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Annals of Mathematics, 122 (1985), 540-574 

The metric entropy of diffeomorphisms 
Part II: Relations between entropy, 

exponents and dimension 
By F. LEDRAPPIER AND L.-S. YOUNG 

We continue to consider f: (M, m) -> (M, m), a C2-diffeomorphism f of a 
compact Riemannian manifold M preserving a Borel probability measure m. As 
before, let hm(f) denote the metric entropy of f, let Xl(x) > ... > r(x)(x) be 
the distinct Lyapunov exponents at x and let Di < r(x) Ei(x) be the corresponding 
decomposition of TxM. Both parts of this paper concern the relation between 
entropy and Lyapunov exponents. As we have indicated in the introduction to 
Part I, much of this work is motivated by the theorems of Margulis, Ruelle [Ru 1] 
and Pesin [Pe]. Part I is about a necessary and sufficient condition on the 
measure under which Pesin's entropy formula holds. The main goal here in Part 
II is to prove an analogous formula that works for all diffeomorphisms and all 
invariant measures. 

Without any hypotheses of absolute continuity on m, any equation relating 
entropy and exponents must involve some notion of fractional dimension. This 
fact has been observed for certain specific examples for some time (see for 
instance [Bi]). General results relating these quantities have so far been confined 
to maps that are one-dimensional in nature (e.g. [L], [Y]). Our main theorem 
(Theorem C) extends these results. We show that for any invariant probability 
measure m, 

(* *) hm(f) =fXtYidm 

where yi denotes, roughly speaking, the dimension of m "in the direction of the 
subspace Ei". (Precise definitions are given in ? 7, in particular in (7.3) and (7.4). 
Unfortunately it takes some work to see that these numbers as defined in Section 
7 have the intuitive interpretation mentioned above.) 

Research supported in part by NSF Grant MCS 8120790 and AFOSR Grant AFOSR-83-0265. 
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METRIC ENTROPY OF DIFFEOMORPHISMS, II 541 

Since yi lies between 0 and dim Ei, our formula implies the inequality of 
Margulis and Ruelle [Ru 1] (although this is a rather indirect way of arriving at 
their result). Pesin's formula corresponds to the case where yi = dim Ei. 

We give an indication of the proof of (* *). When two or more distinct 
positive exponents are present, it is difficult to estimate dimension as is done in 
[Y]. In these situations, however, there is a hierarchy of unstable manifolds 
corresponding to the largest k exponents, k = 1,... , u(x) (see (1.1)). These 
unstable manifolds give rise to a nested family of invariant foliations. Condition- 
ing our estimates on the leaves of these foliations and working our way up 
successive layers, we are able to focus on one exponent at a time. 

In our argument we use the notion of "entropy along an invariant foliation" 
or "partial entropies". This allows us to distinguish between randomness occur- 
ring in different directions in much the same way that one studies the growth of 
the derivative by decomposing TxM into subspaces corresponding to distinct 
exponents. These ideas may have further ramifications. 

We have expressed entropy in terms of exponents and dimension. One may 
wish also to express dimension in terms of the other invariants. We do not have a 
complete solution to this problem. We show however that the dimension of m is 
bounded above by Eiyi (Theorem F). A corollary to this (Corollary I) partially 
confirms a conjecture of Yorke's on the dimension of attractors [FKYY]. Inciden- 
tally, Pesin's formula can also be deduced from theorem F and (* *) in the case 
when m is equivalent to Lebesgue. 

This paper begins with Section 7 in which we give precise statements of 
results and related definitions. Section 8 contains local unstable manifolds esti- 
mates. The notion of entropy along an unstable foliation is introduced in Section 
9. Theorem C is proved in Sections 10 and 11 and Theorem F is proved in 
Section 12. 

Some of the proofs in Section 8 and especially in Section 11 are similar to 
those given in Part I. We try to make the statements of lemmas as self-contained 
as possible here but will refer the reader to Part I for certain proofs. 

We remark also that while our theorems contain no ergodic assumptions, 
most of them can be proved by reduction to the ergodic case. For this reason-and 
for simplicity of exposition-we have chosen to present most of our ideas and 
proofs assuming that m is ergodic. 

Finally we should mention that the theory of dimensions, as well as its 
relation to entropy and exponents, seems to be of some interest to mathematical 
physicists. In fact, while this manuscript was under preparation, two physicists, 
Grassberger and Procaccia (see [G]), derived heuristically (and independently of 
this work) a relation very similar to ( * * ). For a discussion of these invariants 
that is more oriented towards applications we refer the reader to the survey 
article [ER]. 
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542 F. LEDRAPPIER AND L.-S. YOUNG 

Standing Hypotheses 

M is a C' compact Riemannian manifold without boundary; 

f: M *' is a C2 diffeomorphism; 

m is an finvariant Borel probability measure on M; 

and except in (7.5), (7.6) and Section 12, 

m is ergodic. 

7. Definitions and statements of results 

(7.1) Unstable manifolds. As in Section 1, let F-' be the set of points that 
are regular in the sense of Oseledec [0]. For x c F%, let 

XA(x) > 2) > ... > Xr(x)(x) 

denote its distinct Lyapunov exponents and let 

TxM = El(x) ED .. D *Er(x)(x) 

be the corresponding decomposition of its tangent space. Since m is assumed to 
be ergodic, the functions x - r(x), Xi(x) and dim Ei(x) are constant m-a.e. 

Let u = max{i: Xi > 0}. For 1 < i < u, define 

Wi(x)= y EM: lim sup 1log d(f -nx, f -ny) <-A i n o 

Then Wi(x) is a C2 (-d? dimE)dimensional immersed submanifold of M 
tangent at x to ED j < iE (x). (See for instance [Ru2].) It is called the ith unstable 
manifold of f at x. We sometimes refer to { W'(x): x c F- } as the Wi-foliation 
on M. Using this language then, we have a nested family of a.e. foliations 

W1c W2c ... c Wu 

corresponding to the distinct positive exponents of f. 
As an immersed submanifold, each W'(x) inherits a Riemannian structure 

from M. This gives rise to a Riemannian metric on each leaf of Wi. We denote 
these metrics by d&. 

The measure m also defines conditional measures on the leaves of Wi. More 
precisely, a measurable partition ( of M is said to be subordinate to the 
Wi-foliation if for a.e. x, ((x) C W'(x) and contains an open neighborhood of x 
in W'(x). Associated with each measurable partition is a system of conditional 
measures. (See (1.3) of Part I or [Ro].) In the next two subsections we shall define 
some invariants using the conditional measures for partitions subordinate to Wi. 

(7.2) Entropy along unstable manifolds. Fix 1 < i < u. We now define a 
notion of entropy along the Wi-foliation. In the ergodic case this notion is 
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METRIC ENTROPY OF DIFFEOMORPHISMS, II 543 

described by a number hi which measures the amount of randomness along the 
leaves of W'. There are several equivalent definitions. Following [BK] we take a 
pointwise approach: 

Let E > 0. For x E F' and n E Z+, define 

V?(x, n, c) = {y e W?(x): di(fkx ,fky) < EforO < k < n}. 

Let ( be a measurable partition subordinate to Wi and let { mx } be a system of 
conditional measures associated with (. Define 

hi E (x = lim inf - Ilog myVi(x, n, E) 
n -- 00 n 

and 
1 

hi( X, = lim sup - -log mXVi(x, n, E) n o fl --p 00 

(The cautious reader may wish to verify that these functions are indeed measura- 
ble.) 

PROPOSITION 7.2.1. At m-a.e.x, 

lim hi(x,E,) = lim hi(x, E,). 

These limits exist because hi(x, E, ) and hi(x, E, () increase as E I 0. The 
proof of this proposition occupies Section 9. 

Let hi(x, {) denote the limit in Proposition 7.2.1. Using the essential 
uniqueness of conditional measures and the invariance of m it is easy to verify 
that hi(fx, () = hi(x, () m-a.e. and hence hi(x, () is constant a.e. The reader 
should check also that this constant is independent of the choice of ( or { mx }. 
This completes the definition of hi. 

The concept of entropy along a foliation has in fact been exploited in Part I 
though we did not explicitly introduce this terminology. The main proposition of 
Part I (see Section 5) combined with the discussion in Section 9 gives: 

COROLLARY 7.2.2. hu = hm(f). 

(7.3) Dimension of conditional measures on unstable manifolds. Again fix 
1 < i < u. Let B'(x, E) denote the di-ball in W'(x) centered at x of radius E. 
Let { be a measurable partition subordinate to WZ with conditional measures 

{mO. For x e ' define 

bi ( x, ()=lim inf log 
mXBi(x, 

E) 

and 

Si(X,) = lim sup log ) 

E --+log 
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544 F. LEDRAPPIER AND L.-S. YOUNG 

As in the last section one verifies that Si(x, () and Si(x, () are constant along 
orbits and that the two numbers Si and Si are well defined independent of (. 

Propositions 7.3.1 and 7.3.2 are consequences of our results in Sections 10 
and 11. 

PROPOSITION 7.3.1. 8 = 8 

We denote this common value by Si and call it the dimension of m on 
Wi-manifolds. To justify this terminology let us recall the following known fact 
(see for instance [Y]): 

Suppose 1& is a finite Borel measure on M and X c M is a Borel set with 
LX > 0. If for every x E X, 

lim inf log tB (X' E) > 8 
E2J'o loge 

and 

l ogLB(x, F) - 
lim sup log E < 8, 

then the Hausdorff dimension of X, written HD(X), satisfies 

8 < HD(X) < 8. 

Suppose now that 2 < i < u. Remember that Wi is a (Ej 2 idim Ej)-dimen- 
sional foliation on M each leaf of which is in turn foliated by the 
(Xj i- dim Ej)-dimensional foliation W2-1. We shall see in Section 11 that the 
number Si - i-1 can be interpreted as the "transverse dimension" of m on 
W2/W'- 1. In particular, we shall prove: 

PROPOSITION 7.3.2. 0 < Si - Si-1 < dimEi for 2 < i < u. 

(7.4) The main result: ergodic case. In (7.2) and (7.3) we described some 
natural invariants associated with the dynamical system f: (M, m) +- . Our main 
result establishes the connection between these numbers and the Lyapunov 
exponents of f. 

THEOREM C'. Let f: M < be a C2 diffeomorphism of a compact Rieman- 
nian manifold and let m be an ergodic Borel probability measure on M. Let 
i > .. *> X u denote the distinct positive Lyapunov exponents off, and let Si 

be the dimension of m on Wi-manifolds. Then for 1 < i < u there are numbers 
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yi with 0 < yi < dim Ei such that 

i = Yj 
j<i 

for i =1,. ..,u and 

hm(f) = XiYi. 
i<U 

Theorem C' is the amalgamation of the following three partial results: 
(i) h1 = X 18 , 
(ii) hi-hi_ = Xi(8i - l) for i = 2,. .., u, and 

(iii) hu = hm(f). 
Setting y1 = 81 and yi = i- Si-L for i = 2,. . ., u, one obtains the conclusion 
of Theorem C' immediately by adding formulas (i), (ii) and (iii). 

We explain these formulas before proceeding further. The dimension of a 
measure is directly related to dynamical invariants such as entropy and Lyapunov 
exponents if one can dynamically generate sets that are essentially round balls. 
This can be done when all the exponents are equal. In this case equation (i) is the 
basic principle relating entropy, exponents and dimension. In general, one 
attempts to decompose the dynamical structures associated with a map into 
directions corresponding to the different rates of expansion. Equation (ii) is then 
a restatement of (i) concerning the transverse dynamics and dimension of Wi- 1 
inside Wi-leaves. This is the idea of part of the proof of (ii). (See Section 11.) To 
complete the proof of (ii) we need another argument, which is explained in 
Section 10. Finally equation (iii) says that what happens in the contracting and 
neutral directions does not contribute to the entropy of f. That was basically the 
concern of Part I. (See Section 9.) 

The next two corollaries follow immediately from Theorem C'. 

COROLLARY D'. With the same hypotheses as in Theorem C', and with 
ho = ?5 

h h= fori=1,...,u. 
j~i i 

In (7.3) we defined Si = Si(f) and in Theorem C' we defined yi = yi(f) for 
i = 1, ... ., u. Remember that these yi's carry geometric meaning as the trans- 
verse dimension of m between successive Wi-foliations. Now consider 
f 1: (M, m) and define analogously 'i = yi(f- 1) corresponding to the 
positive exponents of f -L (or equivalently the negative exponents of f). Let 
Yi= Yr-i + when Xi < 0 and yi = dimEi if Xi = 0. 
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546 F. LEDRAPPIER AND L.-S. YOUNG 

COROLLARY E'. With the same hypotheses as in Theorem C' and with yi as 
defined above, 

ExiYi = 0. 
i 

This follows from Theorem C' and the fact that hm(f) = hm(f '). We state 
two more corollaries of Theorem C' that are known results: 

COROLLARY 7.4.1. hm(f) < Li<uXidimEi. 

COROLLARY 7.4.2. If m has absolutely continuous conditional measures on 
unstable manifolds (see Definition 1.4.2), then 

hm(f) = E Xidim Ei. 
i<u 

Corollary 7.4.1 follows readily from Theorem C' and Proposition 7.3.2, as 
does Corollary 7.4.2 since Su = Li , udim Ei when m has absolutely continuous 
conditional measures on Wu. 

The nonergodic version of these results is stated in the next section. We 
mention here that Corollary 7.4.1 (without the assumption of ergodicity) was 
proved independently by Margulis and Ruelle [Rul]. Corollary 7.4.2 (again not 
necessarily ergodic) is the "if" part of Theorem A and was proved in [LS]. As 
indicated in Part I, this gives an alternate approach, though the proofs in [Rul] 
and [LS] require weaker differentiability assumptions and are much more direct. 
Theorem C' was first proved in the Axiom A dimension 2 case by Manning [Mg]. 

(7.5) Definitions and the main results: nonergodic case. Unlike the situa- 
tion when m is ergodic, the functions x p-> r(x), Xi(x) and dim Ei(x) (see (7.1)) 
are now no longer constant a.e. Let u(x) = max{ i: Xi(x) > 0). Then for 
i = 1,...,u(x), we can define WZ(x) as in (7.1) except that Xi should now be 
relaced by Xi(x). 

Let Fi = {x e F': i < u(x)}. A measurable partition ( of M is said to be 
subordinate to Wi on hi if for m-a.e. x e Fi, {(x) c W'(x) and contains an 
open neighborhood of x in W'(x). We extend the notion of entropy along Wi 
and dimension of m on Wi-manifolds to the nonergodic case using conditional 
measures for partitions of this type. These extensions are rather formal. To make 
geometric sense out of it the reader should consider sets of the form ri k = 

{ E rI Ej <idim E,(x) = k} one at a time or simply disintegrate m into its 
ergodic components. Note that the entire leaf Wt(x) is contained in the ergodic 
component of x (see e.g. (6.2)). 

First we define the notion of entropy along Wi, which is now a class of 
measurable functions defined on Fi. Let ( be a measurable partition subordinate 
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to Wi with conditional measures { m,}. Define hi: Fi -* R by 
hi(x) = hi(x , f mx 1) 

= lim liminf - -log mxVi(xn, E) 
E- 0 n-0o n 

= lim lim sup - -log mxV'( x nE 
E? *O n-0 n 

We know that the lim inf and lim sup definitions coincide m-a.e. on Fi because 
Proposition 7.2.1 says they do for the ergodic components of m. To verify that hi 
is indeed a well defined class of measurable functions one must show that if (' is 
a measurable partition of the same type as ( and { m' } is a system of conditional 
measures for (' then hi(x,5 , { mj) = hi(x, ', {m}) m-a.e. on Fi. 

Corollary 7.2.2 now reads 

fhU(x)(x)dm(x) hm(f). 

Similarly there are two measurable functions (or more precisely two classes 
of measurable functions) Si, i: Fi -* R such that if ( is a measurable partition 
subordinate to Wi on Fi and { mx } is a system of conditional measures for (, then 
at m-a.e. x E ro 

li inf E) (x) 0 loge 
and 

log m B' x5 E) limsup Lg xlog ) = i( X) 

Propositions 7.3.1 and 7.3.2 are valid (so we can write 3i = 3. = 3i) again 
because they are valid for the ergodic components of m. The function Si is called 
the dimension of m on Wi-manifolds. 

We are finally ready to state the main result of this paper: 

THEOREM C. Let f: M - be a C2 diffeomorphism and let m be an 
finvariant Borel probability measure on M. Let X i(x) > ... > X u(x)(x) be the 
distinct positive exponents at x and let Si: Fi -> R be the dimension of m on Wi. 
Then there exist measurable functions yi: Fi -- R with 0 < yi(x) < dim Ei(x) 
such that at m-a.e.x, 

Si W = E yjx) 
j<i 

fori = 1,... , u(x) and 

hm(f) = | E (x) ii(x) dmu(x)x 
i < u(x) 
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548 F. LEDRAPPIER AND L.-S. YOUNG 

Theorem C follows immediately from Theorem C' by decomposition of m 
into ergodic components. 

The nonergodic versions of Corollaries D', E', 7.4.1 and 7.4.2 are obvious. 

(7.6) A volume lemma and some consequences. Theorem C and Corollary 
D give some information on the dimension of the conditional measures of m on 
unstable manifolds. We wish now to discuss the dimension of m itself. Since this 
discussion does not involve the other foliations, we shall refer exclusively to Wu(x) 
when we speak of unstable manifolds-which we denote simply by Wu. Note 
also that no ergodicity is assumed in this section unless otherwise stated. 

THEOREM F. Let f: M <' be a C2 diffeomorphism of a compact Rieman- 
nian manifold and let m be an ftinvariant Borel probability measure on M. Let 
Su be the dimension of m on Wu, Ss be the dimension of m on W', and AC(x) be 
the multiplicity of 0 as an exponent at x. Then at m-a.e.x, 

limsup log mB(x, E) < Su(x) + Ss(x) + Sc(x) 
limsup log - 

Note that Su + Ss + Sc = EYjy. The influence of the neutral exponent on 
dimension is unpredictable and without further assumptions one cannot expect a 
sharper estimate. Theorem F is proved in Section 12. 

Let us say that a measure on M has full dimension if at m-a.e. x, 

lim sup log mB(x, = dim M. 
? -- 0 log E- 

COROLLARY G. Let f: M *- be a C2 diffeomorphisrn of a compact Rieman- 
nian manifold and let m be an f-invariant Borel probability measure with full 
dimension. Then m has absolutely continuous conditional measures on both 
stable and unstable manifolds and the following formulas hold: 

hmff) = JEX+dimEjdm, 

hm(f) = fEZ- dimEjdm, 

and 

JlogjDet Df Idm = 0. 

Whether a measure m has full dimension is experimentally relatively easy to 
verify. Note also that full dimensionality is a weaker assumption than absolute 
continuity to Lebesgue. Hence Corollary G can be regarded as a slight extension 
of some of the results in [Pe]. 
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COROLLARY H. Let f be a C2 diffeomorphism of a compact Riemannian 
manifold. An invariant Borel probability measure with full dimension is ab- 
solutely continuous with respect to Riemannian measure if any one of the 
following conditions hold: 

(1) There is no zero exponent, i.e. SC(x) = 0 m-a.e.; 
(2) 8 C(x) = 1 m-a.e. and f is the time-one map of a flow generated by a C2 

vector field; 
(3) M is an n-torus and f is an ergodic algebraic automorphism. 

Assertions (1) and (2) follow from absolute continuity properties of the 
stable foliation. See [Be] for (3). 

When the measure is not of full dimension, our results are related to a 
conjecture of Yorke's (see [FKYY]). Suppose m is ergodic. We define the 
Lyapunov dimension of m, written Lyap dim(m), to be dim M if Xi A idim E>i 0. 
Otherwise define 

j .X dim E. 
Lyapdim(m)= dimE+ i 

j<i li 
where i < r is the largest integer with Y < iX Xdim E 2 0. 

COROLLARY I. Let f: M +- be a C2 diffeomorphisin of a compact Rieman- 
nian manifold and let m be an f-invariant ergodic Borel probability measure on 
M. Then 

limsup log mB(x, ) < Lyapdim(m) 
E+ log e 

at m-a.e. x. Equality holds almost everywhere only if m has absolutely continu- 
ous conditional measures on unstable manifolds. In fact, if equality holds, then 
there is some i with yj = dim Ej for j < i and yj = O for j > i, y, being the 
numbers in Corollary E'. 

A weaker inequality involving lim inf can be obtained by a simpler proof. 
(See [L].) 

To prove Corollary I, observe that by 7.3.2 we have 

(*) (xi- X3yj < (Xj - Xi)dimE1. 
i j<i 

Dividing by - Xi and applying Corollary E', we get 

Eyj < Lyapdim(m) 
I 

which together with Theorem F gives the inequality in Corollary I. Suppose now 
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that equality is attained. This forces equality in (*), from which follows the last 
assertion in Corollary I. That m has absolutely continuous conditional measures 
in this case is a consequence of Theorem A and the fact that i > u. 

8. More on local unstable manifolds 

In the first half of Section 8 we record some estimates in Lyapunov charts. 
(8.1) and (8.2) parallel (2.1), (2.2), (2.3) and (4.2). For the convenience of the 
reader we reintroduce the notation here, referring to Part I (or [Ru2]) for proofs. 
The second half of Section 8 contains a description of some special coordinates 
on Wu-manifolds. These coordinates are used mainly in Section 11. 

(8.1) Lyapunov charts. As usual, d denotes the Riemannian metric on M. 
We write RdimM = RdimEl x * .. xR dimE- and for x E RdimM, let (x1, .. ., Xr) be 
its coordinates with respect to this splitting. Define 

jxj = maxlxili 

where is the Euclidean norm on Rdim E Let 

Ri(p) = ( xi e RdimEj: IXili < p} 

and R(p) - {x E RdimM. IXI < p). 
We now describe some changes of coordinates. Given e < (1/100) X 

mina*besla - bI where S = {0} U {X , p ., Xr}, there exists a measurable 
function 1:17 --* (1, co) with 1(f +x) < ei1(x) and an embedding Fix: R(l(x) 

M for each x E F' such that the following five conditions hold. 
(i) xO = x, and DFJ(0) takes RdimEi to Ei(x) for i = 1,..., r. 
(ii) exp[' o coincides with DF>J(0) on R(l(x) '). 

(iii) Let fx = OjxF1 ? f o AX be the connecting map between the chart at x 
and the chart at fx, defined wherever it makes sense, and let fx- = 
-X f 0 (DX be defined analogously. Then for all v E Rdim E 

e i-'|V| < lDfx(O)vl <eI+?Il 

(iv) If L(g) denotes the Lipschitz constant of the function g, then 

L(fx - Dfx(0)) ? E, 

L fX- Dfjx-(0)) ? E 

and 
L( Dfx), L(Dfjx-) < 1(x). 

(v) For all z, z' EJ R(l(x) - 1), 

K7-d((4'xzA'Dxz') < Iz - z'l ? l(x)d()xzJADzZ') 

for some universal constant Kr. 
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Throughout Part II we shall refer to any system of local charts { FDX: x E IF ) 
satisfying (i)-(v) above as (e, l)-charts. This definition of (e, l)-charts is more 
restrictive than the one given in Part I, where no attempt was made to control 
the behavior in individual Oseledec subspaces. The construction of Lyapunov 
charts given in the appendix to Part I extends easily to meet these additional 
requirements. 

(8.2) Local unstable manifold estimates. Let { (DX: x e )} be a system of 
(e, l)-charts. For x E IF and 1 < i < u, let WxV(x) be the subset of R(l(x)-') 
the lyimage of which is the component of WiZ(x) n 4DX R(l(x) -1) containing x. 
We write R(z)(p) = R1(p) x x Rl(p) and Rr(i)(p) = R+ 1(p) x ... xlRr(p). 

LEMMA 8.2.1. There is a function g': R(z)(l(x)- ) Rr-(i)(l(x)-l) such 
that 

(1) g'(O) =0 Dg'(O) = 0, 

(2) ?Dg <3 and 
(3) graph(g ) = Wx(x). 

Clearly, fx-'Wx(x) c W X(f x). 

LEMMA 8.2.2. Let x e r. Then there exists , 0 < T < 2, such that for all 
y E .Fx(Wx(x) n R(Tl(x)')) and 1 < i < u, there is a function 
gi R(i)(l(x)'-) - Rr-(i)(l(X)-l) such that 

(1) 4y' y e graph gX y 
(2) IIDg, ? 4, and 
(3) 

raph ' 
= e WU(x): limsup frt.tx yj ? - Xi + )2,} 

n -oo 

We denote Wxu(x) n R(Tl(x<') 
by WU(x). Note that WXUT(X) = 

graph (gxuR(U)(Tl(x)-l)). Also we denote the graph of g' by Wxi(y) and call 
its 4(X-image a local ith unstable manifold at y. The following corollary is an easy 
consequence of 8.2.2(3). 

COROLLARY 8.2.3. Let x E I" and let T be as in 8.2.2. Then for all 
y ( 'DXWX T() 

(1) W(y) C Wxz+?(y) 

(2) If z E FDWXU7(x) then either Wxz(y) = Wx(z) or Wxf(y) fl Wxf(z) = 0, 
and 

(3) If y c F, then 4y - lWi(y) n Wxu(x) = Wxi(y). 
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Assertion (2) above says that { W(( y): y E 4>Wx 7(x)4 is a foliation on some 
set containing Wxu(x). (1) says that for different i's these foliations are "nested", 
and (3) says that for each i the global and local Wi-foliations induce the same 
partition on Wxu,(x), a fact we will need in Section 11. 

LEMMA 8.2.4. Let x E IF. 

(1) If z z' E R(e-XI-3'1(x) l) then fxzfxz' E R(l(fx) and 

lfxz -fxz'l < Iz - z-'Ie~ 

(2) If y E 4'-WX T (x) and z z' E Wxy), then 

L1 z --fx- ?Zl < e-x2 1z - Z', 

Finally we state a lemma that tells us that the Wi-foliation inside local 
Wu-leaves is at least Lipschitz. Let L(Rn, Rk) denote the space of linear maps 
from Rn to Rk. For x E F' and 1 < i < u . let Gi: UYoWU(X)W(y) 
L(Ryj s idim Ej Ryi < ?rdim Ej) be defined by 

G'(z) = Dg" Y(Z, 
z 

.. 
) 

where y E 4DxWxu,(x) and z E WxA(y). In particular, if Oxz E F', then 
DO x(z)(graph G'( z)) = ED3 E j(ox Z) 

LEMMA 8.2.5. There is a constant D > 0 such that for all x E F' and for 
every 1 < i < u, the map G' is Lipschitz with Lip constant < Dl(x). 

The proof is identical to that in (4.2). 

(8.3) Special coordinates on local unstable manifolds. For each x E F, we 
now define a coordinate system on the local Wu-manifold at x. These coordinates 
"straighten out" local Wi-manifolds into parallel planes and at the same time 
preserve good dynamical estimates. 

We first state a lemma about Lipschitz foliations that has nothing to do with 
dynamics. The proof is quite straightforward and will be omitted. Fix positive 
integers n1, ... ., nk and a number 0 < p < 1. Let Bi(p) be a closed disk 
centered at 0 of radius p in Rn'i. Consider B(p) = Bi(p) x ... xBk(p) as a 
subset of R' I + nk 

LEMMA 8.3.1 (straightening out lemma). For i = 1,..., k - 1, let F1 be a 
Lipschitz foliation with C' leaves on some subset of R n+ ? Ink containing 
B( p). Assume that each leaf of Fj is the graph of a function 

g: B (2p) x ... x Bz(2p) - Rni+l+ nk 

with IIDg < ' and that the function x -- TxFj has Lipschitz constant < some 
number C. Assume also that the F1's are nested; i.e., if Fi(x) denotes the leaf of 
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Fi containing the point x, then Fi(x) C Fi 1(x) for all x E B(p) and for all i. 
Define (9= (1,...A k): B(p) - Rnl+' +nk as follows: Forx = (xl,...,xk) 
B(p), let C91(x) = x1, and let Ci(x) be the ith coordinate of the unique point of 
intersection of Fi 1(x) and { O} x ... x {O} x Rni + + nk for i ? 2. Then 

(1) (9 is a homeomorphism between B(p) and its image; 
(2) For every x, y E B(p), C1x = C9jy for j = i + 1, ... . u if and only if 

y E Fi(x) and 
(3) Both (9 and (- 1 are Lipschitz with Lip constant depending only on C 

(assuming k is fixed). 

Consider now a system of Lyapunov charts { Ix 4. For x E F' let 
px: R(l(xf') R(u)(l(xfl) be the natural projection. Then pxIWxu(x) is a 
lipeomorphism and the pr-images of Wxi(y), y E =I 4xWxu (x), form the leaves of a 
Lipschitz foliation Fi. It is easy to check that these Fi's (i = 1, ... , u - 1) satisfy 
the hypotheses of 8.3.1 with B(p) = R(u)(Tl(x)-l) and C = Dl(x) (see 8.2.5). 
Let Cx: J(u)(rl(xl) Ri__dim'i be the map in 8.3.1. 

We are now ready to define our "special coordinates" on Wxu,(x). Let 
'7T: Wxu(x) R?iudimEi be given by 

17x = Ox ? Px. 

From 8.3.1 we can conclude that 7rx is a lipeomorphism between Wxu,(x) and its 
image with Lip(7Trx), Lip(7T[l) < Nx where Nx depends only on 1(x) (and other 
constants determined by f). Moreover, vxWxi(y) lies on a (E j i dim Ej)-dimen- 
sional plane parallel to REj<idimEj x {O} x ... x{O} and if Wx(y) = Wx(y') 
then 7rxWxW(y) and 7rxWx(y') lie on distinct planes. 

LEMMA 8.3.2. Let z E WxU,(x) and suppose IZi < Te-X3?. When zx = 
( 7Tx . . . 5 7Tx ) 

IT fxzl < ex?3 IZI for i = 1, ... ., . 

Proof Make the estimate one i at a time. For i ? 2 the proof is identical to 
that of Lemma 2.3.2. 

(8.4) Special coordinates on a set of positive measure. In (8.3) we describe 
some coordinates on local unstable manifolds that have desirable geometric as 
well as dynamical properties. These coordinates, however, are not compatible in 
the sense that for D C eFxWxu7(x) fl- 1) I)D need not be equal 
to (7x, o x1 1) D. The aim of this subsection is to construct a map 
7J: S --I R udim Ei, where S is a set of positive measure, such that 7r restricted to 
each local Wu-leaf in S straightens out Wi-leaves as in (8.3). 

Let lo be chosen so that A = { 1 < lo 4 has positive m-measure. For x Ec F, 
let E'(x) = Ej < iEE(x). As mentioned in (8.2), Ei(y), i = 1, ... ., u, is actually 
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defined for every y E A = A4XWXT(X). In fact, there exists a constant lo 
such that for every y E= A, IIDfy-nvI ? -e ( 1x3)nhlvIl for all n ? 0 and for all 
v E EZ(y). This implies that y 4 E3(y) is continuous on A. 

Let w E A be a density point of XA * m. Then using the continuity of 
y -+Ez(y) on A, we can choose To, 0 < To < X, so that for all x E A = 

A l IR(Colo'), if y E F>WxU(x) n FDwR(Tol-'), then for each i = 1, ... ., 4, 
wlxW~xwi(y) n R(2T0l-1) is the graph of a function from Rtfm(2T01-1) 

Rr-(i)(2Tol 1) the norm of the derivative of which is < 3. For each x E A 
then, Lemma 8.3.1 gives a map (% : R(u)(Tslo') --* Ri '"udim Ei that straightens 
out the foliation whose leaves are subsets of pwfF- 'xWx(y). 

Let S = UXEA (4,xWxu(x) n (FwR(T01-1)). Define 7T: S - Ri<udimEi by 
To 0~~ ~o~'y 

7JY ow, X ? W ?4ly 

where y E xWU(x), x E A TO The reader should verify that this map is well- 
defined; i.e. the definition of 7r(y) is independent of the choice of x. 

We note also that 
(1) S is the disjoint union of sets Doa where each Da fl { 1 < lo} # 0, and 

if x E Daf,,l (1< 101 then Doa = S n (DxWxu(x); also, m(S n {l < lo}) > 0; 
(2) Because WZIS, i = 1,. . , u, is a continuous foliation, it is easy to see 

from our definition of ( in Lemma 8.3.1 that gr is in fact a continuous map; and 
(3) With the notation in (1), for each a, 7TID,, and (7r I D,),) are Lipschitz 

maps with Lip constant < some constant No. 

9. Entropy along unstable foliations 

(9.1) Increasing partitions subordinate to Wi. Let q1 and 'q2 be measurable 
partitions on M. Recall the following definitions: q1 refines 'q2( 1 > q2) if 
'ql(x) c 'q2(x) for m-a.e.x, and q1 is increasing if q1 > f'q1. In (3.1) we 
described certain increasing partitions that are subordinate to Wu. In this 
subsection we construct similar partitions subordinate to W', i = 1,..., U. 

LEMMA 9.1.1. There exist measurable partitions ,.u.. on M such that 
for each i, 

(1) (i is an increasing partition subordinate to W3, 
(2) i > i+l and 
(3)f -fnli generates as n -x oo. 

Outline of proof. We take a system of ( E, 1)-local charts { 4D) and choose 10 
and S =UDa asin(8.4). Fori = 1,...,ulet 

Oi~x) = (Wi(x) n Da if x E/D 
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It follows from our definition of S and 8.2.3(3) that if x e Da fl { l < 10), then 
every (i-element contained in Da is equal to S n <VxWx(y) for some 
y E FxWx'u(x). Let (i = Of, i. Since 4j > > du obviously we have 
41>> >u 

Some care has to be taken to ensure that (i(x) contains an open neighbor- 
hood of x in W'(x) for m-a.e.x. (In fact, Lebesgue-a.e. To small enough for 
purposes (8.4) will do.) We omit further details because this argument is identical 
to that in [LS]. 

Note that (i has the following characterization. Let x E F'. Then y E (i(x) 
if and only if for all n ? 0, 

(1) ffny e S if and only if f =x e S, 
(2) f-nx, ffny lie in the same Da whenever f-nx E S, and 
(3) y e W(x). 
In (9.2) and (9.3) we shall prove 

im hi(x, E, i) = H(tijfti) = limhi(x, E, i). 

Proposition 7.2.1 follows immediately from this. Remark also that if t is another 
increasing partition subordinate to Wi constructed in the proof of 9.1.1, then 
H(tIfJ) = hi as well. 

In (9.2) and (9.3) let ( (i = 1, . . ., u) be as above and for each i let { mx} 
be a system of conditional measures associated with (. 

(9.2) Proof that hi ? H(tiIfti). Let E > 0 be given. For 8 > 0, we let 
A8 = {x: B'(x,8) C (i(x)). Then mA8Tl as 8 0. Let g(x) = 

- log m'(f -' )(x) and choose 8' small enough that 

f g 2 H(f -Ij? - = H(tilf~i) - 

Define 

U'(x, n, 8) = n (f- i)(x) 
{j: O<j<n 

and fixeA8} 

Then by definition V'(x, n, 8) c U'(x, n, 8) and - log m'U'(x, n, 8) > 
jn=O( X *g)(fix). Thus whenever 8 < 8' we have for m-a.e.x, 

hi(=x, 8, lim infn log m vi(x, n, 8) 
n -oo 

?fg 

? H(iAfO) - 

(9.3) Proof that hi < H((iIf~i), 
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LEMMA 9.3. 1. Let 9 be a partition with Hm(jA) < Doo. Then for m-a.e. x, 

lim - n log Mi(g v (i )(x) = H(tjfti) n --* oo 
where an( x) denotes the element of the partition V . - jf-a that contains x. 

Proof Define the information function of a partition 9 given ) by 
(1 )(x) =-log mX2(x) where { mj is a family of conditional measures 

associated with q. Then 

nI((gz v (i)njtiJ(X) 

1n-1 
- -I(9It)(x) + n- I(( iv ii v 5 k)(fx). 

k=i 

Since supnI(g V (ijftj V ??n) is an integrable function, the second term above 
converges m-a.e. and in L' (see [Pa]). By ergodicity the limit function is constant 
almost everywhere and is therefore equal to 

lim 
1 
H((-q v (i)onjti n - oo 

which can be written as 

lim 1H((tj)nti) + liM 1H(_qonif-n+I 
n 0 n n -- oo n - oo 

The first term is equal to H(jIjft3). The second term goes to 0 since f -n 
generates. E 

We now construct a partition O where Y&0n(x) can be compared to 
V'(x,n,E). Let {?x), S and 10 be as in (9.1) and let S' = S nl {l < 10). Then 
mS' > 0. First we define n+ and n_: S' -- N by 

n+(x) = Inf{n > 0: fnx E S.' 

and 
n- (x) = Inff n > 0: f -nx e S'). 

Then we let 41: M -- R be given by 

E) K -K112e-max(XI+3e Xr+3e} max(n+(x), n(x)} if x E S' 
otherwise 

where E' is a preassigned small number. Since f - log 4 dm < xo, there is a 
partition 92 with H(,O) < co such that O(x) c B(x, 4(x)) for almost every x. 
(See [Me] or (2.4) for a similar construction.) Finally we define 4A+ by replacing 
max( +, n ,) in the definition of 41 by n+. 
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LEMMA 9.3.2. Let x E S'. 
(1) If y E x~Wx(x) satisfies 4y'-lyj < l04'(x), then 

d'(fix, fjy) < E 

for 0 ? j < n+(x) and 

fn+(x)y E f+(X)xWf+(X)x(f Ix). 

(2) If yE con(x) l FxWxi(x) for some n > 0, then 

d'(fjX, fly) < ?' 

for 0 < j < n. 

Proof It follows from our assumptions on y and 8.2.4(1) that 
fx(Ox- y) e Wfjx(fix) and 

1~x((D1y)l < jD- lyle(A?+2e)i for j > 0 

provided that I4D[lyIe( 1?2e)k ? l(fk)leA13e for all 0 < k < j. This is 
guaranteed for j < n+(x). Since Wf/,x(fix) is a graph over R(')(l(fix)-') with 
slope < 1 and | is the max norm, 

d'(fix,fjy) < KrI4iX(f'y)I < forO < j < n+(x). 

To prove (2), first observe that if y E 9q(x), then I -ly[I < lo(x) < 
lob4? +( x) so that we have the desired conclusion for 0 < j < n +( x). Furthermore, 
if n > n+(x) and y E ?gon(x), then 

fn(x)y GE 9(f n+(x)x ) n f+(X)x W+(X)Ix(fn+(x) 

and we can apply (1) with fn+(x)x and fn+(x)y in place of x and y. An inductive 
argument completes the proof of (2). 

LEMMA 9.3.3. For every a' > 0, there exists a partition 3q with H(9 ') < xo 
and a function no: M -- N such that for m-a.e. x, 

gon(x) n (x) c V'(x, n, E') for all n ? no(x). 

Proof: Let S be as above and let 

no(x) = Inf{n ? 0: fnx E S'}. 

Consider an arbitrary point x with the property that fnx E S' infinitely often as 
n -*+ ?o. Let y E gono(x)(x) n (i(x). We claim that d'(fix, fiy) < ?' for 0 < 

j < no(x) and that ffo(X)y C 4(xXWO(X)V fno(x)X 

It suffices to prove this claim, for if y E 3on(x) n j(ix), then the second 

assertion above allows us to apply 9.3.2(2) to ffo(X)y, which then tells us that 

dz(fix, fiy) < ?' for no(x) < j < n. 
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To prove the claim, let us assume that x 4 S' and for simplicity of notation 
write ro =- n_ (fno(x)x) + no(x). That is, ro is the largest integer < 0 such that 
frox E S'. Since (i is increasing, we have froy E .i(frox) which by our choice of 
S lies in FroxWjox( fox). Also, 4 is chosen in such a way that f - ij(fno(x)x) lies 
well inside the charts at f j + no(x)x for j = 1, 2,..., n - (fno(x)x). Thus 

I4fo < < <o ?Ilx+ fno(x)fYoI < 10. ?fIfo(x)X? 

which is < 10?+(frox). Lemma 9.2.2(1) gives exactly what we need. LI 

Finally, combining Lemmas 9.3.1 and 9.3.3, we have at m-a.e. x and for 
every small E', 

1 
hi(x, E', () = lim sup - -log mixV(x, E' 

n -oo 

< lim sup - 1log mi gon(X) 
n n-. n - oo 

< lim - I'log m~i iV g) n(X) 
n X 0 n 

- H(~Ilft ). 

Proof of Corollary 7.2.2. It follows from (9.2), (9.3) and Corollary 5.3 that 

hU= H(tujftu) = hm(f). 

10. Relating entropy, exponents and dimension: Proof of Theorem C' 

We now begin to prove Theorem C'. The five sets of inequalities listed 
below are dealt with separately: 

-h 
(1) a. < 

h 
b. 81 2 A 

(2) hi - hi_1 2 Xi(8iSi - ), 2 < i < u, 
(3) hi - hi1 < Xi(8i - 8i0), 2 < i < u, 
(4) hi-hi1? < XidimEi, 2 < i < u, 
(5) hu = hm(f). 
Inequalities (1)a. and b. tell us that 81 = 81 and that hi = ix1. This 

together with (2) and (3) prove inductively that for i = 2,.. ., u, Si = i (Pro- 
position 7.3.1) and hi - hi-_ = Xi(i-b i-,) Adding these equations and 
setting yi = -Si -i-1 (80 = 0), we obtain hu = Ei uyiXi. That yi < dimE. 
(Proposition 7.3.2) is a consequence of (4). 
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The fifth equation was stated as Corollary 7.2.2 and was proved in the last 
section. In Section 10 we prove (1) and (2). The remaining two inequalities 
involve explicit estimates on "transverse dimension", a notion we shall elucidate 
in Section 11. 

(10.1) Proof that hi = Six,. Since there is only one rate of expansion along 
W 1 this proof mimics the arguments in [Y]. Let - > 0 be given. Choose a system 
of (E, l)-charts { (Dj, an increasing partition 4l subordinate to W1 and a system 
of conditional measures { ml) for 4. From Section 9, (9.2) in particular, we 
know that there exists 8 > 0 such that for m-a.e.x, 

hl(x, KA8 01 2 hi E. 

Consider y E Bl(x, e-n(l+3e)8l(x)-2) and let z = <>xy. Then z E Wx'(x) and 
Izl < e-n(Al+3e)81(X)-l. By 8.2.4(3), IkzI ? lz e(Ai+2e)k for k > 0 provided all 
iterates up through k stay well inside charts. This is guaranteed for k = 1, . . . , n. 
Thus IfXkzI < 8 for 0 < k < n and since fkZ Ee Wfkx(fkx), we have shown that 
B'(x, e-n(X1+3e)81(x)-2) C V'(x, n, KrS). This gives 

S 1(x) = lim inf logm'B'(x,p) 

iminf .log mlB 1(x, e n(A?+3e)S1( X)-2) 
= lim inf 

n n-oo - n(xl + 3E) + log1l(x)2 

> I 
+ 3liminf- Ilog m1V1(x,n,Kr8) A1 + 3En - o n r 

hi - E 
A1 + 3e 

for m-a.e.x. The choice of E being arbitrary, we have proved 81 ? (h/Al). 

To prove the other inequality, let 9 be the partition in (9.3) with i = 1. It 
was shown in the proof of Lemma 9.3.3 that for almost every x, if fnX E S', 
n > 0, then fn((1(x) n gon(x)) c ! W nx(fnX) Fix x and n ? no(x). Con- 
sider y E (1(x) n gon(x). Let k be the largest integer < n such that fkx E S'. 
Since fky E !I?(fkX), 10_kj(fky) < l04(ffkx) < e-K-11-le-(1+?3e)(n-k). Also, 

since k ? no, fky C fkXW k(fkx). It then follows from Lemma 8.2.4(2) that 
1VD-lyI < ?IDi(fky)le-(cX-2e)k < K-le-(A-2e)n. Thus 

(l(x) nr 3on(x) c Bl(x, e-n(Ai-2e)) 
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for all n 2 no(x). Proceeding as before, we have 

log m'B(x, e-n(Al-2e)) 

Sj(X ) = lim sup -n(A -E 
n -- oo 

- n(x1 - 2e-) 

< A *lim sup- nlogmlgon(x) 
n -oo 

hi ? l 2? 

We know from Corollary 4.1.4 that 81 < dim E1. 

(10.2) Proof that hi - hi_ ? X2 i(iSi -i1). Let ? > 0 be given. Choose 
(? 1)-charts {?x) and measurable partitions (i, 1 < i < u, as in (9.1). In 
particular then, each (i is an increasing partition subordinate to Wi and 
4l > * > (*. For each i, choose a system of conditional measures associated 
with (. We now fix i, 2 < i < u, and focus on the relationships among the 
invariants defined on Wi and Wi1. 

LEMMA 10.2. There exists a partition 9 with H(9) < xo and a measurable 
function no: M -- N such that for m-a.e. x, the following four properties are 
satisfied for all n > no( x): 

(1) logm- lB'-l(x,e n(i2e)) 
- 2 

(2) - nlog Mi - 
lgn(X) > hn- )-1 

(3) ~i(x) l gon(x) c Bi(x, e-n(Xi- 2E)) 

(4) - nlogm~b2In(x) < hi + e. 

Proof: By definition of Si -, there exists a function n 1: M -* N such that 
property (1) is satisfied for m-a.e.x and n ? nl(x). By (9.2), we can choose d 
and n2: M -- N such that for m-a.e. x and 

n ? n2(x), - 1/nlogm7- 'V'- (x, n, ') > hi -1 - 

By 9.3.2 there are a partition 9 and a function n': M -* N such that for m-a.e. x 
and n ? n'(x), 

So n(X) n (ij1x) c Vi (x, n. ?l). 

By 10.1.1 there is a partition R and a function n3: M -* N such that for m-a.e. x 
and n > n3(x), (i(x) n _Wn(x) c Bi(x, e- n(Xi 2E)). (Our argument in 10. 1 is 
given for i = 1 but this is clearly valid for all i = 1,.. ., u.) Let be= 2 V R. 
Then properties (2) and (3) are satisfied for n > n2(x), n'(x) and n3(x). Finally, 

This content downloaded from 128.122.114.35 on Tue, 16 Sep 2014 00:31:34 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


METRIC ENTROPY OF DIFFEOMORPHISMS, II 561 

since 910'(x) 
D ( V )0(x), by 9.3.1 there is an n4: M - R such that for 

m-a.e.x and n ? n4(x) property (4) is satisfied. We put no = 

max(n 1, n2, n2, n3, n4) and the lemma is proved. E 

For the remainder of this section let 91 and no be as in the last lemma. Fix 
No large enough that if F = { no < No) then mIF > 0. Consider the following 
four additional conditions: 

def i 1 (i-2- (5) L = B (x e n(2e)) C i_(X) 

(6) mx'-(LfnF) 1 

log m'Bi(x, 2eXi2e)n - 

1 
(8) nlog2 

We claim that for a.e. x E F, there exists n(x) > No such that properties 
(1)-(8) are satisfied with n = n(x). First, (1)-(4) are satisfied for all x e F and 
n ? No. For a.e.x e F, condition (5) holds for all n large enough (depending on 
x), as does condition (6). (See (4.1.2).) By definition of Si, for a.e.x, (7) holds for 
an infinite number of n's. 

To complete the argument we now pick (and fix) x and n = n(x) > No for 
which (1)-(8) hold. By (6) and (1), m'-'(L n IF) > 2mx-'(L) 
> le- (+i2E)(1-?E). But for y E L n F, we have by (2), miY-Al n(y) < 
e- (hi -I-)n. It follows that the number of distinct gon-atoms intersecting L n IF is 
bigger than m-j'(L n F)e(hi -I-)n. By (5), L c (i_l(x) C (i(x); so distinct 
Yr-atoms intersecting L n F define distinct (hi V 9'0n)-atoms intersecting L n F. 
Now (i(y) n glon(y) c BZ(y, e-n(X1-2E)) for y E F n) L, which guarantees that 
all the ( i V 9U0n)-atoms intersecting L n F are contained in BZ(x, 2en(X12E)). 
(Here we used the fact that d'(x, y) < d- 1(x, y) for y E L.) Putting these 
together we can conclude that 

m'Bz(x, 
2e-n(2e)) 

> #{distinct (son v )-atoms intersecting L nl F } 
x minimal measure of such an atom 

> IC n(Xi-2F)(8j_j+,-)en(hil-e)- . e- n(hi +0 

Comparing this with property (7), we have 

- e)(X, 2E) < (8i-1 + e)(i - 2) + n log 2 + hi - hi 1 + 2e 
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and by (8), 

hi hi-1 + 3 

The desired inequality follows from the arbitrariness of ?. 

11. Transverse dimension: Proof of Theorem C' (continued) 

In this section we prove the two remaining relations leading to Theorem C'. 
We have to estimate from above an increase in entropy, and this is similar to 
what we did in Part I. In fact, the proof follows the same scheme as in Sections 3 
and 5, and we shall not give details when they can be obtained by a straightfor- 
ward adaptation of the corresponding statements in Part I. 

(11.1) Construction of partitions and related notions. We consider again 
the family of increasing partitions (i (i = 1,... , u) subordinate to WZ given by 
Lemma 9.1. Remember that these partitions are defined using a set S with the 
properties discussed in (8.4). Let Ye be a finite entropy partition adapted to 
({J, ,re-X1-3-) (see Definition 2.4.1). We require that b refine {S, M - S} 
and another partition to be specified later. Define 

Qi = Vi v g+. 

LEMMA 11.1.1. The family of measurable partitions qli, i = 1,... , u, has 
the following properties: 

(1) Each q i is increasing, 
(2) qj < qj1i5l 2 < i < a, 
(3) qi(x) c Dx(Wxi(x) fl R(Te-X1-3Il(x)-l)) for i = 1,... , u and m-a.e.x, 
(4) hm(f,qji) = H(tiIfti) = hi, i = 1, ... . 

Property 3) is a consequence of Lemma 2.2.3 B ii) and our definition of S'. 
Property 4) is Lemma 3.2.1. 

LEMMA 11.1.2. For m-a.e.x and every y E F. nl qi(x), 

Dxffxi 1(y) n ni(x) = j - 1(y). 
That kDXWx- l(y) fl mi(x) c q i- 1(y) follows from our characterization of ( 

in (9.1). 

LEMMA 11.1.3. For m-a.e.x and every y Ec F'I n i(x), 

f - (i - (y)) = ji -(f1y) nflf'(2 j(x)). 

The last two lemmas are analogs of Lemmas 3.3.1 and 3.3.2. 
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For each i > 2, we now define a metric on qi(x)/,qi-l for m-a.e.x. As in 
(3.4), this metric will depend on the arbitrary choice of a positive measure set E. 
Let E c S n { 1 < 10) be a measurable set with mE > 0. We assume that the 
partition 9 refines { E, M - E} and define S U _0fn E -- R dimEi as fol- 
lows: If x E E, 9'(x) = '7(x) where '7: S -- Ryi<udim Eg is as in (8.4), and in 
general 'T(x) = '7(ff(X)X) where n(x) is the smallest nonnegative integer such 
that f nx e E. Since m > {E, M - E}, for each x E Un>ofnE, either 
f- n( i(X)) C E or f- n(7i(x)) n E = 0. Thus for each x, ' T 7i(x) is a lipeomor- 
phism between q i(x) and a subset of REj<idimEj carrying distinct qi --elements 
to subsets of distinct Ri <idimEi-planes. (See (8.4).) 

Forx EUn>0fnE. i > 2and y,y' E= qi(x),define 

d'(yy') = I- 

where ~U = ...... , EU). This induces a metric on qi(x)/i_1 making it isomet- 
ric to a subset of (RdimE1, . *). For each i, i > 2, let Mih be a system of 
conditional measures associated with qi and let 

B(xp) = {y E qi(X): di(x, y) < P}. 

Define: 

.. flog MrXBT(XP) 

P p-+ log p 

We call the function Y, the transverse dimension of qi(x)/,qi . 

LEMMA 11.1.4. ji < dim E,, i = 2,..., U. 

This is a consequence of the above discussion and (4.1.4). 

LEMMA 11.1.5. There exists a number N > 0 such that for all i > 2, for all 
x E E and for all y, y' E qi(x), 

NI'x' o (y) - ?(y")I < dJ'(yy') < NJ oID- [(y) - z (- 1( 
" 

where rxi is as in 8.3.2. 

This follows from remark (3) at the end of (8.4) and the uniform Lipschitz 
property of rx ? Ox- 1 on S n {l < lo }. Note that N does not depend on E as 
long as E c S n { ? lo }. 

(11.2) Proposition 5.1 revisited. 

PROPOSITION 11.2. Suppose f: M < is a C2 diffeomorphism of a compact 
Riemannian manifold and m is an ergodic Borel probability measure on M. Let 
f > 0 be given. Then there exists a family of increasing partitions %5, i = 
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1,..., u, satisfying Lemma 11.1.1 such that for m-a.e.x and for i = 2,. .., u, 

(Xi + l)jYi(x) > (1 - f3)(hi - hi-, - /A), 

where Y is the transverse dimension of q i/qin- i. 

The proof of Proposition 11.2 is parallel to that of Proposition 5.1, except 
that the exponent in the transverse direction is now Xi . More precisely, if x E E, 
f'x E E and y E f- n(7i(fx)), then 

dJ(fnx fy) < N2e(Ai?3E)nd'(x, y) 

(apply Lemmas 8.3.2 and 11.1.5). 

It follows from this proposition and Lemma 11.1.4 that 

Xidim Ei > hi - hi- 1 

which is the fourth inequality stated at the beginning of Section 10. 
To complete the proof of inequality (3), we need to relate Y to Si - Si-, 

We do this via a notion of transverse dimension that does not depend on the ij's. 

(11.3) General lemmas in dimension theory. We state two lemmas relating 
the dimension of a measure and those of its decompositions. 

LEMMA 11.3.1. Let m be a probability measure on RP x Re, X the projec- 
tion onto RP, mt a disintegration of m with respect to iT. Define 

y(t) = lim inf log m g z BP (pt p) 

and let 8 ? 0 be such that at m-a.e. (s, t) 

log mtBq(s, p) 
8 < lim inf 

P ---- o log p 

Then, at m-a.e. (s, t): 

8 + y(t) < lim inf -og mBP? ((st),p) 
P --+ 0log p 

Proof. Fix a > 0; we can find N1 and a set A1 with mA 1 ? 1 - a such that 
for all (s, t) E A1 and n ? N1, 

mtBq(s,2e n) < e e 
By the Lebesgue density theorem (see 4.1.2) we can find N2 and a set A2 with 
mA2 >I - 2a such that for all (s, t) E A2 and n ? N2, 
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If (so, to) E A2 and n > N2, we have 

mBP +(sto)5 e-) 21 mt( Al n B q(So e -n))m 0 z - l(dt ) 
BP(to, e-n 

< 2ee-nS enmo Z- 'BP(to e-n) 

because for each t, there exists some u(t) with (t, u(t)) E A1 n Bq(S, e-n) and 
thus A1 n Bq(s0, e-n) fl - 1{t) C Bq(u(t),2e-n) f g-f1{t}. The lemma fol- 
lows when n -x oo and a -O 0. 

If instead of RP, we have no structure at all, a similar proof gives the 
following lemma: 

LEMMA 11.3.2. Let (Q, v) be an abstract probability space and m a 
probability on S x R9 written m(dco, ds) = fm,(ds)v(dco). Let y > 0 be such 
that at m-a.e. (co, s) 

? lim inf log m.,(Bq(s, p)) 
P --+ o log p 

Then, 

< lim inf log m(B q(s5 P)) m-a 
Plo logp 

(11.4) Transverse dimension. Let ,B > 0 be given. We choose 
E 10 ST: S - RisudimEi, E and 5, i = 1,...,u, as above and let Y be the 
transverse dimension of in/in 1. For each i, let { m) 4 be a system of conditional 
measures associated with 4j (see 9.1). 

Fix x E S and i, 2 < i ? u. Let 'T = 7TIji(x): ((x) - R j idim Ej 

R 'dimEj X R i'E and write mX = mXo 07T Define: 

y(y) = lim inf log mX{Izi - YiI < PI 
Po --+ 0log p 

Note that by the Lipschitz property of 7T and '7T, 

~~ ̂-1 1ogm-ly-IY0 T- fizi - YJ < PI 
Yi(T1y)= liminf log p P --+ 0 log p 

for mi-a.e.y, if we assume M'(Un fn E) = 1. Also we may assume that 

l (; ly) > (1 - 3)[hi - hi-, - 1] 

for m'-a.e.y. Applying (11.3.2) with 52 = (i(x)/lq and Rq = RdimEt, we can 
conclude that 

-2 (1-' )[h, - 
h - 

- 
] mi-almost everywhere. 
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Consider now the partition of ' ( i(x)) into planes of the form 
{ zi = constant). We may assume that at mX-a.e.y: 

lim inf log m{z-YI<p} -8 and 
pro --+ logp _ 

log M,'^- 1Uo T -1({zi = yi, 1Z -y I < PI} lim inf -o = ad 
P --+ 0 ~log p 

Lemma 11.3.1 then tells us that for m'-a.e.y: 

(*) 8- -2Y,(y)2 (1 - - hi-l _ /] 

which completes the proof of inequality (3) and hence of Theorem C'. 

Remark. Observe that yi as defined above has geometric meaning as the 
dimension of m on W'/W -1. It is not hard to see that this quantity is in fact 
independent of our choice of S and 'i. It then follows from (*) and inequality (2) 
that 

Yi = -a i-1 

12. Volume lemma and dimension of invariant measures: 
Proof of Theorem F 

(12.1) Some reductions. We do not assume in this section that the measure 
m is ergodic. Instead, we divide M into a countable number of invariant sets on 
each one of which all relevant functions are more or less constant. By (4.1.2) it 
suffices to consider these sets one at a time. 

For x E F', set 

Eu(x) = eD Ei(x), Es(x) = e Ei(x), Ec(x) = Eio(x)(x) 
Xj(x) > 0 Xj(x) < 0 

where Xi,(X)(x) = 0; Wu and Ws have the same meaning as in (7.6), and Su and 
Ss are the dimension of m on Wu and Ws manifolds as defined in (7.5). In the 
proof of Theorem F we do not distinguish between exponents of the same sign. 
Thus the charts and estimates in Part I are more suitable for this section. 

For E > 0, integers u0, so and numbers XA, XA, S+, 8- and h, with 
A - A-> 100e, let F(e, u0, s0, X+, X- , 8+, S- , h) = 

{ x E F' (i) dim Eu(x) = u0, dim Es(x) = s0, 
(ii) min Xi(x) 2 X+, max Xi(x) < XA, 

XA(x) > 0 XA(x) < 0 
(iii) 8+- E < U(X) < 8+' -(- E < as(X) < - 

(iv) h < hn(f) < h + E}. 

This content downloaded from 128.122.114.35 on Tue, 16 Sep 2014 00:31:34 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


METRIC ENTROPY OF DIFFEOMORPHISMS, II 567 

where { 11, } is a decomposition of m into ergodic components. Clearly, there is a 
countable number of invariant sets of this type, the union of which has mea- 
sure 1. 

First reduction. We may assume that for some E, u0, SO, XA+, X-, 8+, s- 

and h, 

mIF(E5 U05 ,0 sX +, A- , 8+5 8- , h) =1 

Let {? (} be a system of (E, l)-charts (see Remark (3) in the appendix at the 
end of Part I). We construct an increasing partition {u subordinate to Wu and a 
decreasing partition {S (i.e. fis > AS) subordinate to Ws as in (3.1). We may 
assume that the same lo is used in both constructions, but since m is not ergodic, 
we can only ensure that Lemma 3.1.1 holds for both f and f'- 1 on a set B with 
mB > 1 - E'. But again by (4.1.2) it suffices to prove the theorem for the 
induced measure on sets of measure arbitrarily close to 1. 

Second reduction. We may assume that mB = 1. 

More specifically we prove the following proposition: 

PROPOSITION 12.1. Suppose (i), (ii), (iii), (iv) are satisfied for m-a.e. x, and 
Mu and (S are respectively increasing and decreasing partitions subordinate to 
Wu and Ws on M. Then, given E' > 0, there exists a set A with mA > 1 - 5e' 
such that for x E A, 

limsup log mB (xP < 8++ 
? - +8c + 5( 1 +l! + x) 

where &c = dim M - u0 - so is dim EC(x) for m-a.e.x. 

We now pick once and for all a system of conditional measures muX 
associated with {U. a system of conditional measures ms associated with {S and a 
decomposition FnX of m into ergodic measures. Discarding a set of measure 0, we 
may assume further that each M- is an ergodic invariant measure, for which mu 
and ms are conditional measures associated with (u and As. 

Let us review some of the facts at our disposal. First recall that at m-a.e. x, 
we have: 

(1) Hj(tujIf{u) = hn(f) (Corollary 5.3), 

(2) limsup logxp) 8 , and 
(3) lis 0 log p 

(3) lmSup X <onBSxp ?8 
lim+ log 
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If S is a finite entropy partition and a, b > 0, then by the Shannon- 
Breiman-McMillan theorem, 

(4) urn - '10gm (9 nb(x)) <(a + b)(h + ?) 
n 

where pq(x) denotes the atom of the partition VW-f1 containing x. More- 
over, if U = U v go 0 and { mx } is a system of conditional measures associated 
with a, then we claim that at m-a.e. x, 

(5) lim - - log m x (x) = h(f,- m) and 
n n 

(6) lim sup logrn Bu(x p) 
< _ 

. 

P--+O log p 

These two assertions are consequences of (1) and (2) and two other general facts, 
the proofs of which we postpone until (12.4). 

From our results in Section 9 (it is not hard to adapt them to the 
non-ergodic case), it follows that there exist a finite entropy partition Y'1 and a 
set A1 with mA 1 > 1 c-' such that at every x in A1, 

(7) limnsup - 'log msx(gAl)? n(x) 2 H(Csjf') - 

n 
2 h -E 

We may assume also that hw(f. ,1) ? h - E on A1. Combining this with (5), 
we have 

(8) lim- -log m x(gl)n(x) ? h on A1. 
n n 

In the case when there are no zero exponents, using arguments that are 
standard by now, we can choose a partition S > 91 such that for some suitable 
choice of a, b > 0, the atoms of gnab have diameter < e-n. Proposition 12.1 
then follows from (3), (4), (6), (7), (8) and the counting argument we give in 
(12.3). In the presence of zero exponents, we have to further partition the atoms 
of Y2-nb-more or less arbitrarily-along the neutral direction. This accounts for 
the factor 8 c which appears in the statement of Proposition 12.1. This partition 
procedure is described in (12.2). 

(12.2) Local picture. 

LEMMA 12.2.1. Let a = (1/X+- 2e), b = (1/- X -2e). There exist a set 

A2 with m(A2) > 1 - E', an integer N0, a constant C and a finite entropy 
partition g? refining 91, with the following property: For every n ? N0, there 
exists a partition S9 > g-na such that if x E A2 and qn(x) is the atom of9 n 
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containing x, then: 
(i) diamqn(x) < 2e- and 

(ii) mq ((x) ? C-'e- ne - n 8'mgnax 

Proof of Lemma 12.2.1. Let (v', v', v') denote the coordinates in TxM 
respecting the splitting Eu(x) e EC(x) e Es(x). Via the expc-map, this defines a 
coordinate system in a neighborhood of x. Our strategy is to divide the manifold 
into small sets, select a representative from each set and work with the coordi- 
nate systems associated with these points. 

By Lusin's theorem, there exists a compact set A3 with mA3 > 1 - (E/3) 
such that on A3, the four functions Eu(x), EC(x), Es(x) and 1(x) are continu- 
ous. Let L = maxfl(x), x E1 A3). Choose 8 > 0 small enough that if 
d(x, x') < S, then (i) expX2'expj(v) is defined whenever lviji < 38, and 
(ii) expX, lexpx{ va = constant) has slope < (1/4KL) relative to Ea(x') for a = u. 
c and s. Let 20 be a partition of A3 into sets of diameter smaller than 8 and 
choose a point z(q) E q for every q eQ0. For2 x A3, write x =U + xC+ xS 

where xia = (exp-'(x))x)' q(x)) a = u, c, s. We may assume that 'd(x, x') < 

x- -x'I < 2d(x, x') for x' E q(x). 

SUBLEMMA 12.2.2. Let 8 be sufficiently small. For x E A3, define 

V(xn) = {y e q(x): d(fixfiy) < 
8 

l(fiX)2 forallj, - nb < j < na}. 

If y 1, Y2 e V(x . n) satisfy I - 1-Y2C I < (e - n/ 12 KL ), then 1j1 - Y21 < e- n. 

Proof of Sublemma 12.2.2. First, if max(Jjj - 'I, IY1 - Ysl) < 
4 KL I - ', the conclusion is clearly true. 

If not, then 1yc - `1 < (1/4KL)max(ljlu - P1, I15-s s1). Writing v' = 

(exp['lyi), i = 1,2, we have jvc - vc < (1/KL)max(lvu - vul, Ivs - vj) by 
our choice of &. Set wi = 'J'Yi , where 4IX is the (E, 1)-local chart at x. We have: 

wc- w2c < max(jwu - w2u, jw wl-), 

and therefore either w1 - w21 =wu - wul, or WI- w21 = M - w21. 

Suppose Iw1 - w21 = jwu - wul. This property is preserved by fx which 
expands in the u direction by at least eX -2e (see Lemma 2.3.1a). Since Y1, Y2 lie 
in V( x, n), we can apply this expansion [na] times and thus 

jwu - wul ? Sex en. 

In the other case, Iw1 - w21 = Iws - wsl and the same argument applied to 

fx- gives 

WI- w21 < Se-Xen. 
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Changing coordinates again we obtain in both cases yl - Y21 < 

2LS max(eX, e-A )e-n. The choice of a sufficiently small 8 gives Sublemma 
12.2.2. El 

We now choose the partition 9 in Lemma 12.2.1. Let 9, be the partition 
at the end of (12.1). Let 92 be the partition into M\ A3 and 20 on A3. Using 
2.4, we can find a finite entropy partition !3 and a function no such that if 
n > no(x), then (g3)I-b(X)C V(x, n). We take 9 = Y'1 v A2 V g3 and choose 
No such that m { no < No} > 1 - Et/3. 

We now define the partitions 2n n > No on A3 (l {no < No). Since 9 
refines .20 the entire set 9(x), and hence n'b(x), lies in q(x). We shall 
subdivide the atoms of gpna that meet A3 n {no < No) one at a time. Fix 
x E A3n A no < NO). Let Qnl gnb(X) be a partition such that if y and Y2 
belong in the same element of .n then I1' - 'I < e-n/12KL. By Sublemma 
12.2.2, these elements of 2n have diameter less than 2e -. Clearly, we can 
arrange to have the cardinality of 2 I ,pAn(X) to be less than Cle nac where 
C1 = (24KL)3c. 

Let 

(X: m(q(X) n Gina (X)) < e e - e )m9 r/ b(x 

Then, mAn < (e'/3)e-n(l - e-e). Setting A2 = (A3 n {no < NO})\UnAn, 
we have mA2 ? 1 - c' and Lemma 12.2.1 is proved with C = (3C1/e'(1 -e)). 

(12.3) Proof of Proposition 12.1. Set a = (1/XA- 2e), b = (1/- X - 2e). 
Consider a set A 2, mA 2 > 1- e' an integer No and a finite entropy partition 9 
with the property in the statement of Lemma 12.2.1. By (4), (7) and (8) there 
exist a set A4 cA 1 with mA4 > 1 - 2e' and an integer N1 such that if x E A4 
and n > N1, then 

(a) mx(Y'lb(x)) ? e 
(b) Mj(gmon"(x)) < e-n h2e 

(c) nb(x)) > en(a~b)(h?2e) 

Set A5= 2 n A4 N2 = max(No, N1). If z EA 5 and n 2 N2, then 

(d) diamqn(z) < 2e-n and 

(e) mqn(z) ? C-le-nee- e-n(a+b)(h+2e) 

By (6) and (4.1.2), we can choose A6 C A5 with mA6 > 1 - 4E', and N3 ? N2 
such that if y E A6 and n 2 N3, then: 

(f) mY(A5 n Bu(y, e-n)) ? e -n(8+e) 
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By (3) and again (4.1.2), we can choose finally A C A6 with mA > 1 - 5e' and 
N4 2N3 such that if x EA A and n 2 N4, then: 

(g)~ ~~~M m(AV n B s(x, e- n)) 2 le -n(8-+e 

The set of points for which the inequality in Proposition 12.1 holds will be 
this final set A. Fix x in A and set = limSUpn - 1/n logmB(x,4e-n). There 
exist infinitely many n such that 

(h) mB(x,4&-) ? e- . 

Fix such an n, assuming that n ? N4 and 4C < en8. Consider the number 

N = # {atoms of Qn intersecting A 5 n B(x, 2e -n)}. 

The minimum measure of these atoms imposes an immediate upper bound on N. 
More precisely, from (d), (e) and (h), we get 

(N) N < CenEena en(a+b)(h+2e)e-n(8-e). 

The estimates leading to a lower bound are slightly more involved. Basically, 
we use our upper estimate of the appropriate conditional measures of gpona- and 

n b-atoms. To begin, since x E A, we have (g). Then for every y in 

{S(x) n A6 n B(x, e-n), we have by (a): 

msx(Yg2nb(y)) = ms(go'2lnb(y)) < e 

Thus: 

# {atoms of 90)-?b intersecting A6 n B(x,e-)} > len(e e)enb(h28). 

Let us fix one of these atoms pm and choose y e p. n A6 n B(x, e-n). We 
have (f), and for any z in 71(y) n A5 n B(y, e-n), by (b): 

mY(glona(z)) = mz(glona(z)) < e-na(h-2?) 

Thus if n( X) denotes the number of atoms of son a intersecting the set 
X n A5 n B(y, e-n), then: 

n (- (y)) 2 'e -n(l+ + e)e na(h -2e) 

Furthermore, since 7q(y) C 9?2O(y) C Pu, we have 

n(p.) 2 n(q7(y)). 
Let p5 be one of these atoms, pu n ps is now an atom of g-nab intersecting 
A5 n B(y, e-n) for some y with d(y, x) < e-n. Therefore 

(**) N 2 E n(pu) 
{pu: pu A6.nB(xe-)* 0} 

? 4e n(8 +8 +2e)en(a+b)(h-28) 
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Comparing (*) with (**), we complete the proof of Proposition 12.1 and hence 
that of Theorem F, provided we justify (5) and (6) in Section 12.1. 

(12.4) Two lemmas from measure theory. In this section, we prove two 
general lemmas on conditional measures, leading to (5) and (6) in Section 12.1. 

Suppose ( is a measurable partition in a Lebesgue space (X, i), 9 is a finite 
entropy partition and px is a system of conditional measures associated with (. 
We denote 

1(9/0 = - logyx9(x). 

The following lemma tells us that (1) implies (5): 

LEMMA 12.4.1. Let f: (X, 1u) <- be an ergodic automorphism of the Le- 
besgue space (X, p), with finite entropy h,(f ). Let ( be an increasing measur- 
able partition such that H(l/f 'l)= h,(f) and let 9 be a finite entropy 
partition. Then, at p-a.e. x: 

1 lim - I( 90/( V 9?0)) = ht( I f) 

Proof. (Compare with 9.3.1). First: 

1 n1n~ 
_ (= n((Vg?D?))(X)= 

and the second term converges m-a.e. and in L' toward H(9?/A i(9? V f- 
which is clearly < htL(S. f). The limit, being constant, is also the limit of 

1H(gon/( S.V900J<D) ) nH( 4n1V gon( (V gZ ) )- 1 H( n( (~ o) 

We have 

lim -H(nVg/( ( V. O ) = lim -H(t V o/n) > H(l/f- ) and 

lim 
1 
H(tln/(( V gn J) = H(I(/(f - 1l V 9+ 00)) 

Let 9 be a finite entropy partition such that = f1- V V2. Then: 

H(((f 
- 

V 9+ 00)) < H(9/92 V 9+k) 
= h, (9VP, f) - h,(9, f) 

< h,(f) - h,,(9, f). 

Therefore the limit in question has to be larger than H(I/f- ') - h,( f) + 
h, (g, f), and this completes the proof. 
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The following lemma tells us that (2) implies (6): 

LEMMA 12.1.2. Let ,u be a probability measure on 9qq(1), ( a measurable 
partition and ,us a system of conditional measures associated with the partition 
(. Suppose A is such that 

limjsup l log(s ') ?L form-a.e.s. 

Ten 

log usB q(s, E) 
2imsup loge <? m-a.e. 

Proof Fix a > 0 and call 

Bn( ) = t t: [tBq(t, e -n) ? e-n(A+a)}. 

Our hypothesis is lim inf nyBn(a) = 1 for all a. Call 

An(a) = ts: juBq(s, 2e-n) < e-n(A+2a)? 

We have: 

pL(An(a) n Bq(t, e-n)) = fus(An(a) n Bq(t, e-n))ju(ds). 

If tLs(An(a) n Bq(t, e-n)) > 0, then there exists s' E s(s) n An(a) n Bq(t, e-n) 
and thus: 

JUS(An(G) n B q(t , e-n)) < 1U s,(B q(s, 2e -n)) < e- n( + 2a). 

Therefore, if t E Bn(a), then 

j(An(a) n Bq(t, e -n)) < e -n'juBq(t, e- n). 

Using the Besicovitch covering lemma (see 4.1) we conclude that JU(An(a) n 
Bn(a)) < e -nc(q). Therefore, u-a.e. point s belongs to a finite numbers of sets 
An and this completes the proof. O 
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