests
that as shear is increased with other parameters fixed, the system is likely
to get increasingly chaotic. This may lead us to expect Λmax to increase
monotonically with σ. As one can see, that may be correct as an overall
trend, but the situation is somewhat more complicated.
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In the two low-shear regimes, namely σ = 0.05 and 0.25, with a few
exceptions the computed values of Λmax are either zero or negative, with a
majority of them at or very near zero for σ = 0.05 and becoming considerably
more negative at σ = 0.25. That is to say, Λmax decreases as σ increases.
Notice that Λmax < 0 means the trajectory tends to a sink, i.e., a stable fixed
point or periodic orbit.

Increasing shear, we see in the middle row of Figure 2 that at first sinks
dominate the landscape, giving way to more instances of positive Lyapunov
exponents, i.e., chaotic behavior, as σ increases. At σ = 1, the picture is very
mixed, with Λmax fluctuating wildly between positive and negative values as
τ varies. Notice also the nontrivial number of open squares, telling us that
these parameters often support more than one type of dynamical behavior.

In the two higher-shear regimes, σ = 2 and 4, Λmax becomes more
solidly positive, though occasional sinks are still observed. The route has
been a messy one, but one could say that the transition to chaos is complete.

As to the dependence on τ , it appears that other things being equal,
longer relaxation times between kicks allow the dynamical phenomenon in ef-
fect to play out more completely: regardless of the sign of Λmax, its magnitude
increases with τ in each of the plots.

Finally, it is important to remember that the limit cycles used to pro-
duce the results in Figure 2 are weakly attracting, making them more vulner-
able to the effects of shear. Strongly attracting limit cycles are more robust,
and larger kicks and/or shear will be needed to produce chaos.

In Sections 2 and 3 we review some rigorous theory that supports the
numerically computed values of Λmax shown. To avoid technical assumptions,
we will focus on the model in Section 1.1, leaving generalizations to Section 4.
As the reader will see, the mathematical ideas go considerably beyond this
one example. On the other hand, even for this simple model, state-of-the-art
understanding is incomplete. In the next two sections, we will vary σ, λ,A,
and τ , and we will show that there are regions in the parameter space for
which a clear description of the dynamics is available, and larger regions on
which there is partial understanding.

2. Geometric Structures

To analyze a dynamical system, it is often useful to begin by identifying
its most prominent structures, those that are a significant part of the land-
scape. Even when they do not tell the whole story, these structures will serve
as points of reference from which to explore the phase space. This section
describes structures of this type for the systems defined by equation (1).

2.1. Persistence of limit cycles at very low shear

Proposition 2.1 (see [29]). Given λτ > 0, the following hold for σ
λ and A

sufficiently small:
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(a) the attractor Γ is a smooth, closed invariant curve near γ;
(b) every ζ ∈ S1×R lies in the strong stable curve W ss

Ψτ
(z) for some z ∈ Γ.

Here W ss
Ψτ

(z) = {ζ ∈ S1 × R : lim supn→∞
1
n log d(Ψn

τ (z),Ψ
n
τ (ζ)) ≤

−λ′τ} where λ′ is a constant greater than 1
2λ. Proposition 2.1 follows from

standard arguments in stable and center manifolds theory; see, e.g., [10]. The
idea is simple: From equation (2), one obtains

DΨτ (θ, y) =

⎛
⎝1 + 2π σ

λA cos(2πθ)(1− e−λτ ) σ
λ (1− e−λτ )

e−λτ2πA cos(2πθ) e−λτ

⎞
⎠ . (3)

Since invariant cones depending on σ
λ and λτ clearly exist when A = 0, they

will persist when σ
λ and A are small enough.

When Γ is a smooth invariant curve, the dynamics on Γ is given by the
theory of circle diffeomorphisms. The situation for a smooth one-parameter
family of circle diffeomorphisms {fω} can be summarized as follows (see,
e.g., [7]). Let ρ(fω) denote the rotation number of fω. Then ω �→ ρ(fω) is a
devil’s staircase, the flat parts corresponding to intervals of ω on which the
rotation number is rational. Moreover, the set of ω for which ρ(fω) is rational
is typically open and dense, while the set of ω for which ρ(fω) is irrational
has positive Lebesgue measure. When ρ(fω) ∈ Q, fω typically has a finite
number of periodic sinks and sources alternating on the circle; these aside,
every orbit converges to a periodic sink. When ρ(fω) ∈ Q, fω is topologically
conjugate to an irrational rotation.

The ideas above capture the spirit of the dynamics when shear is small
enough: Suppose Λmax is computed using an initial condition ζ ∈ U , and
ζ ∈ W ss(z) for z ∈ Γ. Then Λmax(ζ) = Λmax(z), and from the discussion
above, the latter is either strictly negative or zero depending on whether
ρ(Ψτ |Γ) is rational or irrational.

Breaking of invariant curves. Now if we fix λ and A and increase the shear σ
as is done in Figure 2, the invariant cones—and the invariant curve itself—will
break.

Here is how it happens in this model for integer values of τ : For τ ∈ Z+,
(θ, y) = ( 12 , 0) is a fixed point of Ψτ , and a simple computation shows that
as σ increases from 0, the larger eigenvalue of this fixed point decreases from
1 to e−

1
2λτ =

√
det(DΨτ ), at which time the eigenvalues turn complex.

No invariant curve can exist after that. Geometrically, one can think of the
breaking of the invariant curve as being due to too much “rotation” or “twist”
at this fixed point.

Taking this observation a step further, one notes from equation (3) that
the rotational action of DΨτ (θ, y) is strongest at θ = 1

2 , where cos(2πθ) =
−1. This suggests that for fixed σ, λ, and A, invariant curves are the most
vulnerable for integer values of τ , where this strongest rotation occurs at a
fixed point.
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Interpreting Figures 2(a) and 2(b). At σ = 0.05, a majority of the Λmax

values computed are at or very slightly below zero. This is consistent with
the existence of an invariant curve for those τ . One checks easily that for
integer values of τ ≤ 13, Λmax = − 1

2λτ and the eigenvalues are complex.
These are the first places where the invariant curve is broken as predicted.

In the plot for σ = 0.25, without pretending to account for all data
points, it looks as though many are dropping off the Λmax = 0 line to join
the Λmax = − 1

2λτ line. The only holdouts for Λmax = 0 occur for smaller τ
where, as noted earlier, shear has not had enough time to act.

2.2. Increasing shear: Horseshoes and sinks

At first, mostly sinks. Figures 2(c), 2(d) suggest that at σ = 0.5, a sink with
complex conjugate eigenvalues dominates the scene for much of the range of
τ considered, and the same is true at σ = 1 for smaller values of τ .

For τ ∈ Z+, this again is easily checked. The “twist” at θ = 1
2 is also

eminently visible in the last three pictures of Ψτ (γ) in Figure 1(b). With a
little bit of work, one can settle these questions rigorously, but an a priori fact
that makes plausible the extension of this sink to noninteger values of τ is
that fixed point sinks with complex conjugate eigenvalues cannot disappear
suddenly as parameters are varied: a bifurcation can occur only when these
eigenvalues become real, i.e., ±e− 1

2λτ (and a fixed point can vanish only when
one of its eigenvalues is equal to 1).

Finally, we remark that even though the sinks above clearly exert non-
trivial influence on the dynamics, other structures (competing sinks, invariant
sets, etc.) may be present. The many open squares in Figure 2(c) suggest that
for these parameters, trajectories in different regions of the phase space have
distinct futures.

Smale’s horseshoes. Horseshoes are likely present starting from σ somewhere
between 0.5 and 1 for τ large enough. An example of an easily recognizable
horseshoe for σ = 2 and τ = 10 is shown in Figure 3(a). The larger σ, the
easier it is to give examples.

Figure 3(a) illustrates how proofs of horseshoes or uniformly hyperbolic
invariant sets are often done: One first “spots” a horseshoe with one’s eyes,
namely one or more boxes that map across themselves in a characteristic
way, and then proves that the set of points that remain in these boxes forever
has the required splitting into expanding and contracting directions. When
σ
λ is large, DΨτ expands strongly in the θ-direction for most values of θ;

contraction is guaranteed since det(DΨτ ) = e−λτ < 1.

Proposition 2.2 (see [29]). Given λτ , Ψτ has a horseshoe if σ
λA is sufficiently

large.

The presence of horseshoes is sometimes equated with dynamical com-
plexity or chaos in the literature, and that is entirely justified insofar as one
refers to the existence of chaotic orbits. One must not confuse the existence
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(a) Formation of a horseshoe.

(b) The attractor Γ.

Figure 3. The attractor Γ and a horseshoe in it. Panel (a)
illustrates the formation of a horseshoe. Shown are a box R
(thick gray lines) and its image Ψτ (R) (thinner black curves).
The vertical boundaries of R are the stable manifolds of the
fixed point at (0, 0); these are mapped into themselves by Ψτ .
Panel (b) shows a picture of the attractor Γ. The parameters
are λ = A = 0.1, σ = 2, and τ = 10 for both plots.

of these orbits with chaotic behavior starting from “most” or “typical” ini-
tial conditions, however: A system can have a horseshoe (which attracts a
Lebesgue measure zero set), and can have all other points in the phase space
tending to a sink. Or, the horseshoe can be part of a “strange attractor,” with
Λmax > 0. The presence of a horseshoe alone does not tell us which of these
scenarios will prevail. We will say more about strange attractors versus sinks
in Section 3.1. It Suffices to observe here that horseshoes clearly exist for
most of the parameters in Figure 2(d)–2(f), and Λmax is sometimes positive
and sometimes negative.

Sinks from homoclinic tangencies. For larger shear, the attractor can be quite
complicated; see Figure 3(b). Yet in Figures 2(d), 2(e), and even 2(f), sinks
can also occur as noted.
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The following is purely theoretical, in the sense that we do not know
exactly where the sinks are in these specific systems, but it is a general fact
in two dimensions that near homoclinic tangencies of dissipative saddle fixed
points (“dissipative” means | det(Df)| < 1), sinks form easily, meaning one
can perturb the map and find one near such a tangency; see [17]. Furthermore,
tangencies persist once the stable and unstable manifolds of a horseshoe are
shown to meet tangentially somewhere. While no results have been proved
for this particular model, the “turns” made by unstable manifolds (see Fig-
ure 3(b)) suggest the abundance of opportunities for such tangencies.

3. A theory of strange attractors

In this section we focus on the case of positive Lyapunov exponents, having
discussed negative and zero values of Λmax in Section 2. A combination of geo-
metric and statistical ideas will be used. Since these developments are more
recent, we think it may be useful to include more background information:
Section 3.1 discusses SRB measures for general chaotic systems. Section 3.2
surveys some recent work on a class of strange attractors called rank-one at-
tractors. In certain parameter ranges, the attractors Γ in our kicked oscillator
systems are of this type. In Section 3.3, we explain how the general results
reviewed in Sections 3.1 and 3.2 are applied to equation (1).

3.1. SRB measures

The setting of this subsection is as follows. Let M be a Riemannian manifold
or simply Rn. We consider an open set U ⊂ M with compact closure, and
let f be a C2 embedding of U into itself with f(U) ⊂ U . We will refer to
Γ = ∩n≥0f

n(U) as the attractor and U as its basin of attraction. Though not
a formal assumption, we have in mind here situations that are “chaotic”; in
particular, Γ is more complicated than an attracting periodic orbit.

We will adopt the viewpoint that observable events are represented by
positive Lebesgue measure sets, and we are interested in invariant measures
that reflect the properties of Lebesgue measure, which we denote by m. For
chaotic systems, the only invariant measures known to have this property are
SRB measures. (The terms Lebesgue and Riemannian measures will be used
interchangeably in this article.)

Definition 3.1. An f -invariant Borel probability measure μ is called an SRB
measure if

(a) Λmax > 0 μ-a.e., and
(b) the conditional measures of μ on local unstable manifolds have densities

with respect to the Riemannian measures on these manifolds.

Recall from the Multiplicative Ergodic Theorem [18] that Lyapunov ex-
ponents, in particular Λmax, are defined μ-a.e., so (a) makes sense; in general,
these quantities may vary from point to point. The meaning of (b) can be
understood as follows. For an invariant measure to reflect the properties of
m, it is simplest if it has a density with respect to m, but that is generally not
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possible for attractors: All invariant measures in U must live on Γ, and if f is
volume decreasing, which is often the case near an attractor, then m(Γ) = 0.
The idea of SRB measures is that if μ cannot have a density, then the next
best thing for it is to have a density in unstable directions, the intuition being
that the stretching of phase space in these directions leads to a smoothing of
distributions.

The main result on SRB measures is summarized in the next proposi-
tion, followed by a sketch of its proof. The ideas in the proof will explain
how SRB measures, which are themselves singular, are related to Lebesgue
measure. Recall that for an ergodic measure μ, Λmax is constant μ-a.e. We
will denote this number by Λμ.

Proposition 3.1. Let (f, μ) be an ergodic SRB measure with no zero Lyapunov
exponents. Then there is a set V ⊂ U with m(V ) > 0 such that the following
hold for every y ∈ V :

(i) Λmax(y) = Λμ; and

(ii) 1
n

∑n−1
i=0 ϕ(f iy)→ ∫

ϕdμ for every continuous observable ϕ : U → R.

The idea of the proof is as follows. Let γ be a piece of local unstable
manifold, and let mγ be the Riemannian measure on γ. By property (b) of
Definition 3.1, we may assume mγ-a.e. x ∈ γ is “typical” with respect to μ. In
particular, it has properties (i) and (ii) in the proposition. Let W s(x) be the
stable manifold through x. Properties (i) and (ii) for y ∈ W s(x) follow from
the corresponding properties for x because d(fnx, fny) → 0 exponentially
as n → ∞. It remains to show that the set of points y that are connected
to μ-typical points as above has positive m-measure, and that is true by the
absolute continuity of the stable foliation [21].

A little bit of history: SRB measures were invented by Sinai, Ruelle
and Bowen in the 1970s, when they constructed for every attractor satisfying
Smale’s Axiom A [25] a special invariant measure with the properties in
Definition 3.1 (see [24, 22, 4]).1 This special invariant measure has a number
of other interesting properties; see, e.g., [3, 34] for more information. At about
the same time, building on Oseledec’s theorem on Lyapunov exponents [18],
Pesin [20] and Ruelle [23] extended the uniform theory of hyperbolic systems,
also known as Axiom A theory, to an almost-everywhere theory in which
positive and negative Lyapunov exponents replace the uniform expansion
and contraction in Axiom A. The idea of an SRB measure was brought to
this broader setting and studied there by mostly Ledrappier and Young; see,
e.g., [11].

The existence problem. While the idea and relevant properties of SRB mea-
sures were shown to make sense in this larger setting, existence was not guar-
anteed. Indeed for an attractor outside of the Axiom A category, no matter

1Sinai treated first the case of Anosov systems; his results were shortly thereafter extended
to Axiom A attractors (which are more general) first by Ruelle and then by Ruelle and
Bowen.
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how chaotic it appears, there is, to this day, no general theory that will tell
us whether or not it has an SRB measure.

Here is where the difficulty lies: By definition, an Axiom A attractor has
well-separated expanding and contracting directions that are invariant under
the dynamics, so that tangent vectors in expanding directions are guaran-
teed some amount of growth with every iterate. In general, an attractor that
appears chaotic to the eye must expand somewhere; this is how instabilities
are created. But since volume is decreased, there must also be directions that
are compressed. Without further assumptions, for most points x and tangent
vectors v, ‖Dfn

x v‖ will sometimes grow and sometimes shrink as a function of
n. To prove the existence of an SRB measure, one must show that on balance,
‖Dfn

x v‖ grows exponentially for certain coherent families of tangent vectors.
The absence of cancellations between expansion and contraction is what sets
Axiom A attractors apart from general chaotic attractors.

3.2. Some recent results on rank-one attractors

This subsection reviews some work by Wang and Young [28, 31, 32] on a class
of strange attractors. These attractors have a single direction of instability
and strong contraction in all complementary directions. Among systems with-
out a priori separation of expanding and contracting directions (or invariant
cones), this is the only class to date for which progress has been made on the
existence of SRB measures.

The idea is as follows. One embeds the systems of interest in a larger
collection, letting b denote an upper bound on their contraction in all but
one of the directions (more precisely the second largest singular value of
Dfx). One then lets b → 0 in what is called the singular limit. If this
operation results in a family of well-defined one-dimensional (1D) maps, and
if some of these 1D maps carry strong enough expansion, then one can try
to conclude that for small but positive b, some of the systems have SRB
measures. Obviously, this scheme is relevant only for attractors that have a
1D character to begin with. For these attractors, what is exploited here is the
fact that 1D objects, namely those in the singular limit, are more tractable
than the original n-dimensional maps.

Since it is not illuminating to include all technical details in a review
such as this one, we refer the reader to [31, Section 1] for a formal statement,
giving only enough information here to convey the flavor of the main result.

Let M = I × Dn−1 where I is either a finite interval or the circle S1

and Dn−1 is the closed unit disk in Rn−1, n ≥ 2. Points in M are denoted
by (x, y) where x ∈ I and y = (y1, . . . , yn−1) ∈ Dn−1, and I is sometimes
identified with I ×{(0, . . . , 0)}. Given F : M → I, we associate two auxiliary
maps:

F � : M →M, where F � = (F, 0, . . . , 0),

f : I → I, where f = F |I×{(0,...,0)}.
We need to explain one more terminology: There is a well-known class of
1D maps called Misiurewicz maps [16]. Roughly speaking, a map f is in this
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class if it is C2, piecewise monotonic with nondegenerate critical points, and it
satisfies the following conditions: (i) it is expanding away from C = {f ′ = 0},
and (ii) the forward orbit of every x̂ ∈ C is trapped in an expanding invariant
set (bounded away from C). Maps in this class are known to have positive
Lyapunov exponents Lebesgue-a.e.

Theorem 3.1 (see [31]). Let Fa : M → I be a 1-parameter family of C3 maps
with the following properties:

(C1) there exists a∗ such that fa∗ is a Misiurewicz map;
(C2) a �→ fa satisfies a transversality condition at a = a∗ and x̂ ∈ C(fa∗);
(C3) for every x̂ ∈ C(fa∗), there exists j such that ∂yjFa∗(x̂, 0) = 0.

Then there exists b > 0 (depending on {Fa}) such that if Ta : M → M is a
family of C3 embeddings of M into itself with ‖Ta − F �

a‖C3 < b, then there
is a positive measure set Δ in a-space such that for all a ∈ Δ, Ta admits an
SRB measure.

That ‖Ta − F �
a‖C3 must be sufficiently small is the rank-one condition

discussed above, and (C1) is where we require the singular limit maps to
have sufficient expansion. Notice that (C1)–(C3) all pertain to behavior at
or near a = a∗. The set Δ will also be in the vicinity of this parameter.
(C2) guarantees that one can bring about changes effectively by tuning the
parameter a, and (C3) is a nondegeneracy condition at the critical points.

Remark. The existence of SRB measures is asserted for a positive measure
set of parameters, and not for, say, an entire interval of a. This is a reflection
of reality rather than a weakness of the result: there are parameters a arbi-
trarily near Δ for which Ta has sinks. In a situation such as this one where
chaotic and nonchaotic regimes coexist in close proximity of one another, it
is impossible to say for certain if any given map has an SRB measure. One
can conclude, at best, that nearby maps have SRB measures “with positive
probability.”

Theorem 3.1 was preceded by the corresponding result for the Hénon
family

Ta,b : (x, y) �→ (1− ax2 + y, bx). (4)

The existence of SRB measures for parameters near a∗ = 2 and b � 1 was
proved in [2] building on results from [1]. This is the first time the existence of
SRB measures was proved for genuinely nonuniformly hyperbolic attractors.
Even though [1] is exclusively about equation (4), the techniques developed
there were instrumental in the proof of Theorem 3.1.

Returning to the setting of Theorem 3.1, let us call a ∈ Δ a “good
parameter” and T = Ta a “good map.” The following two properties of
these maps are directly relevant to us. They were proved under the following
additional assumption on M :

| det(DTa)| ∼ bn−1. (�)
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(1) Lebesgue-a.e. z ∈ M is contained in W s(ξ) where ξ is typical with
respect to an ergodic SRB measure (in general, there may be more than
one such measure). It follows that Λmax(z) > 0 for Lebesgue-a.e. z ∈M .

(2) Another condition on fa∗ (Lyapunov exponent > log 2 and fN
a∗ map-

ping every interval of monotonicity to all of I for some N) implies the
uniqueness of SRB measure. This in turn implies Λmax is constant a.e.
in M .

These and a number of other results for “good maps” were proved in
[32]. We mention one that is not used here but sheds light on the statisti-
cal properties of these attractors: For an SRB measure μ for which (T, μ)
is mixing, the system has exponential decay of correlations for Lipschitz ob-
servables, i.e., there exists τ ∈ (0, 1) such that for all Lipschitz ϕ,ψ, there
exists C = C(ϕ,ψ) such that for all n ≥ 1,∣∣∣∣

∫
(ϕ ◦ Tn)ψ dμ−

∫
ϕ dμ

∫
ψ dμ

∣∣∣∣ ≤ Cτn.

3.3. Application to kicked oscillators

We now return to the model introduced in Section 1.1 and explain how this
system can be fitted into the framework of the last subsection. (See [29] for
details.) We fix σ, λ,A, and allow τ to vary. Writing τ = k+ a where k = [τ ],
the integer part of τ , we let Tk,a = Ψτ . For each fixed k ∈ Z+, we view
{Ta = Tk,a, a ∈ [0, 1)} as the family of interest, and we discuss if and when
the conditions of Theorem 3.1 will hold for this family.

Here, the singular limit maps Fa are well defined. In fact, they are the
first components of limk→∞ Tk,a, i.e.,

Fa(θ, y) = θ + a+
σ

λ
· (y +A sin(2πθ)),

and the restriction of Fa to S1 is

fa : S1 → S1, fa(θ) = θ + a+
σ

λ
A sin(2πθ), a ∈ [0, 1). (5)

Notice immediately that the range of applicability of Theorem 3.1 is
limited to λτ relatively large. This is because ‖Tk,a − F �

a‖C3 = O(b) where
b = e−λk is required to be very small. For a given unforced system, where
the amount of damping λ is fixed, this means that the kicks must be applied
sufficiently far apart in time.

We comment on (C1), which along with the rank-one condition above
are the core assumptions for this theorem. For our purposes let us assume
that fa satisfies the Misiurewicz condition if some iterate of fa sends its
two critical points c1 and c2 into an unstable periodic orbit or an expanding
invariant Cantor set. First, such Cantor sets are readily available for medium
size values of σ

λ such as σ
λ ≥ 1, and unstable periodic orbits start to exist for

somewhat smaller values of σ
λ . Suppose for some parameter value a that the

forward orbit of c1 is contained in an expanding invariant set K. As we vary
a, both the orbit of c1 and K will move with a. Condition (C2), assuming
it holds, implies that for all large enough k ∈ Z+, fk

a (c1) moves faster, i.e.,
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the path traced out by a �→ fk
a (c1(a)) cuts across K as though the latter was

stationary. When K is a Cantor set, this guarantees that fk
a (c1) ∈ K for an

uncountable number of a’s. By symmetry, when that happens to fa(c1), the
same is automatically true for fa(c2). The larger σ

λ , the denser these Cantor

sets are in S1, and the denser the set of parameters a that can be taken to
be a∗ in (C1).

The checking of (C2), (C3), and (�) are straightforward. Conditions for
the uniqueness of SRB measures require that σ

λ be a little larger.
To summarize, the results in the last subsection imply that for σ

λ ≥ 1
(or even smaller), for all large enough k, there exist positive measure sets Δk

such that for a ∈ Δk and τ = k + a, Ψτ is a “good map” in the sense of the
last subsection. In particular, Ψτ has an SRB measure. We conclude also that
Λmax(z) is well defined and greater than 0 for Lebesgue-a.e. z ∈ U . To ensure
that Λmax(z) = constant a.e. (so there are no open squares in Figure 2) one
needs to take σ

λ a little larger. It is in fact not hard to see that Δk ≈ Δk′ for
k = k′ when both are sufficiently large, so that in this parameter range, the
set of τ for which the properties above are enjoyed by Ψτ is roughly periodic
with period 1.

Remarks on analytic results for chaotic systems. Theorem 3.1 is a perturba-
tive result. As is generally the case with perturbative proofs, the sizes of the
perturbations (such as b) are hard to control. Consequently, applicability of
Theorem 3.1 is limited to regimes with very strong contraction. The results
reported in Section 3.2, however, are the only rigorous results available at
the present time. Techniques for analyzing maps in parameter ranges such as
those in Figure 2 are lacking and currently quite far out of reach.

The situation here is a reflection of the general state of affairs: Due to
the cancellations discussed at the end of Section 3.1, rigorous results for the
large-time behavior of chaotic dynamical systems tend to be challenging.

When results such as Theorem 3.1 are available, however, they—and
the ideas behind them—often shed light on situations that are technically
beyond their range of applicability. Our example here is a good illustration
of that: Figure 2(d)–2(f) show that as σ

λA increases, positive Lyapunov ex-
ponents become more abundant among the parameters tested, interspersed
with occasional sinks. This is in agreement with the dynamical picture sug-
gested by Theorem 3.1 even though with λτ ∈ [0.5, 1.5], the contraction can
hardly be considered strong.

4. Generalizations

In Sections 1, 2, and 3.3, we have focused on a concrete model. We now
generalize this example in two different ways:

• the unforced equation in equation (1) is replaced by an arbitrary limit
cycle;

• the specific kick in equation (1) is replaced by an arbitrary kick.
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More precisely, we consider a smooth flow Φt on a finite-dimensional Rie-
mannian manifold (which can be Rn), and let γ be a hyperbolic limit cycle,
i.e., γ is a periodic orbit of period p, and for any x ∈ γ, all eigenvalues for
DΦp(x) are less than 1 aside from that in the flow direction. The basin of
attraction of γ is the set B := {x ∈M : Φt(x)→ γ as t→∞}. We continue to
consider forcing in the form of kicks, and assume for simplicity that the kicks
are defined by a smooth embedding κ : M →M (as would be the case if, for
example, κ represents the result of a forcing defined by ż = G(z, t) where the
vector field G(z, t) is nonzero, or “on,” for only a short time). As before, the
kicks are applied periodically at times 0, τ, 2τ, 3τ, . . . , and the time evolution
of the kicked system is given by Ψτ = Φτ ◦ κ.

A new issue that arises in this generality is that one may not be able
to isolate the phenomenon, that is to say, the kicking may cause the limit
cycle to interact with dynamical structures nearby. Our discussion below is
limited to the case where this does not happen; i.e., we assume there is an
open set U with γ ⊂ U ⊂ B such that κ(U) ⊂ B and Φτ (κ(U)) ⊂ U , and
define Γ = ∩nΨ

n
τ (U) to be the attractor of the kicked system as before.

We further limit the scope of our discussion in the following two ways: (i)
Kicks that are too weak will not be considered; such kicks produce invariant
curves and sinks for the same reasons given in Section 2.1, and there is no
need to discuss them further. (ii) We consider only regimes that exhibit a
substantial contraction during the relaxation period, brought about by long
enough kick intervals that permit the “shear” to act. As we will see, this
is a more tractable situation. Rigorous results can be formulated—and we
will indicate what is involved—but will focus primarily on ideas. Precise
formulations of results in this generality (see [30]) are unfortunately not as
illuminating as the phenomena behind them.

The geometry of folding: Kicks and the strong stable foliation. As we will
show, the key to understanding the effects of kicks is the geometric relation
between the kick and the strong stable foliation associated with the limit
cycle of the unforced system. For x ∈ γ, we define the strong stable manifold
of Φt at x, denoted W ss(x) = W ss

Φt
(x), to be the set W ss(x) = {y ∈ M :

d(Φt(y),Φt(x))→ 0 as t→∞}; the distance between Φt(x) and Φt(y) in fact
decreases exponentially; see, e.g., [10]. (This stable manifold is for the flow
Φt, not to be confused with that for the kicked map Ψτ in Proposition 2.1.)
Some basic properties of these manifolds are (i) W ss(x) is a codimension-one
submanifold transversal to γ and meets γ at exactly one point, namely x;
(ii) Φt(W

ss(x)) = W ss(Φt(x)), and in particular, if the period of γ is p, then
Φp(W

ss(x)) = W ss(x); and (iii) the collection {W ss(x), x ∈ γ} foliates the
basin of attraction of γ. An example of a W ss-foliation for a limit cycle is
shown in Figure 4.

Figure 4 shows the image of a segment γ0 of γ under Ψτ . For illustration
purposes, we assume γ0 is kicked upward with its end points held fixed and
assume τ = np for some n ∈ Z+ where p is the period of the cycle. Since Φnp

leaves each W ss-manifold invariant, we may imagine that during relaxation,
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ss

γ
0

(γ  )0Ψτ0

(γ  )0Ψτ1

W  −leaves

γ

Figure 4. Geometry of folding in relation to the W ss-
foliation. Images of Ψτ1(γ0) and Ψτ2(γ0) for τ1 < τ2, both
multiples of the period of the limit cycle γ, are shown.

the flow “slides” each point of the curve κ(γ0) back toward γ along W ss-
leaves; the larger n is, i.e., the more times it laps around, the farther down
the point slides. In the situation depicted, the folding is quite evident. If τ is
not an integer multiple of p, then Φτ carries each W ss-manifold to another
W ss-manifold. Writing τ = np+a, where a ∈ [0, p), we can think of the action
of Φτ as first sliding along the W ss-manifold by an amount corresponding to
Φnp and then flowing forward for time a.

The picture in Figure 4 gives insight into what types of kicks are likely
to produce chaos. The following observations are intended to be informal but
intuitively clear.

(i) Kicks directed alongW ss-leaves or in directions roughly parallel toW ss-
leaves are not effective in producing chaos, nor are kicks that essentially
carry one W ss-leaf to another in an order-preserving fashion. For such
kicks, Ψτ essentially permutes W ss-leaves, and κ has to overcome the
contraction within individual leaves to create chaotic behavior. (This
cannot happen in two dimensions.)

(ii) The stretch-and-fold mechanism for producing chaos remains valid: the
more Ψτ (γ) is folded, the more chaotic the system is likely to be, i.e.,
the intuition is as in Figure 1. What is different here is that unlike
our earlier example, where the propensity for shear-induced chaos is
determined entirely by parameters in the unforced equation, namely σ
and λ, we see in this more general setting that it matters how the kick
is applied. It is the geometry of the action of κ on the limit cycle γ in
relation to the strong stable foliation W ss that determines the stability
or chaos of the kicked system.

(iii) The case of stronger contraction is more tractable mathematically for
the following reason: When the contraction in Ψτ is weak, as with τ = τ1
in Figure 4, one has to deal with the cumulative effects of multiple kicks,
which are difficult to treat. When the image Ψτ (γ0) is pressed more
strongly against γ, as in the case of τ = τ2 > τ1, cumulative effects of
consecutive kicks are lessened.

We illustrate some of the ideas above in the examples below.

Linear shear-flow examples.

The 2D system in equation (1). The ideas in this section can be seen as
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an abstraction of those discussed earlier. To understand that, we compute
the W ss-leaves of the unforced system in equation (1) and find them to
be straight lines having slopes −λ

σ . We concluded earlier that given A, the
larger σ

λ , i.e., the smaller the angle between the W ss-leaves and γ, the more
chaotic the system is likely to be. Observation (ii) above corroborates this
conclusion: Given that we kick perpendicularly to the limit cycle (as is done
in equation (1)), and points in γ are kicked to a given height, the more
“horizontal” the W ss-leaves, the farther the points in κ(γ) will slide when
we bring them back to γ. In other words, the σ

λ part of the ratio from earlier
is encoded into the geometry of the W ss-foliation—provided that we kick
perpendicularly to the cycle.

Generalization to n dimensions. The n-dimensional analogue of equation (1)
with a more general forcing is

θ̇ = 1 + σ · y,

ẏ = −Λy +AH(θ)v(θ) ·
∞∑

n=−∞
δ(t− nτ),

(6)

where θ ∈ S1, y ∈ Rn−1, σ ∈ Rn−1 is nonzero, and Λ is an (n− 1)× (n− 1)
matrix all of whose eigenvalues have strictly positive real parts. For simplicity,
we assume the kicks are perpendicular to the limit cycle {y = 0}, and to
facilitate the discussion, we have separated the following aspects of the kick
function: its amplitude is A, variation in θ is H(θ), and the direction of the
kick is v(θ) ∈ Sn−2. As a further simplification, let us assume v(θ) ≡ v ∈
Rn−1, i.e., it is a fixed vector.

A computation shows that the W ss-manifolds of the unforced equation
are given by

W ss(θ0,0) = {(θ,y) : θ = θ0 − σTΛ−1y},
i.e., they are hyperplanes orthogonal to the covector (1, σTΛ−1). As noted in
observation (i) above, kick components orthogonal to (1, σTΛ−1) are “dissi-
pated” and do not have much effect. If H ≡ constant, then Ψτ simply per-
mutes the W ss-planes and again no chaotic behavior will ensue. To produce
horseshoes and strange attractors, a sufficient amount of variation in θ for
Ψτ (γ) is needed as noted in observation (ii) above; that variation must come
from H. An analysis similar to that in equation (2), Section 1.2, tells us that
for large τ , the amount by which the kick is magnified in the θ-direction is
≈ A H(θ) σTΛ−1v. We remark that the variation in H is far more important
than its mean value, which need not be 0.

Finally, given H ≡ constant, to maximize the variation of Ψτ (γ) in θ for
large τ , the discussion above suggests kicking in a direction v that maximizes
σTΛ−1v. Under the conditions above, this direction is unique and is given
by v = ±(ΛT)−1σ/|(ΛT)−1σ|. Notice that this need not be the direction
with the least damping or the direction with maximal shear, but one that
optimizes the combined effect of both.

On analytic proofs. When Ψτ contracts strongly enough, the system falls
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into the rank-one category as defined in Section 3.2, independently of the
dimension of the phase space. This comes from the fact that Φt carries all
points back to γ, which is a 1D object.

If the folding (as described in observation (ii) above) is significant enough
for the amount of contraction present, then horseshoes can be shown to exist.
Proving the existence of horseshoes with one unstable direction is generally
not very difficult, and not a great deal of contraction is needed.

To prove the existence of strange attractors or SRB measures, the results
in Section 3.2 are as applicable here as in our 2D linear example. It is proved
in [30] that the periodic kicking of arbitrary limit cycles fits the general
framework of Theorem 3.1, in the sense that as the time between kicks tends
to infinity, singular limit maps are well defined. They are given by fa : γ → γ,
a ∈ [0, p), where

fa(x) := lim
n→∞Φnp+a(κ(x)) for all x ∈ γ.

From our earlier discussion of sliding along W ss-leaves, it is not hard to see
that fa(x) is, in fact, the unique point y ∈ γ such that κ(x) ∈ W ss(y).
Whether (C1)–(C3) hold depends on the system in question and hinges
mostly on (C1), which usually holds when the variation is large enough.
As always, these conditions need to be verified from example to example.

Related results and outlook

We have reviewed a set of results on the periodic kicking of limit cycles. The
main message is that the effect of the kick can be magnified by the underlying
shear in the unforced system to create an unexpected amount of dynamical
complexity. It is an example of a phenomenon known as shear-induced chaos.

A similar geometric mechanism is used to prove the existence of strange
attractors in (a) certain examples of slow-fast systems [8]; (b) periodic kicking
of systems undergoing supercritical Hopf bifurcations (see [30] for details, and
[15] for results applicable to evolutionary PDEs); and (c) periodic forcing
of near-homoclinic loops [27]. See also [19]. All of these results pertain to
strong-contraction regimes; proofs are perturbative and rely on the theory of
rank-one attractors reviewed in Section 3.2.

A welcome extension of the results reviewed here is to remove the strong-
contraction assumption for strange attractors, but this is likely to be chal-
lenging: one has to either develop nonperturbative techniques or go about
the problem in a less direct way.

Random forcing is a future direction we believe to be both interest-
ing and promising. Numerical studies of Poisson and white-noise forcing
have been carried out [14]. Phenomena similar to those in Section 1 are ob-
served when the kick term in equation (1) is replaced by a term of the form
A sin(2πθ) dBt where Bt is standard Brownian motion, i.e., the setup is a
stochastic differential equation. With stochastic forcing, phase space geome-
try is messier, but Λmax depends continuously on parameters. The absence of
wild fluctuations between positive and negative values of Λmax (corresponding
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respectively to strange attractors and sinks in the periodic case) gives hope
to the idea that the analysis for stochastic forcing may be more tractable
than that for periodically forced systems.
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