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Abstract: We prove that simple mechanical systems, when subjected to external peri-
odic forcing, can exhibit a surprisingly rich array of dynamical behaviors as parameters
are varied. In particular, the existence of global strange attractors with fully stochastic
properties is proved for a class of second order ODEs.

Introduction

Inthe history of classical mechanics, dissipative systems received only limited attention,
in part because it was believed that in these systems all orbits eventually tended toward
stable equilibria (fixed points or periodic cycles). Evidence that second order equations
with a periodic forcing term can have interesting behavior first appeared in the study
of van der Pol’s equation, which describes an oscillator with nonlinear damping. The
first observations were due to van der Pol and van der Mark. Cartwright and Littlewood
proved later that in certain parameter ranges, this equation had periodic orbits of different
periods [CL]. Their results pointed to an attracting set more complicated than a fixed
point or an invariant curve. Levinson obtained detailed information for a simplified
model [Ln]. His work inspired Smale, who introduced the general idea of a horseshoe
[Sm], which Levi used later to explain the observed phenomena [Li1].

A number of other differential equations with chaotic behavior have been studied in
the last few decades, both numerically and analytically. Examples from the dissipative
category include the equations of Lorenz [Lo, G, Ro, Ry, Sp, T, W], Duffing’s equation
[D, Ho], Lorentz gases acted on by external forces [CELS], and modified van der Pol
type systems [Li2]. For a systematic treatment of the Lorenz and Duffing equations,
see [GH]. While some progress has been made, the number of equations for which a
rigorous global description of the dynamics is available has remained small.
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In this paper, we consider an equation of the form

% A d6 1 dO)P

7 A =D = 2O Pro),
whered e St andx > 0. If the right side is set identically equal to zero, this equation
represents the motion of a particle subjected to a constant external force which causes
it to decelerate when its velocity exceeds one and to accelerate when it is below one.
Independent of the initial condition, the particle approaches uniform motion in which it
moves with velocity equal to one. To this extremely simple dynamical system, we add
another external force in the form ofpmlse: @ is an arbitrary functionpPr is time-
periodic with periodT’, and fort € [0, T), it is equal to 1 on a short interval and O
otherwise. We learned after this work was completed that a similar equation has been
studied numerically in the physics literature by G. Zaslavsky.

We prove that the system above exhibits, for different valuesof A and T', averyrich array
of dynamical phenomena, including

(a) invariant curves with quasi-periodic behavior,

(b) gradient-like dynamics with stable and unstable equilibria,

(c) transient chaos caused by the presence of horseshoes, with almost every trajectory
eventually tending to a stable equilibrium, and

(d) strange attractors with SRB measures and fully stochastic behavior.

These results are new for the equation in question. As abstract dynamical phenomena,
(a)—(c) are fairly well understood, and their occurrences in concrete models have been
noted; see [GH]. The situation with regard to (d) is very different. The analysis that allows
us to handle attractors of this type was not available until recently. To our knowledge,
thisis the firsttime a concrete differential equation has been proved analytically to have a
global nonuniformly hyperbolic attractor with an SRB measivée regard Theorem 3,
which discusses the strange attractor case, as the main result of this paper.

Our proof of Theorem 3 is based on [WY], in which we built a dynamical theory
for a (general) class of attractors with one direction of instability and strong dissipation.
In [WY], we identified a set of conditions which guarantees the existence of strange
attractors with strong stochastic properties. The properties in question include most of
the standard mathematical notions associated with chaos: positive Lyapunov exponents,
positive entropy, SRB measures, exponential decay of correlations, symbolic coding of
orbits, fractal geometry, etc. The occurrence of scenario (d) above is proved by checking
the conditions in [WY]. For the convenience of the reader, we will recall these conditions
as well as the package of results that follows once these conditions are checked.

Our purpose in writing this paper is not only to point out the range of phenomena
that can occur when simple second order equations are periodically forced, but to bring
to the foreground the techniques that have allowed us to reach these conclusions in a
relatively straightforward manner. These techniques are clearly not limited to the systems
considered here. Itis our hope that they will find applications in other dynamical systems,
particularly those that arise naturally from mechanics or physics.

1 Zaslavsky produced in [Z1] numerical evidence of strange attractors. He also discussed in [Z2] how this
model can be viewed as a strong idealization of the turbulence problem.

2 Levi proved in [Li1] the occurrence of scenario (c) for his modified van der Pol systems, not scenario (d)
as is sometimes incorrectly reported.
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1. Statement of Results

1.1. Setting and assumptions. Consider the differential equation

d% +)»d9 =u+dO)Pr(r) ()
dr? a M L

wheref € §1, 1, u > 0 are constantsp : ST — R is a smooth function, an#; has
the following form: for someg < T, Pr satisfies

Pr(t)y=Pr(t+T) forall ¢

and
1 for r €0, o],

Pr() = 0 forte ().

As discussed inthe introduction, (1) describes a simple mechanical system consisting of a
particle moving in a circle subjected to an external time-periodic force.)r/\ti:tl’% -,
(1) is equivalent to

do

o _ . n

dt A )
ar o s+ @) Pr)

— = —\r .

dt T

Let Fr denote the tim&-map of (2), that is, the map that transforms the phase space
ST x R from time O to timeT'. Unless explicitly stated otherwise, when we wiitg, it
will be assumed thaf is the period of the forcing.

We setu = A for simplicity, and normalize the forcing term as follows: Given a
function ®g : ST — R, we let® = %d)o, that is to say, the magnitude of this part
of the force is taken to be inversely proportional to the duration of its action, and the
proportionality constant is taken to be 1 for simplicity. Our analysis will proceed as
follows:

* The function®y is fixed throughout. With the exception of Theorem 2(b) (where more
is assumed), the only requirements are thatis of classC* and all of its critical
points are nondegenerate.

* We assumep < - min{a~%, K2}, whereKo = max{||®ol|c«, 1}. Further restric-
tions onrg are imposed in each case as needed. (We do not regascan important
parameter and will assume it is as small as the arguments require.)

* The two important parameters axeand7 . We will prove that (i) the properties of (1)
are intrinsically different for small and fon large, and (ii) for fixed., the properties
of (1) depend quite delicately on the valueTaf

To interpret our results correctly, the reader should keep in mind that the dynamical
pictures described below are not the only ones that can occur, and it is possible to have
combinations of them, such as sinks and strange attractors, on different parts of the phase
space. Our aim here is to identify several imporgame dynamicstypes, to indicate the
nature and approximate locations of the parameter sets on which they occur, and to
convey a sense @revalence, meaning that these phenomena occur naturally and not as
a result of mere coincidence.
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1.2. Satementsoftheorems. The setting of Sect. 1.1 isassumed throughout. We consider
the discrete-time system defined by the Poincaré mapPrecise meanings of some

of the technical terms are given after the statements of the theorems. Theorem 3 is our
main result. The scenarios presented in Theorems 1 and 2 are also integral parts of the
picture.

Theorem 1 (Existence of invariant curves)Let A > 4Kpand T > 1o + % Then there

isasimple closed curve © of class C# to which all the orbits of F7 converge. Moreover,
we have the following dichotomy:

(a) (Quasi-periodic attractors) Let Ag = {T : p(T) € R\ Q}, where p(T) is the
rotation number of Fr|Q. Then (i) Ag intersects every unit interval in [%, o0) ina
set of positive Lebesgue measure, and (ii) the following hold for 7 € Ag: Fr|Q2
is topologically conjugate to an irrational rotation, and for every z € $! x R,
% zg*l 8 Fi.- CONVerges weakly to u where u is the unique invariant probability
measure on €2.

(b) (Periodic sinks and saddlesThereisan openand densesubset A of [to+%', 00)\ Ag
such that for T € A1, Fr has a finite number of periodic sinks and saddles on .
Every orbit of Fr convergesto one of these periodic orbits.

Theorem 2 is elementary; it uses standard techniquespgmslrequired only to be
C2.We include this result because the dynamical pictures described occur for a nontrivial
set of parameters.

Theorem 2 (Convergence to stable equilibria).

(a) (Gradient-like dynamics) 3Ao < max|®y| such that VA > X, if 1o is sufficiently
small, thenthereareopenintervalsof T for which Fy hasafinite number of periodic
points all of which are saddles or sinks, and every orbit not on the stable manifold
of a saddle tends to a sink.

(b) (Transient chaos)Assume &g has exactly two critical points. Then there exist inter-
valsof A accumulating at O such that for each of these 1, if ¢ is sufficiently small, then
there are open intervals of T for which Fr has a periodic sink and a “ horseshoe”
i.e. a uniformly hyperbolic invariant set A such that Fr|A is conjugate to a shift of
finite type with positive topological entropy. Lebesgue-a.e. z € ST x R is attracted
tothesinkasn — oo.

Remarks. (i) The picture in Theorem 2(a) is more general than that in Theorem 1(b):
there are no simple closed invariant curves in general (see Proposition 4.1).

(i) We describe the scenario in Theorem 2(b) as “transient chaos” for the following
reasonsA being aninvariant set, points near it tend to stay near it for some period of time,
mimicking the dynamics or. This chaotic behavior, however, is transient, because

has Lebesgue measure zero, and for a typical initial condition, the orbit eventually leaves
A behind and heads for a sink.

Our next result deals with a notion of chaos that is sustained through time. A compact,
Fr-invariant se2 ¢ S x R is called aglobal attractor for Fr if for everyz € S x R,
dist(F7z, ) — 0 asn — oo. In order not to interrupt the flow of ideas, we postpone
the technical definitions of some of the terms used in Theorems 2 and 3 to after the
statements of both results.

Here is our main result:
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Theorem 3 (Strange attractors).For the parameters specified below, F = Fr hasa
strange attractor, a description of which follows:

Relevant parameter set. There exist A, 7o > 0 such that for every A < A and rg < 7o,
thereisa positive Lebesgue measure set A = A(A, o) in T-space for which the results
of this theorem hold; A C [Tp, co) for some large Tp, and meets every subinterval of
[To, 00) of length O(1) in a set of positive Lebesgue measure.

Dynamical characteristics. Let A < 1, 1o < fo, and T € A(k, to). Then F = Fr has
a global attractor €2 with the following dynamical properties:

(1) Hyperbolic behavior. F|£2 isnonuniformly hyperbolic with an identifiable set C C
 which isthe source of all nonhyperbolic behavior. More precisely:

() C = U;C; where C; is a Cantor set located near (6, r) = (¢;, 0), ¢; being the
critical points of ®g; at each z € C, stable and unstable directions coincide, i.e.
thereisa vector v with || DF"(z)v|| — 0 exponentially fast asn — +o0.

(b) Away from C the dynamicsis uniformly hyperbolic. More precisely, let

Q. :={z€Q:dc(F"z) > eVn € Z},

where d¢(+) is a notion of distance to C. Then  is the closure of U, 092, Q.
is a uniformly hyperbolic invariant set for each ¢ > 0, and the hyperbolicity of
F|Q. deteriorates (e.g. minimum Z(E%, E*) — 0) ase — 0.

(2) Statistical properties.

(a) F admits a unique SRB measure u supported on 2.

(b) With the exception of a Lebesgue measure zero set of initial conditions, the
asymptotic behavior of every orbit of F' is governed by . More precisely, for
Lebesgue-a.e z € ST x R, if ¢ : ST x R — R isa continuous function, then
%Zg_lgo(Fiz) — [@duasn — oco.

(c) (F, n) isergodic, mixing, and Bernoulli.

(d) For every observable ¢ : 2 — R of Holder class, the sequence

0. 0o F, 0o F? -+ 9o F" ...

viewed as a stochastic process with underlying probability space (€2, 1) has
exponential decay of correlations and obeys the Central Limit Theorem.
(3) Symbolic coding and other geometric properties.

(a) Kneading segquences are well defined for all critical orbits, i.e. all orbits ema-
nating fromC.

(b) With respect to the partition defined by the fractal sets C;, the coding of orbits
in  iswell defined and essentially one-to-one. More precisely, if o is the shift
operator, thenthereisaclosed subset ¥ C T1>, {1, - - - , s} witho () C ¥ and
a continuous surjection 7 : ¥ — Q suchthat 7 o 0 = F o ; moreover, 7 is
one-to-one except over U, FIC, where it is two-to-one. (In general, (, o) is
not a shift of finite type.)

(c) Let hyop(F) denote the topological entropy of F', N, the number of cylinder sets
of length »n in X above, and P, the number of fixed points of F”. Then

.1 o1
htop(F) = nILmOO - logN, = nl|_>moo " log P,.

Moreover, F has an invariant measure of maximal entropy.
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For a more detailed description of the dynamics on these strange attractors, see [WY].
We review below the definitions and related background information for some of the
technical terms used in the theorems. For more information on this material, see [KH]
and [Y1].

A compactF-invariant setA is calleduniformly hyperbolic if the following hold: (1)

The tangentspace atevaryg A splitsintoE“ (x)+ E* (x) withmin,cp Z(E", E*) > 0;
(2) this splitting isD F-invariant; and (3) there exigl > 1 ando < 1 such that for all
x € Aandn > 0, ||[DF"(x)v|| < Co"|v| forallv € ES(x), [ DF"(x)v|| < Co"|v||
forallv € E*(x).

In Theorem 3(1)(b), not only does migE*, E*) — 0 ase — 0, we haveC — oo
as well. This means the smaller the longer it takes for the geometry of hyperbolic
behavior to take hold.

An F-invariant Borel probability measure is called anSRB measure if F has
a positive Lyapunov exponemt-a.e. and the conditional measurespobn unstable
manifolds are equivalent to the Riemannian volume on these leaves. SRB measures are
of physical relevance because they can be observed: in dissipative dynamical systems,
all invariant probability measures are necessarily singular, but ergodic SRB measures
with nonzero Lyapunov exponents have the property that there is a positive Lebesgue
measure set of points for which %nglq)(F"z) — [@du asn — oo for every
continuous functiomp.

Referring to the set of pointsabove as theneasure-theoretic basin of 1, Theorem
3(2)(b) says that the measure-theoretic basin here is not just a positive Lebesgue measure
set, itis, modulo a set of Lebesgue measure zero, the entire phase space.

By a decomposition theorem for SRB measures with no zero exponents ([Le]), the
uniqueness oft implies that it is ergodic, and the mixing and Bernoulli properties are
equivalent to F", ) being ergodic for alk > 1.

We say the dynamical syste(fi, 1) hasexponential decay of correlationsfor Holder
continuous observables if given a Holder expongttiere exists = t(n) < 1suchthat
forall ¢ € L*°(n) andy : Q@ — R Holder with exponent, there existX = K (¢, ¥)

such that
‘/(woF”)wdu—fWu/wdu

for alln > 1. Finally, we say th€entral Limit Theorem holds forg with [ ¢du = 0 if
\/iz nglq) o F' converges in distribution to the normal distribution, and the variance
is strictly positive unlesg o F = iy o F — 1 for somey.

< K(p,y)t"

1.3. lllustrations. Figure 1 below shows the approximate location and shape of the
invariant curve or strange attractor (corresponding to different valuesiodT') for the
time-T-mapFr : ST x R — S x R.

Figure 2 explains the mechanisms behind the changes in the dynamical picture as
A decreases. The straight line in (a) represé¢nts- 0} in (6, r)-coordinates, and the
subsequent pictures show the images of this line (or circle) at various times under the
flow. Figure 2(b) shows the effect of the forcing; observe that it need not constitute a large
perturbation. For € (7o, T], the forcing is turned off, and the system relaxes to a limit
cycle with contraction rate™. Figure 2(d) shows the image pf = 0} for » > 1 and
e*T reasonably contractive; these parameters correspond to the existence of invariant
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curves. As ) decreases, the effect of the shear term in (2) becomes more prominent, as
shown in (€). As X decreases further, one sees a phenomenon resembling “the breaking
of the wave” which accompanies the break-up of the invariant circle. Finally, in Figure
2(g), atubular neighborhood of {r = 0} isfolded and mapped into itself, leading to the
formation of horseshoes and/or strange attractors.

2. Preliminary Information on the ODE

2.1. Sngular limits. Let
0@\ (6o, ro:t)
r@) )\ ro,ro; 1)

denote the solution of (2) with 6(0) = 6y and r(0) = rg. Then asimple exercise gives

6o 0(T) 0(t0) + (T — 10) + G2 (L — 74T~
Fr: = = s
ro r(T) r(tg)e T =0
wherethevalueof 6(T) aboveisto beinterpreted asmod 1 or on S1. Weleta = {T — 1o}

be the fractional part of T — 19, b = e™**, wheren = [T — 1g] is the integer part of
T —to,andlet T, , = Fr.Then

é 01 o) _ pe—rario)
T, () (000 Tat 57 —be 5T 3)
' ro be=r(tg)

(The appearance of “T” in both Fr and T, 5 isunfortunate; we hopeit is not confusing.

We wish eventually to make a connection to [WY] and this notation is used there.)
Wefirst fix o and A, and let T — oo. Clearly, b — 0asT — oo. Thelimit of Fr

as T — oo does not exist. However, T, ;, has the following well defined singular limit

asb — 0:
r(10)
o <90) N (9(to)+ u +a)' @
ro 0

Let Tal,o denote the first component of 7, 0. We will show in Sect. 2.3 that as g —
0,7}y — T2y where

A 6o ro 1
Ta]:o . ( ) = 090 + I + XCDO(QO) +a. (5)
o

In later sections, we will also work with two families of circle maps f, and f,
obtained by restricting T}, and 7", respectively to {ro = 0}, i.e.
6o, O;
r( Ox 0) ta:
A 1
Ja(6o) = 6o + X(DO(GO) +a.

fa(Bo) = 0(6o, 0; t0) +

While our results are not confined to these limiting situations, the relation between
Fr and the objectsthat appear in Eq. (1), namely, &g, A and ¢, can be made transparent
by comparing first 7, ; and T, o and then Tal,0 and fa]:O' This is how we will go about
obtaining information on F7.
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2.2. The time-rg-map. In this subsection we consider the solution of (2) for ¢ € [0, 0]
and record some derivative estimates. We first write

r(t) = u(t)e ™,

1 (6)
00 = () +1 = ue ™.
Differentiating (6) and plugging into (2), we obtain
1 ! AT
u(t) =uo+ —/ Do(f(1))e™ " dr,
fo Jo 7
e ™
v(t) = vo + —/ Op(0(1))dT.
Ao Jo
Substituted back into (6), this givesug = ro, vo = 6p + 32, and
1 ! AT —\t
r(t) =1ro+ —/ Do@(t))e  dt ) e ™,
fo Jo
0(t) = 0o+ 1 + 1—0(1—e—“) ®)

t t
+ 1 {/ Do(0())dt — e*“/ q>o(9(r))e”dr}.
Ao (Jo 0

We assume in the rest of this subsection that |rg| < 1.

Recall that Ko = max{|| Dol -4, 1}. We remark that in most of our bounds involving
Ko, itisin fact not necessary to use the C*-norm. For example, Ko in Lemmas 2.1 and
2.4 can be replaced by the C1-norm of ®y.

Lemma 2.1.(i) |0(t0) — 60| < 5Koto;

(i)
a0(t
@) —1| < 4Koptg; max 99() < 2fo;
t<to | 06p t<to | drg
(iii)
ar (to) 2Ko: ar (t0) <2
06p oro

Proof. (i) From (8),

|}"0| —At 1 ! AT
0@) —6gl <t+—@A—-e€e*)+ — Oo(1—e*")dr
A Ao |Jo

t
/ qDoe“d‘L’
0

Using the inequalities 1 — e™ < x and ¢* — 1 < xe* for x > 0 and the fact that
Ao < %, we see immediately that the four terms above add up to < 5Kotp.

(i)

1— —At
Gl
Alg

90 =1+A+B
90y ’
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where

1 /! a0
= —f dp— (1 — )dr,
Ato Jo 06p
1 ! a0 ©)
B=—1- e_“)/ CDE)—eMdT.
Alo 0 d6p

Letting ©1 = max; <, | %5 — 1] and recalling that 1Ko < 5K " < {5, e obtain

5 1 5
©1 < |A[+|B| = §K0l0(®1 +1) < Z®l + EKoto,

whichimpliesthat ®1 < 4Koto. Similarly, writing

a0 1 -~

—=Z1-eM+A+B,

o7 A( e ")+ A+
where
1 t
a0 Jo

1 T2
—@1- e—“)f dy— e dr,
)\.to 0 aro

>
I

30
%a_ro(l — eM)dr,

B

and reasoning as above, we arrive at the desired bound for {f—;‘;.
(iii) follows from (ii) and a straightforward computation. 0O
We will also need estimates on higher derivatives.
Lemma 2.2.Fori = 2and 3,
3 0(t)
304

< 20Ko1o.

0<t<tg

Proof. Letting A and B beasin (9), we have

9%0  9A L 9B
920y 360 96o

dA 1 [ 30 \? 320

R o [ Z= dh— | (1= M)dr,
900 MO/O ( °<aeo> + Pogag, ) BT
3B 1 t 36 \? 320
i G —At / o — dL—— )er'
205 a0 ¢ ) \®olGe,) T Pogze, | IT

320(1)
962

)

where

Let @2 = maXOStSto

. Similar reasoning as before gives

5 , 1
By < zKoto(lJr 1)+ Z@)z,

and thus ®2 < 8Korp. The proof fori = 3issimilar. O
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2.3. Relating Fr to ®o, A and 0. Let T} and f‘io beasin Sect. 2.1. Reading off 6 (1)
and r (t9) from Eq. (8), we have

1 ro 1 [P
T o0, r0) =6+ — + — do(0(1))dt + a.
’ A Mo Jo

From this, it follows immediately that 7.}, — 71| < %22, We record the following
estimates for future use.

Lemma 2.3.(i)
4 3T}, 6

< < —
5\ daro 5\

(ii) Thereisanumerical constant Mg suchthat for i = 1, 2, 3,

0Ty 9'Tio| _ MoKGio
36} 36} A

Proof. (i) Since
dt,

ATt 1 1 [ 36
a,0 =4 _/ CDE)_
aro A Mo Jo arg

it sufficesto observe that the second term on the right has absol ute val ue bounded above
by ¥ Ko(2t0) (Lemma 2.1(ii)), which is < g-.

(if)
0Ty 0T f 20 f
== == P00 (- —Ddr DH(O(1)) — Pp(Bo))d1
30 960 | Mo /0 0@ (G-~ 1) +/O (D5(0(1)) — Py(6o))
gtho

K
< T0(4K0to + 5Kot0) =

by Lemma 2.1(ii) and (i). For the second derivative,

azTalo azfalo 1 fo " a0 2 / 829
20, 005 Ao Jo d6p 046g
1 1"
- XCDO(QO)

1 [fo 36 \2
= — o5l (=) —1)adr
Mo Jo 6o

+ ! /IOCD/ 82edl‘
Mo Jo 03290

1 [0
b / (@46(1)) — DY (G))dr.
o Jo

Observe that each of the functions of the integrals is bounded by constant -tho- The
third derivative is estimated similarly. O
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We are now ready to estimate the derivative of Fr. Let T, 0 = (7.}, 0). Then

R 1+30p 7
DTa’0=< +A O)L).

0 O
Lemma 2.4.
1+1e, 1 A1 B
D=t r%0n) (A1)
0 0 C1 D1
where
9K21y 2K 2Kotg 2
Aql < 20 —MT—=10) By| < Lo MT—10),
|1|_A+Ae |1|_A+A
|C1] < 2Koe 710, |Da| < 2¢7HT10),

Proof. Comparing (3) and (4), and using Lemma 2.1, we see that

DT, , = DT, o+ [ 12 B2
a,b = a,0 C2 D2 s

where |Ap| < 2Koe=2(T=0) |By| < 2e74T=10) |0y < 2Kge T —10), and |Dy| <
2¢~MT—10) By Lemma2.3,

DT, o= DT, o+ [ 4353
a,0 = a,0 C3 D3 s

9K 21
where |A3| < =00, |B3| < 200 gnd C3= D3 =0. O

2.4. Absorbing sets. For dynamical systems with noncompact phase spaces, it is con-
venient to know that the action takes place in compact regions. An absorbing set for Fr
is an open set A with compact closure such that F7(A) c A and for al z € St x R,
there existsn = n(z) such that Fjz € A.

Lemma 2.5.Assume A(T — fg) > 1. Then
A:={0,r) e S* xR : |r| < 4Kge *T 1))
isan absorbing set for Fr.
Proof. Write (6,,, r,) = F7(z) for z = (6o, o). By (3) and (8) we have
Iral < €770 |r,_q] + 2Koe T 710,
With e=*T'—10) < % this proves Fr(A) C A. The other condition follows since induc-

tively we have

n
Ira| < e T=10) 10| + 2K Z e~ MT=10) _ ggge=*T—10)
i=1
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3. A View from the Singular Limit

Recall that f, istherestriction of Tal0 to {ro = 0} (see Sect. 2.1). We have thus defined,
for each choice of ®, A and g, aone-parameter family of circle maps which represents
the behavior of Eq. (1) as T — oo. Conversely, one can recover information on the
system defined by (1) if its singular limit { f,} is known: for large T or, equivalently,
smal b > 0, Fr = T, can be thought of as a perturbation of f, or an “unfolding” of
fa to asmall neighborhood of {rg = 0}.

In this section, we look at the problem from the point of view of the singular limit.
Forgetting temporarily their connection to Eq. (1), we think of f, as abstract circle
maps. The following is a brief review of several types of behaviors that are known to
be “typical” and a general discussion of existing methods for transporting these one-
dimensiona behaviors to two dimensions.

Theinvertiblecase: circlediffeomorphisms. Theclassical theory of Poincaréand Denjoy
iswell known (see any elementary text). We point out a striking resemblance between

f.. and the well known family of circle maps first studied by Arnold [A]:
8ue X x+u+ecos2rx), &=>0.

A dichotomy of behavior was observed for thisfamily: “resonant wedges’ inthe (u, ¢)-
plane corresponding to rational rotation numbers, and the “ devil’s staircase” defined by
w = p(gu.s). Theseideas are very much behind our resultsin Theorem 1.

For us, an important question is how to bring these results for f, to 7, ; for b > 0.
KAM techniques (using the intersection property) come to mind for the persistence
of invariant circles with Diophantine rotation numbers, but they will not be used here.
Because of strong normal contraction, invariant curvesare shown to exist independent of
rotation number using techniques from hyperbolic theory. The situation is then reduced
to one dimension.

Smooth non-invertible circle maps. For general information on one-dimensional maps,
see e.g. [dMVS]. Two types of dynamica behaviors are known to be prevalent. They
are (i) maps with attractive periodic cycles, and (ii) maps with absolutely continuous
invariant measures. There is some evidence that these are the only observable pure
dynamics types. For the quadratic family Q, : x +— 1 — ax?, (i) and (ii) together
account for aset of full Lebesgue measurein parameter space® [Lyu2]. We discuss these
two cases separately.

(i) Periodic sinks. Continuing to use the quadratic family as a paradigm, we see that
period doubling occurs for a below some ag (see e.g. [CE]). In this regime, O, has
a periodic sink which attracts al points in the interval except for a finite number of
unstable periodic orbits and their pre-images. Above ag, there is an open set of a for
which Q, has an attractive periodic orbit, but the set of points not attracted to the sink
isnow acomplicated invariant set on which the map is uniformly expanding. The set of
parameters with this property has been shown to be dense ([GS] and [Lyul]).

When the dynamical picture of aone-dimensional map is as above, it “unfolds’ into
atwo-dimensional diffeomorphism satisfying Smale’'s Axiom A [Sm]. The passage of
uniform expansion in one dimension to uniform hyperbolicity in two dimensions is
relatively simple due to the robustness or stability of uniform hyperbolic behavior (see
e.g. [Sh]).

3 (i) and (ii) can easily occur on different parts of the phase space for multimodal maps.
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(if) Absolutely continuous invariant measures. Thereis another type of dynamics that
is prevalent in the probabilistic sense.

Theorem (J)).LetQ, : x —> 1— ax?,a € [0, 2]. Then there exists a positive measure
set of a for which Q, has an absolutely continuous invariant probability measure with
a positive Lyapunov exponent.

The question hereis: what does the existence of absol utely continuousinvariant mea-
suresfor f, tell usabout 7, 5 for b small? The answer to thisquestionisfar from simple,
and the situation was only resolved quiterecently. It cameasaresult of two different sets
of developments. Thefirst is an “abstract” theory of nonuniformly hyperbolic systems,
which provides ageneral framework for studying chaotic behavior. The most important
ideathat hascome out of thistheory isprobably the notion of an SRB measure([Si, R1, B,
P, R2,Le LY, PS Y2]; seeaso[Y1] for an exposition). The other set of developmentsis
more directly related to small perturbations of one-dimensional maps. Pioneering work
in this direction was carried out by Benedicks and Carleson [BC], who achieved anim-
portant breakthrough on the Hénon maps. The utility of [BC] in applications, however,
is limited by the fact that it relied on computations using explicitly the formulas of the
Hénon maps. For other results related to the Hénon maps, see e.g. [BY, MV].

In arecent paper [WY], we extended the analysis in [BC] to a more general class
of attractors, namely those with strong dissipation, one direction of instability, and well
defined singular limits. We a so devel oped the geometric and dynamical picturesof these
attractors more fully, merging some of the ideas from [BC] with those from general
nonuniform hyperbolic theory. Checkable conditions were given for the first time that
guarantee the existence of SRB measuresand their stochastic behavior. The propertiesin
the statement of Theorem 3 isasummary of theresultsin [WY], and this entire package
is guaranteed once certain fairly simple conditions are satisfied. These conditions are
stated and checked for our equation in Sect. 5.

4. Proofs of Theorems 1 and 2

4.1. Proof of Theorem 1. We assume throughout this subsection that A and T satisfy
the hypotheses of Theorem 1,i.e. 2 > 4Kgand T — g > % Thisimpliesin particular
that e 7= < ¢7® < L. Recal also that a standing assumption throughout is

to < &Ko? < 1 (see Sect. 1.1). Let F = Fr.

4.1.1. Existence of invariant circles. |dentifying the tangent space of z € ST x R with
the (0, r)-plane, we introduce the following cones:
. 1
K =A@, r) :Irl < ZIGI},
K :={@,r):|r] > 0]}

Lemma4.1.(a) For z € {|r| < 1},v € K => DF.(v) € K° and |[DF.(v)| > 3|vl.
(b) For z with F~Yz € {|r| < 1}, v € K* = DF1(v) € K* and |[DF1(v)| >
10|v].
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A B
DF, = .

Substituting the admissible values of A, T and #p into Lemma 2.4, we obtain

Proof. Write

1 1 1
A-1<Z, |Bl<Z, ad [C|,|D|<Z. 10
| <5 Bl<g3. ad |C]ID] < (10)

(Theestimatefor |C| uses Koe 850 < ¢=6.) Lets(v) denotetheslopeof avector v € R2.
Then
D
s(DF(v)) = M
A + Bs(v)
To verify DF(K¢) c K¢, for example, we choose v with |s(v)] < %, and substituting
in the numbers from (10), we obtain

1411
s(DF)| < ST—35* <
2

The other claims are checked similarly. O

We have thus identified a family of stable cones K* and afamily of center cones K¢.
We call K¢ “center cones’ because while vectorsin K¢ may be expanded or contracted
by DF, they are not contracted as strongly as vectorsin D F~1(K*). This domination
implies uniform hyperbolicity on the projective level, a property relied upon heavily in
the proof of the next lemma.

Recall that A = {|r| < 4Kge T~} isan absorbing set of F (Lemma2.5).

Lemma 4.2.Thereisan F-invariant curve 2 in A such that

(a) Q isthegraphof a C* function g : ST — R with |¢/| < 1/4;
(b) foreveryz € A, dist(F"z,2) - 0asn — oo.

Proof. By standard arguments from hyperbolic theory, it follows from Lemma 4.1 that
thereisastable foliation W* defined everywhere on A. Tangent vectors to the leaves of
W satisfy |s(v)| > 1, so that each W*-leaf isa C1 segment joining the two boundary
components of A. Moreover, F maps each W*-leaf strictly into a W*-leaf, contracting
length by afactor < %. Itfollowsfromthisthat Q := N, oF" (A) isacompact set which
meets each W*-leaf in exactly one point. Part (b) of Lemma 4.2 follows immediately.

Let yo bethecurve {r = 0}. Then theimages y,, := F"yg converge in the Hausdorff
metric to 2, the center manifold of F. By Lemma4.1(a), the tangent vectorsto y,, have
slopes between +1/4 for all n. This proves that €2 is the graph of a Lipschitz function
g with Lipschitz constant < 1/4. That g is C* follows from the fact that F is C* and
standard graph transform arguments involving the Fiber Contraction Theorem. We refer
thereader to [HPS]. O
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4.1.2. Dynamicsoninvariant circles. Foreach T, let Q7 bethe simpleclosed curveleft
invariant by Fr. We introduce afamily of mapshy : ST — St asfollows: For 6y € 2,
let z be the unique point in Q7 whose 6-coordinate is 6p. Then hr(6p) = 61, where 61
isthe 6-coordinate of Fr(z). Let p(hr) denote the rotation number of z7. Since

do, —M(T —10) 9

T >1l-—¢ [r(to)| > 100" 1y
it isan easy exercise to seethat T +— p(h7) is a continuous nondecreasing function
with p(hr+1) = p(hr) + 1.

Casel. p(hr) € R\ Q. By Denjoy theory, k7 istopologicaly conjugate to the rigid
rotation by p (hr), whichiswell known to admit only oneinvariant probability measure.
This together with Lemmas 2.5 and 4.2(b) imply immediately the unique ergodicity of
Fr. To prove that Ag in Theorem 1 has positive L ebesgue measure, we appeal to the
following theorem of Herman:

Theorem ([He]). Let Difo(Sl) denote the space of C” orientation-preserving diffeo-

morphisms of 1. Let s > h, € Diff2 (S1) be C* and suppose that for some sg < s1,
p(hsy) # p(hg). Then {s € [so, s1] : p(hy) € R\ Q} has positive Lebesgue measure.

Case2. p(hr) € Q. Wefix p,q € Z*, p, q relatively prime, and let 1 be a connected
component of {T : p(hy) = 5} with nonempty interior. From (11), it follows that

%(h‘%(eo)) > % for every 6p. Standard transversality arguments give an open and
dense subset 7 of I such that for T € I, the graph of % is transversal to the diagonal
of ST x S1. For T e I, thefixed points of 4% (in the order in which they appear on S1)
are alternately strictly repelling and strictly contracting. With the contraction normal to

Qr, they correspond to saddles and sinks respectively for Fr.
This compl etes the proof of Theorem 1.

4.2. Proof of Theorem 2. Our analysis will proceed as follows. Referring the reader to
Sect. 2.1 for definitions and notation, we will argue that uniformly expanding invariant
sets of f, trandlate directly into uniformly hyperbolic invariant sets of 7, , for b suffi-
ciently small. That being the case, to produce the phenomena described in Theorem 2,
it sufficesto produce the corresponding behaviorsfor f,. Furthermore, since uniformly
expanding invariant sets are stable under perturbations, and f, is asmall perturbation

of f, for to << A (Lemma 2.3), it suffices to work with £,. Recall that

o 1
Ja(s) =5+ X%(S) +a.

4.2.1. Gradient-likedynamics. Letmo = —min ;. Then f. isacirclediffeomorphism
if and only if A > mg. FiX & > mg. Varying a (which corresponds to moving the graph
of f, upand down), we seethat thereis an open set of « for which f£, hasafinite number
of fixed points which are aternately repelling and attracting. For these a, itisasimple
exercise to show that for sufficiently small 1o and b, Fr = T, has the gradient-like

dynamics described in Theorem 2. More generally, if p(f,) = g then the discussion
above appliesto 7 unless £ = id.
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Gradient-like dynamics, in general, persist when A drops below mg. Intuitively, no
simple closed invariant curve exists beyond this point because the unstable manifold of
the saddle “turns around” . We provide arigorous proof in arestricted context.

Proposition 4.1. Suppose &g has exactly two critical points and negative Schwarzian
derivative. Then there exist intervals of A, 7p and T for which Fr has gradient-like
dynamics but there are no smooth simple closed invariant curves.

Proof. Let ¢1 and c2 denote the critical points of ®g. Thereis an interval of ag such
that if ®g = ag + Po, then &g has exactly two zeros, at say p1 and p». Fix such an
ap- Without loss of generality, weassume p1 < ¢1 < p2 < c2 < p1+ 1= p1,and
®4(p1) > 0, Py(p2) < 0. Intherest of the proof, for each A we consider, let f = Fur
wherea = —52 mod 1, sothat f(s) = s + %&Jo(s). Observethat p1 isarepelling fixed
point of f, p» isanattractivefixed point of f,and f'(c1) = f’(c2) = 1. Thisdiscussion
isvalidfor al A.

For large &, f maps (c1, c2) strictly into itself. (See Fig. 3(8).) This continues to
be the case for some interval of A below mg. Since ®;, < 0 on (c1, c2), we have
1- %2 < f" < 1on(c,c2), sothereexist e, ¢’ > 0 and aninterval L of 1 below mo
for which f(c1+¢&,c2 —¢) C (c1+ 2¢,c2 — 28) and | f'|(c14e.c0—5)] < 1 — &', (See
Fig. 3(b).) Thus every point in (c1 + ¢, c2 — ¢) tends to p, and since every point in
st \ (c1 + ¢, c2 — ¢) eventually enters (c1 + ¢, c2 — &), we conclude that f and hence
F = T, have gradient-like dynamics for a as above and 7 and b suitably small.

Let p1 and p, denote the saddle and sink of F respectively. To prove the proposition,
suppose F' leavesinvariant a smooth simple closed curve . Sinceit is not possible for
al the pointsin an invariant circle to converge to the same point, & must intersect the
stable manifold of p;. Thisimplies p1 € 2, and hence W*, the unstable manifold of
P1, must be contained in 2. Fix an orientation on €2, and let T be a positively oriented
tangent field on W*. To derive a contradiction, we will produce, for every e1 > 0, two
pointsz, 7/ € W* suchthatd(z, z’) < &1 and t(z) and = (') point in opposite directions.

By the negative Schwarzian property of ®g, f/ = 0 at exactly two points x1 < x2
in (c1, c2). Move A if necessary s0 x; # po2,i = 1, 2. Without loss of generality, we
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may assume x1 € (c1, p2). Thefollowing two statements, which we claim are valid for
suitable choices of 7g, a and b, clearly lead to the desired contradiction.

(1) The right branch of W* is roughly horizontal until about f(x1), where it makes
a sharp turn and doubles back for a definite distance, creating two roughly parallel
segments with opposite orientation (see Fig. 4).

(2) Thereexist pairs of points on these parallel segmentsjoined by stable curves.

Claims (1) and (2) follow from Lemma 4.3, which is ageneral result valid for any A
and any ®g (and not just the ones considered in this subsection). It is similar in spirit to
Lemma 4.2 and has the same proof, which will be omitted.

Lemma 4.3.Given f, and constants 8, e > 0, 3b = b(®o, 1, 8, &) << & such that the
following hold for F = T, , withb < b. Let z = (r, 6) € A (which depends on b) be
such that | f,(6)| > §. Then:

@ s =0%) = [s(DF.v)| = O() and |[DF.v| > (1 - &)s|vl;

(b) there exists C = C(®g, A) such that |s(DF,v)] > C§ — |s(v)| > C§ and

[DFv| _ b
v - O(X)

Claim (1) follows immediately from Lemma 4.3(a). Part (b) of this lemma implies
that if aregion of A missesthe two rectangles{(r, 0) : | f/(9)| < &} inall of itsforward
iterates, thenitisfoliated by stablecurves. Since f’(p2) # 0, Claim(2) iseasily arranged
by choosing § sufficiently small. O

4.2.2. Transient chaos. We return to the family f, where A is now assumed to be small.
Let ¢1 and ¢ bethecritical points of ®qg. Then £, has exactly two critical pointss; and
s2 near ¢1 and c2. Let a be fixed for now. As X is varied, the critical values f,(s1) and

fa(s2) move at rates ~ % in opposite directions. There exists, therefore, a sequence of
A for which they coincide. Observe that this sequence is independent of a. We now fix
each of these A and adjust a so that fa (s1) = s1, where s1 isthe critical point with the
property that | g (c1)| < |Pg(c2)|. Wewill show that for the (A, a)-pairs selected above,
f = f, hasthe following properties: (i) it has asink, and (ii) when restricted to the set
of pointsthat are not attracted to the sink, f is uniformly expanding.

By design, we have f(s1) = s1, which is therefore a sink, and f(s2) = s1. For

i=12leta; = lq;gg)l)» and I; = [s; —a;, s; + ;.
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Lemma 4.4.Assume A is sufficiently small. Then

(@ fors ¢ h U I, wehave|f'(s)| > v/1.4;
(b) for s € Iy U I, we have f"s — s1 asn — oo.

Proof. (a) Wemay assumefors ¢ I1U I>that | f/(s)| > | f'(s; £ o;)| for somei. Since
thisis= 1|0 (&)o; for someg; € I, itis> V1.4,
(b) Firstwecheck f(I;) C I1,i =1, 2:

1 1.5
|DGE] - = A?

1
(51 £ e) = f(s0)] = 5| ®G(EDef < TSI
o\¢i

=2
A A

= =7 = =7 <
[Polci)l — [Pgle)l

o1.

A similar computation showsthat f restricted to I3 isacontraction. O

Let F = T, 5, where 1 and a are near the ones selected above and 7g and b are
sufficiently small. Let B;, i = 1, 2, bethe two componentsof A\ {(8,r) : 0 € I1 U I2}.
With A sufficiently small, F wraps each B; around A (in the horizontal direction) at least
once, with F (B;) crossing completely B; every timethey meet. This, on the topological
level, is the standard construction of a horseshoe. Let

A:={z€A:F"(z)e B1UBy VnelZ}.

With b sufficiently small, the uniform hyperboalicity of F|A followsfrom Lemma4.3.
This completes the proof of Theorem 2.

5. Proof of Theorem 3

5.1. Conditionsfrom[WY] for strange attractors. Asexplained in the introduction, the
proof of Theorem 3 is obtained largely via a direct application of [WY] — provided the
conditionsin Sect. 1.1 of [WY] are verified. For the convenience of the reader, we give
a self-contained discussion of these conditions here, modifying one of them to improve
its checkability and adding a new one, (C4), to guarantee mixing. The notation in this
section isthat in [WY].

We consider afamilyof mapsT,, : A = S1x[—1,1] - A,wherea € [ag, a1] C R
and b € By C R, Bg being any subset with 0 as an accumulation point.*

In this setup, b is ameasure of dissipation; our results hold for b sufficiently small.
We explain therole of the parameter a: For systemsthat are not uniformly hyperbolic, a
scenario that competes with that of strange attractors and SRB measures is the presence
of periodic sinks. In general, arbitrarily near systemswith SRB measures, there are open
sets of maps with sinks; proving directly the existence of an SRB measure for a given
dynamical system requiresinformation of arbitrarily high precision. We get around this
problem by considering one-parameter families, in our casea +— T, p, and by showing
that if a family satisfies certain reasonable conditions, then a positive measure set of
parameters with SRB measures is guaranteed. We now state our conditions on these
families.

4 In[WY], Bg istaken to be an interval but the formulation hereisall that is used.
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(C1) Regularity conditions.

(i) For eachb e By, thefunction (x, y, a) — T, p(x, y) iS 3 andasb — 0, these
functions convergein the C2 normto (x, y, a) — Ta.0(x, y).

(if) For each b # 0O, T, ;, isan embedding of A into itself, whereas T, o is a singular
map with 7, o(A) C S x {0}.

(iii) Thereexists K > 0 such that for all a, b with b # O,

|det DT, 4(2)] ;o
— = <K Vz,Z e ST x[-11].
| det D745 (2")] =44

As before, we refer to T, o as well as its restriction to S x {0}, i.e. the family of
one-dimensional maps f, : St — S* defined by £, (x) = T,.0(x, 0), as the singular
limit of T, 5. Therest of our conditions are imposed on the singular limit alone.

The second condition in [WY] is:

(C2) Thereexistsa* € [ao, a1] suchthat f = f,+ satisfies the Misiurewicz condition.

The Misiurewicz condition (see [M]) encapsulates a number of properties some of
which are hard to check or not needed in full force. We propose here to replace it by
(C2), aset of conditions that is more directly checkable (although alittle cumbersome
to state). That the results in [WY] are valid when (C2) is replaced by (C2') below is
proved in LemmaA.1 in the Appendix.

(C2) Existence of a sufficiently expanding map from which to perturb.
There exists a* € [ap, a1] such that f = f,« has the following properties: There are
numbersc; > 0, N1 € Z*+, and a neighborhood I of the critical set C such that

(i) fisexpandingon ST\ I in thefollowing sense:
@ ifx, fx, -, f"7hx ¢ Ln = Ny then |(f") x| > et
(b) ifx, fx,---, f"Ix ¢ Iand f"x € I, any n, then |(f") x| > e,
(i) f"x¢gIVxeCandn > 0;
(iii) in I, the derivative is controlled as follows:
(@ |f”| isbounded away from O;
(b) by following the critical orbit, every x € I \ C isguaranteed a recovery time
n(x)( )z 1 with the property that f/x ¢ I for 0 < j < n(x) and |(f"®) x| >
eCln X .

Next we introduce the notion of smooth continuations. Let C,, denote the critical set
of f,.Forx = x(a*) € C,*, thecontinuation x (a) of x toa near a* isthe unique critical
point of f, near x. If p isahyperbolic periodic point of f,+, then p(a) is the unique
periodic point of f, near p having the same period. It is afact that in general, if p isa
point whose f,+-orbit is bounded away from C,, then for a sufficiently near a*, there
isaunigue point p(a) with the same symbolic itinerary under f,,.

(C3) Conditions on f,+ and T« o.

(i) Parameter transversality. For eachx € Cy+,let p = f(x),andlet x(a) and p(a)
denote the continuations of x and p respectively. Then

d d do— o
—falx@) # - pla) Aa=a".
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(i) Nondegeneracy at “turns”.
d
5 ax.0(x,0) #0 Vx € Cg=.

The following fact often facilitates the checking of condition (C3)(i):

Lemma 5.1 (TTY], Sect. VII). Let f = fo+, and suppose 3, o iy < o° for
all x € C. Then

o [Qafa) f* D) laza [ d d
k2=(:) (fk)/(fx) = [%fa(x(a)) - Ep(a)iL_a* .

The main conditions in [WY] are contained in (C1)—C3) (or, equivalently, (C1),
(C2') and (C3)). The conclusions of Theorem 3, however, are more specific than those
of [WY], which allow the co-existence of multiple ergodic SRB measures. We now
introduce a fourth condition,®> which along with (C1)—(C3) implies the uniqueness of
SRB measures and their mixing properties. Thisimplication isproved in LemmaA.2in
the Appendix.

(C4) Conditions for mixing.

(i) et > 2wherecyisin(C2).

(i) Let Jq,---, J, betheintervals of monotonicity of f,«, andlet P = (p; ;) bethe
matrix defined by
)1 it f) DUy,
Pii=10 otherwise.

Then there exists No > 0 such that P2 > 0.

The discussion in this subsection can be summarized as follows:

Theorem 3. Assume {7, ,} satisfies (C1), (C2'), (C3) and (C4) above. Then for all
sufficiently small » > 0, there is a positive measure set of a for which 7, has the
propertiesin (1), (2) and (3) of Theorem 3.

We remark that [WY] contains a more detailed description of the dynamical pic-
ture than the statement of Theorem 3 and refer the interested reader there for more
information.

In the rest of this section the discussion pertains to the differential Eq. (1) defined
in Sect. 1.1All notation isasin Sect. 2.1. To prove Theorem 3, it suffices to verify that
for the parametersin question, 7, , satisfies the conditions above. Thisis carried out in
the next three subsections.

5 Condition (*) in Sect. 1.2 of [WY], the only condition in [WY] not implied by (C1)«(C3), is clearly
contained in (C4).
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5.2. Verification of (C2'): Expanding properties. Among the conditions to be checked,
(C2'), which guarantees a suitable environment from which to perturb, is arguably the
most fundamental of the four. It is also the one that requires the most work. In this
subsection, we will — after placing some restrictions on A and g — show that (C2') is
vdid for al f, for which (C2')(ii) is satisfied. The existence of a satisfying (C2')(ii) is
the topic of the next subsection.

Letxy, X2, - - - , Xx, bethecritical pointsof &g, andletks = m|n{1 s min; |<I>6(xz)|}
Wefix e = (®g) > 0 with the property that |x; — x;| > 4¢ fori # ] and |®g| > k2
onU;(x; — 2e, x; + 2¢), and claim that by choosing A and g sufficiently small, we may
assume the following about f,,. Let C denotethe critical set of f,, and let C, denotethe
e-neighborhood of C. Then

(i) C={xy, -, x g} with|x; — x;] < ¢;

(i) onC..|f/I > %2.

To justify these claims, observe first that by taking A small enough, the critical set of 7,
can be made arbitrarily close to that of ®qg. Second, by choosing ¢o sufficiently small
(independent of 1), we can make || f, — fa||cs < i—l for &1 as small as we please
(Lemma 2.3). These observations together with f:;’ = %CDS imply (i) and (ii).

A number of other conditions will be imposed on A; they will be specified as we go
along. Some of these conditions are determined via an auxiliary constant K > 1 which
depends only on ®q and which will be chosen to be large enough for certain purposes.
Leto = 2k2_1K3A. We assume %0 < &, sothat [f/(x)| > K3forx € C; \ C%g. We

also assume A is small enough that | £/| > K3 outside of C.. Together these imply
(i) |f.| > K° outside of Ci,-
For simplicity of notation, we write f = f, intherest of this subsection.

Lemmab5.2.Letc € C besuchthat f"(c) ¢ C,V¥n > 0. Consider x with |x —¢| < 20
and let n(x) be the smallest n such that | /" (x) — f"(c)| > 31 K3, Thenn(x) > 1
and |(f"™))| = kaK"™ for some k3 = ka(Ko, k2).

Before giving the proof of thislemma, we first prove a distortion estimate.

Sublemma5.1Letx,y € St andn e Z* be such that w;, the segment between fx
and 'y, satisfies |o;| < 3= K3 and dist(w;, C) > 3o for all i with0 < i < n. Then

(f”)’x<
f"y ~
Proof.
n—1 n—1 ; ;
f"'x F(f'x) L/ (ffx) = f/(f )l
=Y"lo :
By ; Py )—Z_;) TR

ta+ K°)|flx — fiyl
< Z

A+5) (5 L\ pret, e
<K—;<Zﬁ>|f" = 1

i=0
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Assuming that £ and K are sufficiently large, thisis< 1. o
Proof of Lemma 5.2. First we show n(x) > 1. Given the location of x, we have
K> |[f'x|=1f"®llx —c|

for some & between x and c¢. Thisimplies

_LIQ@ o
217 ®)P

1 /" 2
|fX—fC|=§|f (OIlx —cl
which we may assumeis < 3—,1(01(3A. For n(x) = 2, use

I(f%)x| - |x —c| > constk3®A and |x — ¢| < constK A.

We assume from here on that n = n(x) > 3, and estimate |(f")’(x)| as follows.
Since | f"x — f"c| > 3—,1(()K3k, it follows from Sublemma 5.1 that for some &1,

1- " _ 2 n—1y/ i 3

2If EDllx —cl=-2[(f" ) (fol > 3KoK A (12)
Reversing the inequality at timen — 1 and using Sublemma 5.1 again, we have

1 ” 2 1 n—2y/ i 3

2|f (E2)[lx —c|”- 2I(f ) (fol < 3KOK A (13)
Substituting the estimate for |( f*~1)’(f¢)| from (12) into

1
|l = 1 @llx — ¢l - El(f”_l)'(fc)l,

we obtain

l "

L@l 1 ,s 1

2|f"(1)| 2Ko lx — ¢

Now plug the estimate for |x — ¢| from (13) into the last inequality and use the lower

bounds for | f”(&2)| and |(f"~2)'(fc)| from (i) and (iii) earlier on in this subsection.
We arrive at the estimate

I(f") x| =

L@ 1 5, |FK¥D

2| f"(€1)1 3Ko 4= K30

— constK 3("-2+3

|(f")x] >

Thepower towhich K israisedis> nforn > 3. Thiscompletesthe proof of Lemmab.2.
i

We have proved the following: Suppose f, has the property that each of its critical
points ¢ satisfies f7(c) ¢ C, for adl n > 0. Then (C2')(i) and (iii) hold for f, with
I = C%G. This follows from properties (ii) and (iii) in the first part of this subsection
and from Lemma5.2.
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5.3. \erification of (C2'): “ Multiple Misiurewicz points’. The goal of this section is
to show that for many values of the parameter a, f, has the property that its critical
orbits (in strictly positive time) stay away from its critical set. Precise statements will
be formulated |ater. We remark that for the quadratic family x — 1 — ax? or any other
family with a single critical point, this is a trivial exercise: there are many periodic
orbits or compact invariant Cantor sets A digoint from the critical set, and if changesin
parameter correspond to the movement of £, (¢) in areasonableway, then therewould be
many parametersfor which f,(c) € A. We call these parameters“Misiurewicz points’.
For maps with more than one critical point, as circle maps necessarily are, the required
condition is that all of the critical orbits are trapped in some invariant set away from
C. Thisis clearly more problematic, especially with A having measure zero. We call
parameters with these properties “multiple Misiurewicz points’. Their existence and
O())-density within the family { f,,} isthe concern of this subsection.

Recall that o0 = 2k2‘1K3k and C, isthe o-neighborhood of C. Recall aso from
Sect. 5.2 that outside of C,, | f/| > K3. We are looking for a parameter «* such that
f = fu hastheproperty thatforall ¢ € C, f"c & CoVn > 0.WriteC = {x1, - -+ , x4, }
asbefore, and let A beaparameter interval. Fork =1,2,--- ,kpandi =1,2,---,we
introduce the curves of critical points

a > yi(k)(a) = f;(xk),a eA.
Observe that for all k, Ly = 1, and for all i,

d
i@ = Y@ f0 @) + 1.

Thusif ¥V (a) ¢ C, forall j < i and K issufficiently large, then

d
—ylﬁ(a)fv— O @) £,0% @) (14)
and
1
i@ = 5K (15)

We also have the following distortion estimate:

Sublemma5.2Fork=1,2,--- ,kpandn € ZT,let A C [0, 1) besuchthaty(k)(a) ¢
Cofori=1,2---,n—1 Assumethat|y(k) | < 3,1( K3x. Thenfor all a,a’ € A, we
have ©

da Vn (a)

(k
Ly®@y| ™

Using (14) and (15), we seethat the proof isentirely parallel to that of Sublemmab.1
with dightly weaker estimates. We leave it as an exercise for the reader.

Let d bethe minimum distance between critical points. Choosing 2 sufficiently small,
we may assume 6k1o << d. Thefollowing isthe main result of this subsection.

Lemma 5.3.Given Ag C [0, 1) with |Ag| = 6ky0, there exists a* € Ag such that
VeeC, flic € CoVn > 0.
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Proof. We describe first an algorithm for selecting a sequence of intervals Ag D A1 D
A2 D --- sothat a* € N; A; hasthe desired property:

Atstepn, the (kg +1)-tuple (Ay; i1n, i2n, -+ - » iky,n) iScCalled an* admissible config-
uration” if A, isasubinterval of Ag, ix,, < n, and thefollowing conditions are satisfied
for each k:

(A1) y P, NCy =Gforali <ip
(A2) fordla,a € A,,

(k
da yik

(@)

PGP
Ly

(A3) (“minimum length condition™) |yl.(kkj s1la,l = 12ki0.

Observe that (A3) is about the length of the critical curve one iterate | ater.

Let us first show that we have an admissible configuration for n = 1. Let iy 1 = 1

for all k. The parameter interval A1 is chosen as follows. Since %yl(k) = 1, we have

|y1(k)|A0| = 6k10, so that yl(k) meets at most one component of C,, and |(y1(k))—1C0| <
20 . Evenintheworst case scenario when all k1 intervals (yl(k))*lcg are evenly spaced,
there existsan interval A1 C Ag with |A1| = 20 such that ;/1(")|A1 NCy, = ¢foradlk.
Equations (A1) and (A2) aretrivialy satisfied, asis (A3) since |y |a,| > 20 K3, and
2K 3 isassumed to be > 12k;.

We now discuss how to proceed at a generic step, i.e. step n, assuming we are
handed an admissible configuration (A,; i1,n, i2.s, - - - , iky,n). First, we divide the set
{1,2,---,k1} intoindices k that are “ready to advance”, meaning the situation is right
for the k™ curve to progress to the next iterate, and those that are not. Say k € A if

(A4) |yi(kk: la,| < 3—ng 31 (distortion estimate holds for the next iterate);
(A5) |7/i§(k,3 41la,| < d (image of the next iterate meets at most oneinterval in Cy).

Consider first thecasewhere A # 0. Weset iy 41 = i n+1fork € A, ix nt1 = ikn
otherwise, and look for A,+1 C A, SO that (Ayq1;i1n41, -, iky,n+1) 1S @QaN an
admissible configuration.

Let k € A. By virtue of (A3) and (A5), we have 12k10 < |Vi§(k:+1| A, < d, sothat
the fraction of yl.ik:+l| A, INCy is< Wll- By virtue of (A4) and Sublemma 5.2, we have

good control of the distortion of a — %yﬁﬂ. Together this gives
00180 72Col < 2 A, (16)
lkn+1'70 - 3k1

By the same geometric argument asinthe casen = 1, thereexistsasubinterval A, 1 C
A, of length 3—,%1|A,,| with the property that Viil,{,?H' A1 NCo =P fordl k € A. For
thischoice of A, 1, wehave (A1) by design, and (A2) isgiven by (A4) from stepn. As
for (A3), observe that by the same reasoning as in (16), the pullback of any interval of
St of length 20 has length < yll|An|, S0 |Vi§€kj+l|An+l| > 20, and oneiterate later, it is
guaranteed to have length > 2K 3o. Y
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Consider now k ¢ A. Conditions (A1) and (A2) areinherited from the previous step,
and (A3) is checked asfollows: If k ¢ A because (A4) fails, then

(k) 3
|yik,n+l|A"+1| = 2’ 3_l<1|yi"-”|A”| > cK*A,

where ¢ is a constant independent of K of . Notice that this uses only the distortion
estimate from step 1. One iterate later, this curve will have length > ¢K 8, which we
may assumeis > 12kio. If (A4) holds but (A5) fails, then the distortion estimate holds
for the next iterate, and

®) 1w
|yik,n+1+1|An+1| = %'yik,n-Fl'An' > Cd,

which we may also assumeis > 12k10. This completes the construction from step n to
stepn + 1 when A # @.

If A = @, then we let A/, be the left half of A,, and observe that the (n + 1)-
tuple (A); i1.n, i2.0, -+, iky.n) IS &gaiN admissible. To verify (A3), we fix k, and argue
separately as in the last paragraph the two cases corresponding to (i) the failure of
(A4) with respect to A,, and (ii) the failure of (A5) but not (A4). Repeat this process if
necessary until A # . O

5.4. Verification of (C1), (C3) and (C4). We now verify the remaining conditions in
Sect. 5.1. Observe from the arguments below that (C1) and (C3)(ii) are quite natural for
systems arising from differential equations, while (C3)(i) and (C4) are, to alarge extent,
consequences of the fact that the maps £, are sufficiently expanding.

Verification of (C1): Let F, denote the time-zo-map of (2) (the period of the forcing
continues to be T'). Then (i) follows from the fact that F;, has bounded C3 norms on
S x [—1, 1; (ii) is obvious, and (iii) is a consequence of the fact that det(D Fr) =
e M=) det(DF,).

\erification of (C3): For (i), since (3, f,)(-) = 1 and |(f*)'(fx)| = K*, Lemma5.1
applies, and the quantity in question has absolutevalue> 1 — > L > 0.Part(ii)is
Lemma 2.3(i).

Verification of (C4): (i) isproved since et = K > 2. For (ii), by choosing A sufficiently
small depending on @y, it is easily arranged that p; ; = 1for all i, j.
This completes the proof of Theorem 3.

i>1 i

Appendix

We supply here the proofs of the two lemmas promised in Sect. 5.1. This appendix has
to be read in conjunction with [WY].

Lemma A.4. All the theorems in [WY] remain valid if the Misiurewicz condition in
Sep |, Sect.1.1, of [WY] isreplaced by condition (C2') in Sect. 5.1 of this paper.

Proof. The three most important uses of the Misiurewicz condition in [WY] are:

— the nondegeneracy of the critical points (thisis guaranteed by (C2')(iii)(a));
— every critical orbit stays afixed distance away from C (thisis precisely (C2')(ii));
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— there exist cg, ¢ > 0 such that for every critical point x, [(f™) (fx)| > coe” (thisis
guaranteed by (C2')(i) and (ii)).

These three properties aside, the only conseguences of the Misiurewicz condition used
in[WY] are contained in

Lemma 2.5 of [WY]. Let Cs denotethes-neighborhood of C. Thenthereexist ¢g, ¢1 >
0 such that the following hold for all sufficiently small § > 0: Let x € S be such that
x, fx,--, f"Ix & Cs, any n. Then

(i) 1™ x| = code; A
(ii) if,inaddition, f"x € Cs, then |(f") x| > ége V.

We claim that the conclusions of thislemmaalso follow from (C2'). Letny < --- <
ng, 0 < ny, ng < n,bethetimeswhen f"x e I. Then

= |(f")'x| = et by (C2')(i)(b);
— |(frETY (fMix)| = etiaTni) by (C2')(iii)(b) followed by (i)(b);
— (") (fra)l = |/ (frax)] - (DY (fratia),

where | f/(f"x)| = | f"(€)ld(x, C) = cod by (C2')(iii)(a)

and |(f"~ et DY (frathn)| = cger =t D) by (C2')(i)(a).

Together these inequalities prove both of the assertionsinthelemma. O

LemmaA.5. Let {T, ,} be asin Sect. 5.1 of this paper, and let A be the set of (a, b)
suchthat T = T, satisfies the conclusions of Theorem 1 in [WY]. Suppose {7, »} also
satisfies (C4), and § is smaller than a number depending on c¢1. Then

(i) T admitsat most one SRB measure u;
(it) (T, w) ismixing.

Proof. Let {x1 < --- < x,} be the set of critica points of f. Consider a segment
@ C 9 Rg corresponding to an outermost /,,; at one of the components of C O First we
claimthereexiss N € Zt and ® C w suchthat T'"@NC© = gforal 0 <i < N and
TN & connects two components of C©.

Thisclaimisproved asfollows. Let ' denote the image of w at the end of its bound
period. Then ' has length > 8%, We continue to iterate, deleting all parts that fall
into CQ. Then i steps later, the undeleted part of 77w’ is made up of finitely many
segments. Suppose that for all i < n, none of these segmentsislong enough to connect
two components of C©, so that the number of segments deleted up to step i is < 2. We
estimate the average length of these segments at time n as follows: First, the pull-back
to o’ of all the deleted parts hastotal measure < Y. 27e =1 (28) by (C2')(i)(b). Since
2 < ¢“1 by (C4)(i), we may assume thisis < 36%# provided § is sufficiently small. The
undeleted segments of 7" w add up, therefore, to > 1" %8’(/3 in length, and since there

areat most 2" of them, their average length is > 27" 1" %3’“3. Thus one seesthat asn
increases, there must come a point when our claim isfulfilled.

Next we observe that if w isa C?(b) segment connecting two components of C©,
then using (C4)(ii) and reasoning as with finite state Markov chains, we have that for
everyn > No andevery k € {1, --- , r}, thereis a subsegment w, y C w such that for
dli <n, T'w,; NCO = @ and T"w, ; stretches across the region between x; and
xr+1, extending beyond the critical regions containing these two points.
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Recall that in [WY], Sects. 8.1 and 8.2, a finite number of ergodic SRB measures
{ui, i < r'} are constructed, and it is shown in Sect. 8.3 that these are al the ergodic
SRB measures T' has. The discussion above shows that starting at any reference set, a
segment w C 9 Rg as above will spend a positive fraction of timein every reference set,
proving that r’ < 1. Furthermore, starting from any reference set, the return time to it
takes on all values greater than some Np, proving that ©q ismixing. O

6. Concluding Remarks

e For area-preserving maps, it iswell known that when integrability first breaks down,
the phase portrait is dominated by KAM curves. Farther away from integrability, one
sees larger Birkhoff zones of instability interspersed with elliptic islands. Continuing to
move toward the chaotic end of the spectrum, it is widely believed — though not proved
— that most of the phase space is covered with ergodic regions with positive Lyapunov
exponents.

This paper deals with the corresponding pictures for strongly dissipative systems.
We consider asimple model consisting of aperiodically forced limit cycle. Keeping the
magnitude of the“kick” constant, we provethat scenariosroughly parallel to thoseinthe
last paragraph occur for our Poincaré maps, with attracting invariant circles (taking the
place of KAM curves), periodic sinks (instead of elliptic islands), and as the contractive
power of the cycle diminishes, we prove that the stage is shared by at | east two scenarios
occupying parameter sets that are delicately intertwined: horseshoes and sinks, and
strange attractors.

By “strange attractors’, we refer to attractors characterized by SRB measures,
positive Lyapunov exponents, and strong mixing properties. For the differential equation
in question, we prove that the system has global strange attractors of this kind for a
positive measure set of parameters.

e Our second point has to do with bridging the gap between abstract theory and con-
crete problems. Today we have afairly good hyperbolic theory, yet chaotic phenomena
in naturally occurring dynamical systems have continued to resist analysis. One of the
messages of this paper is that for certain types of strange attractors, the situation is
now improved: For attractors with strong dissipation and one direction of insta-
bility, there are now relatively simple, checkable conditions which, when satisfied,
guarantee the existence of an attractor with a detailed package of statistical and
geometric properties.Our conditions are formul ated to give rigorous results, but where
rigorous analysis is out of reach, they can also serve as a basis for numerical work to
provide justification for various mathematical statements about strange attractors.
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