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Abstract: We prove that simple mechanical systems, when subjected to external peri-
odic forcing, can exhibit a surprisingly rich array of dynamical behaviors as parameters
are varied. In particular, the existence of global strange attractors with fully stochastic
properties is proved for a class of second order ODEs.

Introduction

In the history of classical mechanics, dissipative systems received only limited attention,
in part because it was believed that in these systems all orbits eventually tended toward
stable equilibria (fixed points or periodic cycles). Evidence that second order equations
with a periodic forcing term can have interesting behavior first appeared in the study
of van der Pol’s equation, which describes an oscillator with nonlinear damping. The
first observations were due to van der Pol and van der Mark. Cartwright and Littlewood
proved later that in certain parameter ranges, this equation had periodic orbits of different
periods [CL]. Their results pointed to an attracting set more complicated than a fixed
point or an invariant curve. Levinson obtained detailed information for a simplified
model [Ln]. His work inspired Smale, who introduced the general idea of a horseshoe
[Sm], which Levi used later to explain the observed phenomena [Li1].

A number of other differential equations with chaotic behavior have been studied in
the last few decades, both numerically and analytically. Examples from the dissipative
category include the equations of Lorenz [Lo, G, Ro, Ry, Sp, T, W], Duffing’s equation
[D, Ho], Lorentz gases acted on by external forces [CELS], and modified van der Pol
type systems [Li2]. For a systematic treatment of the Lorenz and Duffing equations,
see [GH]. While some progress has been made, the number of equations for which a
rigorous global description of the dynamics is available has remained small.

� This research is partially supported by a grant from the NSF
�� This research is partially supported by a grant from the NSF
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In this paper, we consider an equation of the form

d2θ

dt2
+ λ(

dθ

dt
− 1) = 	(θ)PT (t),

whereθ ∈ S1 andλ > 0. If the right side is set identically equal to zero, this equation
represents the motion of a particle subjected to a constant external force which causes
it to decelerate when its velocity exceeds one and to accelerate when it is below one.
Independent of the initial condition, the particle approaches uniform motion in which it
moves with velocity equal to one. To this extremely simple dynamical system, we add
another external force in the form of apulse: 	 is an arbitrary function,PT is time-
periodic with periodT , and for t ∈ [0, T ), it is equal to 1 on a short interval and 0
otherwise. We learned after this work was completed that a similar equation has been
studied numerically in the physics literature by G. Zaslavsky.1

We prove that the system above exhibits, for different values of λ and T , a very rich array
of dynamical phenomena, including

(a) invariant curves with quasi-periodic behavior,
(b) gradient-like dynamics with stable and unstable equilibria,
(c) transient chaos caused by the presence of horseshoes, with almost every trajectory

eventually tending to a stable equilibrium, and
(d) strange attractors with SRB measures and fully stochastic behavior.

These results are new for the equation in question.As abstract dynamical phenomena,
(a)–(c) are fairly well understood, and their occurrences in concrete models have been
noted; see [GH]. The situation with regard to (d) is very different. The analysis that allows
us to handle attractors of this type was not available until recently. To our knowledge,
this is the first time a concrete differential equation has been proved analytically to have a
global nonuniformly hyperbolic attractor with an SRB measure.2 We regard Theorem 3,
which discusses the strange attractor case, as the main result of this paper.

Our proof of Theorem 3 is based on [WY], in which we built a dynamical theory
for a (general) class of attractors with one direction of instability and strong dissipation.
In [WY], we identified a set of conditions which guarantees the existence of strange
attractors with strong stochastic properties. The properties in question include most of
the standard mathematical notions associated with chaos: positive Lyapunov exponents,
positive entropy, SRB measures, exponential decay of correlations, symbolic coding of
orbits, fractal geometry, etc. The occurrence of scenario (d) above is proved by checking
the conditions in [WY]. For the convenience of the reader, we will recall these conditions
as well as the package of results that follows once these conditions are checked.

Our purpose in writing this paper is not only to point out the range of phenomena
that can occur when simple second order equations are periodically forced, but to bring
to the foreground the techniques that have allowed us to reach these conclusions in a
relatively straightforward manner. These techniques are clearly not limited to the systems
considered here. It is our hope that they will find applications in other dynamical systems,
particularly those that arise naturally from mechanics or physics.

1 Zaslavsky produced in [Z1] numerical evidence of strange attractors. He also discussed in [Z2] how this
model can be viewed as a strong idealization of the turbulence problem.

2 Levi proved in [Li1] the occurrence of scenario (c) for his modified van der Pol systems, not scenario (d)
as is sometimes incorrectly reported.
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1. Statement of Results

1.1. Setting and assumptions. Consider the differential equation

d2θ

dt2
+ λ

dθ

dt
= µ + 	(θ)PT (t), (1)

whereθ ∈ S1, λ,µ > 0 are constants,	 : S1 → R is a smooth function, andPT has
the following form: for somet0 < T , PT satisfies

PT (t) = PT (t + T ) for all t

and

PT (t) =
{

1 for t ∈ [0, t0],
0 for t ∈ (t0, T ).

As discussed in the introduction, (1) describes a simple mechanical system consisting of a
particle moving in a circle subjected to an external time-periodic force. Withr = dθ

dt
− µ

λ
,

(1) is equivalent to

dθ

dt
= r + µ

λ
,

dr

dt
= −λr + 	(θ)PT (t).

(2)

Let FT denote the time-T -map of (2), that is, the map that transforms the phase space
S1 × R from time 0 to timeT . Unless explicitly stated otherwise, when we writeFT , it
will be assumed thatT is the period of the forcing.

We setµ = λ for simplicity, and normalize the forcing term as follows: Given a
function	0 : S1 → R, we let	 = 1

t0
	0, that is to say, the magnitude of this part

of the force is taken to be inversely proportional to the duration of its action, and the
proportionality constant is taken to be 1 for simplicity. Our analysis will proceed as
follows:

* The function	0 is fixed throughout. With the exception of Theorem 2(b) (where more
is assumed), the only requirements are that	0 is of classC4 and all of its critical
points are nondegenerate.

* We assumet0 < 1
10 min{λ−1,K−2

0 }, whereK0 = max{‖	0‖C4,1}. Further restric-
tions ont0 are imposed in each case as needed. (We do not regardt0 as an important
parameter and will assume it is as small as the arguments require.)

* The two important parameters areλ andT . We will prove that (i) the properties of (1)
are intrinsically different forλ small and forλ large, and (ii) for fixedλ, the properties
of (1) depend quite delicately on the value ofT .

To interpret our results correctly, the reader should keep in mind that the dynamical
pictures described below are not the only ones that can occur, and it is possible to have
combinations of them, such as sinks and strange attractors, on different parts of the phase
space. Our aim here is to identify several importantpure dynamics types, to indicate the
nature and approximate locations of the parameter sets on which they occur, and to
convey a sense ofprevalence, meaning that these phenomena occur naturally and not as
a result of mere coincidence.
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1.2. Statements of theorems. The setting of Sect. 1.1 is assumed throughout.We consider
the discrete-time system defined by the Poincaré mapFT . Precise meanings of some
of the technical terms are given after the statements of the theorems. Theorem 3 is our
main result. The scenarios presented in Theorems 1 and 2 are also integral parts of the
picture.

Theorem 1 (Existence of invariant curves).Let λ ≥ 4K0 and T ≥ t0 + 3
2 . Then there

is a simple closed curve � of class C4 to which all the orbits of FT converge. Moreover,
we have the following dichotomy:

(a) (Quasi-periodic attractors) Let �0 = {T : ρ(T ) ∈ R \ Q}, where ρ(T ) is the
rotation number of FT |�. Then (i) �0 intersects every unit interval in [3

2,∞) in a
set of positive Lebesgue measure, and (ii) the following hold for T ∈ �0: FT |�
is topologically conjugate to an irrational rotation, and for every z ∈ S1 × R,
1
n

∑n−1
0 δF i

T z
converges weakly to µ where µ is the unique invariant probability

measure on �.
(b) (Periodic sinks and saddles)There is an open and dense subset�1 of [t0+ 3

2,∞)\�̄0
such that for T ∈ �1, FT has a finite number of periodic sinks and saddles on �.
Every orbit of FT converges to one of these periodic orbits.

Theorem 2 is elementary; it uses standard techniques, and	0 is required only to be
C2.We include this result because the dynamical pictures described occur for a nontrivial
set of parameters.

Theorem 2 (Convergence to stable equilibria).

(a) (Gradient-like dynamics) ∃λ0 < max|	′
0| such that ∀λ > λ0, if t0 is sufficiently

small, then there are open intervals of T for which FT has a finite number of periodic
points all of which are saddles or sinks, and every orbit not on the stable manifold
of a saddle tends to a sink.

(b) (Transient chaos)Assume 	0 has exactly two critical points. Then there exist inter-
vals of λ accumulating at 0 such that for each of these λ, if t0 is sufficiently small, then
there are open intervals of T for which FT has a periodic sink and a “horseshoe”,
i.e. a uniformly hyperbolic invariant set � such that FT |� is conjugate to a shift of
finite type with positive topological entropy. Lebesgue-a.e. z ∈ S1 × R is attracted
to the sink as n → ∞.

Remarks. (i) The picture in Theorem 2(a) is more general than that in Theorem 1(b):
there are no simple closed invariant curves in general (see Proposition 4.1).
(ii) We describe the scenario in Theorem 2(b) as “transient chaos” for the following
reasons:�being an invariant set, points near it tend to stay near it for some period of time,
mimicking the dynamics on�. This chaotic behavior, however, is transient, because�

has Lebesgue measure zero, and for a typical initial condition, the orbit eventually leaves
� behind and heads for a sink.

Our next result deals with a notion of chaos that is sustained through time.A compact,
FT -invariant set� ⊂ S1 × R is called aglobal attractor for FT if for everyz ∈ S1 × R,
dist(F n

T z,�) → 0 asn → ∞. In order not to interrupt the flow of ideas, we postpone
the technical definitions of some of the terms used in Theorems 2 and 3 to after the
statements of both results.

Here is our main result:
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Theorem 3 (Strange attractors).For the parameters specified below, F = FT has a
strange attractor, a description of which follows:

Relevant parameter set. There exist λ̄, t̄0 > 0 such that for every λ < λ̄ and t0 < t̄0,
there is a positive Lebesgue measure set � = �(λ, t0) in T -space for which the results
of this theorem hold; � ⊂ [T0,∞) for some large T0, and meets every subinterval of
[T0,∞) of length O(λ) in a set of positive Lebesgue measure.

Dynamical characteristics. Let λ < λ̄, t0 < t̄0, and T ∈ �(λ, t0). Then F = FT has
a global attractor � with the following dynamical properties:

(1) Hyperbolic behavior. F |� is nonuniformly hyperbolic with an identifiable set C ⊂
� which is the source of all nonhyperbolic behavior. More precisely:
(a) C = ∪iCi where Ci is a Cantor set located near (θ, r) = (ci,0), ci being the

critical points of 	0; at each z ∈ C, stable and unstable directions coincide, i.e.
there is a vector v with ‖DFn(z)v‖ → 0 exponentially fast as n → ±∞.

(b) Away from C the dynamics is uniformly hyperbolic. More precisely, let

�ε := {z ∈ � : dC(F nz) ≥ ε∀n ∈ Z},
where dC(·) is a notion of distance to C. Then � is the closure of ∪ε>0�ε, �ε

is a uniformly hyperbolic invariant set for each ε > 0, and the hyperbolicity of
F |�ε deteriorates (e.g. minimum � (Eu,Es) → 0) as ε → 0.

(2) Statistical properties.
(a) F admits a unique SRB measure µ supported on �.
(b) With the exception of a Lebesgue measure zero set of initial conditions, the

asymptotic behavior of every orbit of F is governed by µ. More precisely, for
Lebesgue-a.e. z ∈ S1 × R, if ϕ : S1 × R → R is a continuous function, then
1
n

∑n−1
0 ϕ(F iz) → ∫

ϕdµ as n → ∞.
(c) (F, µ) is ergodic, mixing, and Bernoulli.
(d) For every observable ϕ : � → R of Hölder class, the sequence

ϕ, ϕ ◦ F, ϕ ◦ F 2, · · · , ϕ ◦ Fn, · · ·
viewed as a stochastic process with underlying probability space (�,µ) has
exponential decay of correlations and obeys the Central Limit Theorem.

(3) Symbolic coding and other geometric properties.
(a) Kneading sequences are well defined for all critical orbits, i.e. all orbits ema-

nating from C.
(b) With respect to the partition defined by the fractal sets Ci , the coding of orbits

in � is well defined and essentially one-to-one. More precisely, if σ is the shift
operator, then there is a closed subset & ⊂ '∞−∞{1, · · · , s} with σ(&) ⊂ & and
a continuous surjection π : & → � such that π ◦ σ = F ◦ π ; moreover, π is
one-to-one except over ∪∞−∞F iC, where it is two-to-one. (In general, (&, σ ) is
not a shift of finite type.)

(c) Let htop(F ) denote the topological entropy of F , Nn the number of cylinder sets
of length n in & above, and Pn the number of fixed points of Fn. Then

htop(F ) = lim
n→∞

1

n
logNn = lim

n→∞
1

n
logPn.

Moreover, F has an invariant measure of maximal entropy.
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For a more detailed description of the dynamics on these strange attractors, see [WY].
We review below the definitions and related background information for some of the
technical terms used in the theorems. For more information on this material, see [KH]
and [Y1].

A compactF -invariant set� is calleduniformly hyperbolic if the following hold: (1)
The tangent space at everyx ∈ � splits intoEu(x)+Es(x)with minx∈� � (Eu,Es) > 0;
(2) this splitting isDF -invariant; and (3) there existC ≥ 1 andσ < 1 such that for all
x ∈ � andn ≥ 0, ‖DFn(x)v‖ ≤ Cσn‖v‖ for all v ∈ Es(x), ‖DF−n(x)v‖ ≤ Cσn‖v‖
for all v ∈ Eu(x).

In Theorem 3(1)(b), not only does min� (Eu,Es) → 0 asε → 0, we haveC → ∞
as well. This means the smallerε, the longer it takes for the geometry of hyperbolic
behavior to take hold.

An F -invariant Borel probability measureµ is called anSRB measure if F has
a positive Lyapunov exponentµ-a.e. and the conditional measures ofµ on unstable
manifolds are equivalent to the Riemannian volume on these leaves. SRB measures are
of physical relevance because they can be observed: in dissipative dynamical systems,
all invariant probability measures are necessarily singular, but ergodic SRB measures
with nonzero Lyapunov exponents have the property that there is a positive Lebesgue
measure set of pointsz for which 1

n

∑n−1
0 ϕ(F iz) → ∫

ϕdµ asn → ∞ for every
continuous functionϕ.

Referring to the set of pointsz above as themeasure-theoretic basin of µ, Theorem
3(2)(b) says that the measure-theoretic basin here is not just a positive Lebesgue measure
set, it is, modulo a set of Lebesgue measure zero, the entire phase space.

By a decomposition theorem for SRB measures with no zero exponents ([Le]), the
uniqueness ofµ implies that it is ergodic, and the mixing and Bernoulli properties are
equivalent to(F n, µ) being ergodic for alln ≥ 1.

We say the dynamical system(F, µ) hasexponential decay of correlations for Hölder
continuous observables if given a Hölder exponentη, there existsτ = τ(η) < 1 such that
for all ϕ ∈ L∞(µ) andψ : � → R Hölder with exponentη, there existsK = K(ϕ,ψ)

such that ∣∣∣∣
∫

(ϕ ◦ Fn)ψdµ −
∫

ϕdµ

∫
ψdµ

∣∣∣∣ ≤ K(ϕ,ψ)τn

for all n ≥ 1. Finally, we say theCentral Limit Theorem holds forϕ with
∫
ϕdµ = 0 if

1√
n

∑n−1
0 ϕ ◦ F i converges in distribution to the normal distribution, and the variance

is strictly positive unlessϕ ◦ F = ψ ◦ F − ψ for someψ .

1.3. Illustrations. Figure 1 below shows the approximate location and shape of the
invariant curve or strange attractor (corresponding to different values ofλ andT ) for the
time-T -mapFT : S1 × R → S1 × R.

Figure 2 explains the mechanisms behind the changes in the dynamical picture as
λ decreases. The straight line in (a) represents{r = 0} in (θ, r)-coordinates, and the
subsequent pictures show the images of this line (or circle) at various times under the
flow. Figure 2(b) shows the effect of the forcing; observe that it need not constitute a large
perturbation. Fort ∈ (t0, T ], the forcing is turned off, and the system relaxes to a limit
cycle with contraction ratee−λ. Figure 2(d) shows the image of{r = 0} for λ > 1 and
e−λT reasonably contractive; these parameters correspond to the existence of invariant
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Fig. 1. Left: Invariant curvesλ > 1; right: Strange attractorλ � 1

e- λ
speed ~ 1

(a)   t = 0

(b)  t = t 0

(c)  t   < t < T0

(d)  t = T,
     λ > 1

(e)   t = T,

(f)  t = T,

(g)  t = T,

λ

λ
further

λ << 1
T >> 1,

decreasing

decreasing

Fig. 2 a–g.Image of {r = 0} at time t
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curves. As λ decreases, the effect of the shear term in (2) becomes more prominent, as
shown in (e). As λ decreases further, one sees a phenomenon resembling “ the breaking
of the wave” which accompanies the break-up of the invariant circle. Finally, in Figure
2(g), a tubular neighborhood of {r = 0} is folded and mapped into itself, leading to the
formation of horseshoes and/or strange attractors.

2. Preliminary Information on the ODE

2.1. Singular limits. Let (
θ(t)

r(t)

)
=
(
θ(θ0, r0; t)
r(θ0, r0; t)

)

denote the solution of (2) with θ(0) = θ0 and r(0) = r0. Then a simple exercise gives

FT :
(
θ0

r0

)
�→

(
θ(T )

r(T )

)
=
(
θ(t0) + (T − t0) + r(t0)

λ
(1 − e−λ(T−t0))

r(t0)e
−λ(T−t0)

)
,

where the value of θ(T ) above is to be interpreted as mod 1 or on S1. We let a = {T − t0}
be the fractional part of T − t0, b = e−λn, where n = [T − t0] is the integer part of
T − t0, and let Ta,b = FT . Then

Ta,b :
(
θ0

r0

)
�→

(
θ(t0) + a + r(t0)

λ
− be−λa r(t0)

λ

be−λar(t0)

)
. (3)

(The appearance of “T ” in both FT and Ta,b is unfortunate; we hope it is not confusing.
We wish eventually to make a connection to [WY] and this notation is used there.)

We first fix t0 and λ, and let T → ∞. Clearly, b → 0 as T → ∞. The limit of FT

as T → ∞ does not exist. However, Ta,b has the following well defined singular limit
as b → 0:

Ta,0 :
(
θ0

r0

)
�→

(
θ(t0) + r(t0)

λ
+ a

0

)
. (4)

Let T 1
a,0 denote the first component of Ta,0. We will show in Sect. 2.3 that as t0 →

0, T 1
a,0 → T̂ 1

a,0, where

T̂ 1
a,0 :

(
θ0

r0

)
�→ θ0 + r0

λ
+ 1

λ
	0(θ0) + a. (5)

In later sections, we will also work with two families of circle maps fa and f̂a

obtained by restricting T 1
a,0 and T̂ 1

a,0 respectively to {r0 = 0}, i.e.

fa(θ0) = θ(θ0, 0; t0) + r(θ0, 0; t0)
λ

+ a;

f̂a(θ0) = θ0 + 1

λ
	0(θ0) + a.

While our results are not confined to these limiting situations, the relation between
FT and the objects that appear in Eq. (1), namely, 	0, λ and t0, can be made transparent
by comparing first Ta,b and Ta,0 and then T 1

a,0 and T̂ 1
a,0. This is how we will go about

obtaining information on FT .
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2.2. The time-t0-map. In this subsection we consider the solution of (2) for t ∈ [0, t0]
and record some derivative estimates. We first write

r(t) = u(t)e−λt ,

θ(t) = v(t) + t − 1

λ
u(t)e−λt .

(6)

Differentiating (6) and plugging into (2), we obtain

u(t) = u0 + 1

t0

∫ t

0
	0(θ(τ ))e

λτ dτ,

v(t) = v0 + 1

λt0

∫ t

0
	0(θ(τ ))dτ.

(7)

Substituted back into (6), this gives u0 = r0, v0 = θ0 + r0
λ

, and

r(t) =
(
r0 + 1

t0

∫ t

0
	0(θ(τ ))e

λτ dτ

)
e−λt ,

θ(t) = θ0 + t + r0

λ
(1 − e−λt )

+ 1

λt0

{∫ t

0
	0(θ(τ ))dτ − e−λt

∫ t

0
	0(θ(τ ))e

λτ dτ

}
.

(8)

We assume in the rest of this subsection that |r0| < 1.
Recall that K0 = max{‖	0‖C4 , 1}. We remark that in most of our bounds involving

K0, it is in fact not necessary to use the C4-norm. For example, K0 in Lemmas 2.1 and
2.4 can be replaced by the C1-norm of 	0.

Lemma 2.1.(i) |θ(t0) − θ0| < 5K0t0 ;
(ii)

max
t≤t0

∣∣∣∣∂θ(t)∂θ0
− 1

∣∣∣∣ < 4K0t0; max
t≤t0

∣∣∣∣∂θ(t)∂r0

∣∣∣∣ < 2t0;

(iii) ∣∣∣∣∂r(t0)∂θ0

∣∣∣∣ < 2K0;
∣∣∣∣∂r(t0)∂r0

∣∣∣∣ ≤ 2.

Proof. (i) From (8),

|θ(t) − θ0| < t + |r0|
λ

(1 − e−λt ) + 1

λt0

∣∣∣∣
∫ t

0
	0(1 − eλτ )dτ

∣∣∣∣
+ (1 − e−λt )

λt0

∣∣∣∣
∫ t

0
	0e

λτ dτ

∣∣∣∣ .
Using the inequalities 1 − e−x ≤ x and ex − 1 ≤ xex for x > 0 and the fact that
λt0 < 1

10 , we see immediately that the four terms above add up to < 5K0t0.

(ii)
∂θ

∂θ0
= 1 + A + B,
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where

A = 1

λt0

∫ t

0
	′

0
∂θ

∂θ0
(1 − eλτ )dτ,

B = 1

λt0
(1 − e−λt )

∫ t

0
	′

0
∂θ

∂θ0
eλτ dτ.

(9)

Letting 71 = maxt≤t0 | ∂θ(t)
∂θ0

− 1| and recalling that t0K0 < 1
10K

−1
0 ≤ 1

10 , we obtain

71 ≤ |A| + |B| ≤ 5

2
K0t0(71 + 1) ≤ 1

4
71 + 5

2
K0t0,

which implies that 71 < 4K0t0. Similarly, writing

∂θ

∂r0
= 1

λ
(1 − e−λt ) + Ã + B̃,

where

Ã = 1

λt0

∫ t

0
	′

0
∂θ

∂r0
(1 − eλτ )dτ,

B̃ = 1

λt0
(1 − e−λt )

∫ t

0
	′

0
∂θ

∂r0
eλτ dτ,

and reasoning as above, we arrive at the desired bound for ∂θ
∂r0

.

(iii) follows from (ii) and a straightforward computation. "#
We will also need estimates on higher derivatives.

Lemma 2.2.For i = 2 and 3,

max
0≤t≤t0

∣∣∣∣∣∂
iθ(t)

∂θ i0

∣∣∣∣∣ ≤ 20K0t0.

Proof. Letting A and B be as in (9), we have

∂2θ

∂2θ0
= ∂A

∂θ0
+ ∂B

∂θ0
,

where

∂A

∂θ0
= 1

λt0

∫ t

0

(
	′′

0

(
∂θ

∂θ0

)2

+ 	′
0
∂2θ

∂2θ0

)
(1 − eλτ )dτ,

∂B

∂θ0
= 1

λt0
(1 − e−λt )

∫ t

0

(
	′′

0

(
∂θ

∂θ0

)2

+ 	′
0
∂2θ

∂2θ0

)
eλτ dτ.

Let 72 = max0≤t≤t0

∣∣∣∣ ∂2θ(t)

∂θ2
0

∣∣∣∣. Similar reasoning as before gives

72 ≤ 5

2
K0t0(1 + 71)

2 + 1

4
72,

and thus 72 < 8K0t0. The proof for i = 3 is similar. "#
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2.3. Relating FT to 	0, λ and t0. Let T 1
a,0 and T̂ 1

a,0 be as in Sect. 2.1. Reading off θ(t0)
and r(t0) from Eq. (8), we have

T 1
a,0(θ0, r0) = θ0 + r0

λ
+ 1

λt0

∫ t0

0
	0(θ(t))dt + a.

From this, it follows immediately that |T 1
a,0 − T̂ 1

a,0| ≤ K0t0
λ

. We record the following
estimates for future use.

Lemma 2.3.(i)
4

5λ
<

∂T 1
a,0

∂r0
<

6

5λ
;

(ii) There is a numerical constant M0 such that for i = 1, 2, 3,∣∣∣∣∣∂
iT 1

a,0

∂θi0

− ∂i T̂ 1
a,0

∂θi0

∣∣∣∣∣ ≤ M0K
2
0 t0

λ
.

Proof. (i) Since
∂T 1

a,0

∂r0
= 1

λ
+ 1

λt0

∫ t0

0
	′

0
∂θ

∂r0
dt,

it suffices to observe that the second term on the right has absolute value bounded above
by 1

λ
K0(2t0) (Lemma 2.1(ii)), which is < 1

5λ .
(ii)∣∣∣∣∣∂T

1
a,0

∂θ0
− ∂T̂ 1

a,0

∂θ0

∣∣∣∣∣ = 1

λt0

∣∣∣∣
∫ t0

0
	′

0(θ(t))(
∂θ

∂θ0
− 1)dt +

∫ t0

0
(	′

0(θ(t)) − 	′
0(θ0))dt

∣∣∣∣
≤ K0

λ
(4K0t0 + 5K0t0) = 9K2

0 t0

λ

by Lemma 2.1(ii) and (i). For the second derivative,

∂2T 1
a,0

∂θ2
0

− ∂2T̂ 1
a,0

∂θ2
0

= 1

λt0

∫ t0

0

(
	′′

0

(
∂θ

∂θ0

)2

+ 	′
0
∂2θ

∂2θ0

)
dt

− 1

λ
	′′

0(θ0)

= 1

λt0

∫ t0

0
	′′

0

((
∂θ

∂θ0

)2

− 1

)
dt

+ 1

λt0

∫ t0

0
	′

0
∂2θ

∂2θ0
dt

+ 1

λt0

∫ t0

0
(	′′

0(θ(t)) − 	′′
0(θ0))dt.

Observe that each of the functions of the integrals is bounded by constant ·K2
0 t0. The

third derivative is estimated similarly. "#
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We are now ready to estimate the derivative of FT . Let T̂a,0 = (T̂ 1
a,0, 0). Then

DT̂a,0 =
(

1 + 1
λ
	′

0
1
λ

0 0

)
.

Lemma 2.4.

DFT =
(

1 + 1
λ
	′

0
1
λ

0 0

)
+
(
A1 B1

C1 D1

)
,

where

|A1| ≤ 9K2
0 t0

λ
+ 2K0

λ
e−λ(T−t0), |B1| ≤ 2K0t0

λ
+ 2

λ
e−λ(T−t0),

|C1| ≤ 2K0e
−λ(T−t0), |D1| ≤ 2e−λ(T−t0).

Proof. Comparing (3) and (4), and using Lemma 2.1, we see that

DTa,b = DTa,0 +
(
A2 B2

C2 D2

)
,

where |A2| ≤ 2K0
λ

e−λ(T−t0), |B2| ≤ 2
λ
e−λ(T−t0), |C2| ≤ 2K0e

−λ(T−t0), and |D2| ≤
2e−λ(T−t0). By Lemma 2.3,

DTa,0 = DT̂a,0 +
(
A3 B3

C3 D3

)
,

where |A3| ≤ 9K2
0 t0
λ

, |B3| ≤ 2K0t0
λ

and C3 = D3 = 0. "#

2.4. Absorbing sets. For dynamical systems with noncompact phase spaces, it is con-
venient to know that the action takes place in compact regions. An absorbing set for FT

is an open set A with compact closure such that FT (A) ⊂ A and for all z ∈ S1 × R,
there exists n = n(z) such that Fn

T z ∈ A.

Lemma 2.5.Assume λ(T − t0) ≥ 1. Then

A := {(θ, r) ∈ S1 × R : |r| < 4K0e
−λ(T−t0)}

is an absorbing set for FT .

Proof. Write (θn, rn) = Fn
T (z) for z = (θ0, r0). By (3) and (8) we have

|rn| < e−λ(T−t0)|rn−1| + 2K0e
−λ(T−t0).

With e−λ(T−t0) < 1
2 , this proves FT (A) ⊂ A. The other condition follows since induc-

tively we have

|rn| < e−nλ(T−t0)|r0| + 2K0

n∑
i=1

e−iλ(T−t0) < 4K0e
−λ(T−t0).

"#
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3. A View from the Singular Limit

Recall that fa is the restriction of T 1
a,0 to {r0 = 0} (see Sect. 2.1). We have thus defined,

for each choice of 	0, λ and t0, a one-parameter family of circle maps which represents
the behavior of Eq. (1) as T → ∞. Conversely, one can recover information on the
system defined by (1) if its singular limit {fa} is known: for large T or, equivalently,
small b > 0, FT = Ta,b can be thought of as a perturbation of fa or an “unfolding” of
fa to a small neighborhood of {r0 = 0}.

In this section, we look at the problem from the point of view of the singular limit.
Forgetting temporarily their connection to Eq. (1), we think of fa as abstract circle
maps. The following is a brief review of several types of behaviors that are known to
be “ typical” and a general discussion of existing methods for transporting these one-
dimensional behaviors to two dimensions.

The invertible case: circle diffeomorphisms. The classical theory of Poincaréand Denjoy
is well known (see any elementary text). We point out a striking resemblance between
f̂a and the well known family of circle maps first studied by Arnold [A]:

gµ,ε : x �→ x + µ + ε cos(2πx), ε ≥ 0.

A dichotomy of behavior was observed for this family: “ resonant wedges” in the (µ, ε)-
plane corresponding to rational rotation numbers, and the “devil’s staircase” defined by
µ �→ ρ(gµ,ε). These ideas are very much behind our results in Theorem 1.

For us, an important question is how to bring these results for fa to Ta,b for b > 0.
KAM techniques (using the intersection property) come to mind for the persistence
of invariant circles with Diophantine rotation numbers, but they will not be used here.
Because of strong normal contraction, invariant curves are shown to exist independent of
rotation number using techniques from hyperbolic theory. The situation is then reduced
to one dimension.

Smooth non-invertible circle maps. For general information on one-dimensional maps,
see e.g. [dMvS]. Two types of dynamical behaviors are known to be prevalent. They
are (i) maps with attractive periodic cycles, and (ii) maps with absolutely continuous
invariant measures. There is some evidence that these are the only observable pure
dynamics types. For the quadratic family Qa : x �→ 1 − ax2, (i) and (ii) together
account for a set of full Lebesgue measure in parameter space3 [Lyu2]. We discuss these
two cases separately.

(i) Periodic sinks. Continuing to use the quadratic family as a paradigm, we see that
period doubling occurs for a below some a0 (see e.g. [CE]). In this regime, Qa has
a periodic sink which attracts all points in the interval except for a finite number of
unstable periodic orbits and their pre-images. Above a0, there is an open set of a for
which Qa has an attractive periodic orbit, but the set of points not attracted to the sink
is now a complicated invariant set on which the map is uniformly expanding. The set of
parameters with this property has been shown to be dense ([GS] and [Lyu1]).

When the dynamical picture of a one-dimensional map is as above, it “unfolds” into
a two-dimensional diffeomorphism satisfying Smale’s Axiom A [Sm]. The passage of
uniform expansion in one dimension to uniform hyperbolicity in two dimensions is
relatively simple due to the robustness or stability of uniform hyperbolic behavior (see
e.g. [Sh]).

3 (i) and (ii) can easily occur on different parts of the phase space for multimodal maps.
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(ii) Absolutely continuous invariant measures. There is another type of dynamics that
is prevalent in the probabilistic sense.

Theorem ([J]). Let Qa : x �→ 1 − ax2, a ∈ [0, 2]. Then there exists a positive measure
set of a for which Qa has an absolutely continuous invariant probability measure with
a positive Lyapunov exponent.

The question here is: what does the existence of absolutely continuous invariant mea-
sures for fa tell us about Ta,b for b small? The answer to this question is far from simple,
and the situation was only resolved quite recently. It came as a result of two different sets
of developments. The first is an “abstract” theory of nonuniformly hyperbolic systems,
which provides a general framework for studying chaotic behavior. The most important
idea that has come out of this theory is probably the notion of an SRB measure ([Si, R1, B,
P, R2, Le, LY, PS,Y2]; see also [Y1] for an exposition). The other set of developments is
more directly related to small perturbations of one-dimensional maps. Pioneering work
in this direction was carried out by Benedicks and Carleson [BC], who achieved an im-
portant breakthrough on the Hénon maps. The utility of [BC] in applications, however,
is limited by the fact that it relied on computations using explicitly the formulas of the
Hénon maps. For other results related to the Hénon maps, see e.g. [BY, MV].

In a recent paper [WY], we extended the analysis in [BC] to a more general class
of attractors, namely those with strong dissipation, one direction of instability, and well
defined singular limits. We also developed the geometric and dynamical pictures of these
attractors more fully, merging some of the ideas from [BC] with those from general
nonuniform hyperbolic theory. Checkable conditions were given for the first time that
guarantee the existence of SRB measures and their stochastic behavior. The properties in
the statement of Theorem 3 is a summary of the results in [WY], and this entire package
is guaranteed once certain fairly simple conditions are satisfied. These conditions are
stated and checked for our equation in Sect. 5.

4. Proofs of Theorems 1 and 2

4.1. Proof of Theorem 1. We assume throughout this subsection that λ and T satisfy
the hypotheses of Theorem 1, i.e. λ ≥ 4K0 and T − t0 ≥ 3

2 . This implies in particular
that e−λ(T−t0) ≤ e−6 < 1

100 . Recall also that a standing assumption throughout is
t0 < 1

10K
−2
0 ≤ 1

10 (see Sect. 1.1). Let F = FT .

4.1.1. Existence of invariant circles. Identifying the tangent space of z ∈ S1 × R with
the (θ, r)-plane, we introduce the following cones:

Kc := {(θ, r) : |r| < 1

4
|θ |},

Ks := {(θ, r) : |r| > |θ |}.

Lemma 4.1.(a) For z ∈ {|r| < 1}, v ∈ Kc $⇒ DFz(v) ∈ Kc and |DFz(v)| > 1
3 |v|.

(b) For z with F−1z ∈ {|r| < 1}, v ∈ Ks $⇒ DF−1
z (v) ∈ Ks and |DF−1

z (v)| >

10|v|.
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Proof. Write

DFz =
(
A B

C D

)
.

Substituting the admissible values of λ, T and t0 into Lemma 2.4, we obtain

|A − 1| < 1

2
, |B| < 1

3
, and |C|, |D| < 1

50
. (10)

(The estimate for |C| usesK0e
−6K0 < e−6.) Let s(v) denote the slope of a vector v ∈ R2.

Then

s(DF(v)) = C + Ds(v)

A + Bs(v)
.

To verify DF(Kc) ⊂ Kc, for example, we choose v with |s(v)| < 1
4 , and substituting

in the numbers from (10), we obtain

|s(DF(v))| <
1

50 + 1
50

1
4

1
2 − 1

3
1
4

<
1

4
.

The other claims are checked similarly. "#

We have thus identified a family of stable cones Ks and a family of center cones Kc.
We call Kc “center cones” because while vectors in Kc may be expanded or contracted
by DF , they are not contracted as strongly as vectors in DF−1(Ks). This domination
implies uniform hyperbolicity on the projective level, a property relied upon heavily in
the proof of the next lemma.

Recall that A = {|r| < 4K0e
−λ(T−t0)} is an absorbing set of F (Lemma 2.5).

Lemma 4.2.There is an F -invariant curve � in A such that

(a) � is the graph of a C4 function g : S1 → R with |g′| < 1/4;
(b) for every z ∈ A, dist (F nz,�) → 0 as n → ∞.

Proof. By standard arguments from hyperbolic theory, it follows from Lemma 4.1 that
there is a stable foliation Ws defined everywhere on A. Tangent vectors to the leaves of
Ws satisfy |s(v)| > 1, so that each Ws-leaf is a C1 segment joining the two boundary
components of A. Moreover, F maps each Ws-leaf strictly into a Ws-leaf, contracting
length by a factor< 1

10 . It follows from this that� := ∩n>0F
n(A) is a compact set which

meets each Ws-leaf in exactly one point. Part (b) of Lemma 4.2 follows immediately.
Let γ0 be the curve {r = 0}. Then the images γn := Fnγ0 converge in the Hausdorff

metric to �, the center manifold of F . By Lemma 4.1(a), the tangent vectors to γn have
slopes between ±1/4 for all n. This proves that � is the graph of a Lipschitz function
g with Lipschitz constant ≤ 1/4. That g is C4 follows from the fact that F is C4 and
standard graph transform arguments involving the Fiber Contraction Theorem. We refer
the reader to [HPS]. "#
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4.1.2. Dynamics on invariant circles. For each T , let �T be the simple closed curve left
invariant by FT . We introduce a family of maps hT : S1 → S1 as follows: For θ0 ∈ S1,
let z be the unique point in �T whose θ -coordinate is θ0. Then hT (θ0) = θ1, where θ1
is the θ -coordinate of FT (z). Let ρ(hT ) denote the rotation number of hT . Since

dθ1

dT
> 1 − e−λ(T−t0)|r(t0)| > 99

100
, (11)

it is an easy exercise to see that T �→ ρ(hT ) is a continuous nondecreasing function
with ρ(hT+1) ≈ ρ(hT ) + 1.

Case 1. ρ(hT ) ∈ R \ Q. By Denjoy theory, hT is topologically conjugate to the rigid
rotation by ρ(hT ), which is well known to admit only one invariant probability measure.
This together with Lemmas 2.5 and 4.2(b) imply immediately the unique ergodicity of
FT . To prove that �0 in Theorem 1 has positive Lebesgue measure, we appeal to the
following theorem of Herman:

Theorem ([He]). Let Diffr+(S1) denote the space of Cr orientation-preserving diffeo-
morphisms of S1. Let s �→ hs ∈ Diff3+(S1) be C1 and suppose that for some s0 < s1,
ρ(hs0) �= ρ(hs1). Then {s ∈ [s0, s1] : ρ(hs) ∈ R \ Q} has positive Lebesgue measure.

Case 2. ρ(hT ) ∈ Q. We fix p, q ∈ Z+, p, q relatively prime, and let I be a connected
component of {T : ρ(hT ) = p

q
} with nonempty interior. From (11), it follows that

d
dT

(h
q
T (θ0)) > 99

100 for every θ0. Standard transversality arguments give an open and

dense subset Ĩ of I such that for T ∈ Ĩ , the graph of hq
T is transversal to the diagonal

of S1 × S1. For T ∈ Ĩ , the fixed points of hq
T (in the order in which they appear on S1)

are alternately strictly repelling and strictly contracting. With the contraction normal to
�T , they correspond to saddles and sinks respectively for FT .

This completes the proof of Theorem 1.

4.2. Proof of Theorem 2. Our analysis will proceed as follows. Referring the reader to
Sect. 2.1 for definitions and notation, we will argue that uniformly expanding invariant
sets of fa translate directly into uniformly hyperbolic invariant sets of Ta,b for b suffi-
ciently small. That being the case, to produce the phenomena described in Theorem 2,
it suffices to produce the corresponding behaviors for fa . Furthermore, since uniformly
expanding invariant sets are stable under perturbations, and fa is a small perturbation
of f̂a for t0 << λ (Lemma 2.3), it suffices to work with f̂a . Recall that

f̂a(s) = s + 1

λ
	0(s) + a.

4.2.1. Gradient-like dynamics. Letm0 = − min 	′
0. Then f̂a is a circle diffeomorphism

if and only if λ > m0. Fix λ > m0. Varying a (which corresponds to moving the graph
of f̂a up and down), we see that there is an open set of a for which f̂a has a finite number
of fixed points which are alternately repelling and attracting. For these a, it is a simple
exercise to show that for sufficiently small t0 and b, FT = Ta,b has the gradient-like
dynamics described in Theorem 2. More generally, if ρ(f̂a) = p

q
, then the discussion

above applies to f̂
q
a unless f̂

q
a = id.
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Gradient-like dynamics, in general, persist when λ drops below m0. Intuitively, no
simple closed invariant curve exists beyond this point because the unstable manifold of
the saddle “ turns around” . We provide a rigorous proof in a restricted context.

Proposition 4.1.Suppose 	0 has exactly two critical points and negative Schwarzian
derivative. Then there exist intervals of λ, t0 and T for which FT has gradient-like
dynamics but there are no smooth simple closed invariant curves.

Proof. Let c1 and c2 denote the critical points of 	0. There is an interval of a0 such
that if 	0 = a0 + 	̃0, then 	̃0 has exactly two zeros, at say p1 and p2. Fix such an
a0. Without loss of generality, we assume p1 < c1 < p2 < c2 < p1 + 1 = p1, and
	′

0(p1) > 0, 	′
0(p2) < 0. In the rest of the proof, for each λ we consider, let f = f̂a ,

where a = − a0
λ

mod 1, so that f (s) = s + 1
λ
	̃0(s). Observe that p1 is a repelling fixed

point of f , p2 is an attractive fixed point of f , and f ′(c1) = f ′(c2) = 1. This discussion
is valid for all λ.

For large λ, f maps (c1, c2) strictly into itself. (See Fig. 3(a).) This continues to
be the case for some interval of λ below m0. Since 	′

0 < 0 on (c1, c2), we have
1 − m0

λ
< f ′ < 1 on (c1, c2), so there exist ε, ε′ > 0 and an interval L of λ below m0

for which f (c1 + ε, c2 − ε) ⊂ (c1 + 2ε, c2 − 2ε) and |f ′|(c1+ε,c2−ε)| < 1 − ε′. (See
Fig. 3(b).) Thus every point in (c1 + ε, c2 − ε) tends to p2, and since every point in
S1 \ (c1 + ε, c2 − ε) eventually enters (c1 + ε, c2 − ε), we conclude that f and hence
F = Ta,b have gradient-like dynamics for a as above and t0 and b suitably small.

Let p̃1 and p̃2 denote the saddle and sink of F respectively. To prove the proposition,
suppose F leaves invariant a smooth simple closed curve �. Since it is not possible for
all the points in an invariant circle to converge to the same point, � must intersect the
stable manifold of p̃1. This implies p̃1 ∈ �, and hence Wu, the unstable manifold of
p̃1, must be contained in �. Fix an orientation on �, and let τ be a positively oriented
tangent field on Wu. To derive a contradiction, we will produce, for every ε1 > 0, two
points z, z′ ∈ Wu such that d(z, z′) < ε1 and τ(z) and τ(z′) point in opposite directions.

By the negative Schwarzian property of 	0, f ′ = 0 at exactly two points x1 < x2
in (c1, c2). Move λ if necessary so xi �= p2, i = 1, 2. Without loss of generality, we
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x1 f(x )1

stable  curves

p1

p1
~

Fig. 4.

may assume x1 ∈ (c1, p2). The following two statements, which we claim are valid for
suitable choices of t0, a and b, clearly lead to the desired contradiction.

(1) The right branch of Wu is roughly horizontal until about f (x1), where it makes
a sharp turn and doubles back for a definite distance, creating two roughly parallel
segments with opposite orientation (see Fig. 4).

(2) There exist pairs of points on these parallel segments joined by stable curves.
Claims (1) and (2) follow from Lemma 4.3, which is a general result valid for any λ

and any 	0 (and not just the ones considered in this subsection). It is similar in spirit to
Lemma 4.2 and has the same proof, which will be omitted.

Lemma 4.3.Given fa and constants δ, ε > 0, ∃b̄ = b̄(	0, λ, δ, ε) << δ such that the
following hold for F = Ta,b with b < b̄. Let z = (r, θ) ∈ A (which depends on b) be
such that |f ′

a(θ)| > δ. Then:

(a) |s(v)| = O( b
δ
) $⇒ |s(DFzv)| = O( b

δ
) and |DFzv| > (1 − ε)δ|v|;

(b) there exists C = C(	0, λ) such that |s(DFzv)| > Cδ $⇒ |s(v)| > Cδ and
|DFzv|

|v| = O( b
δ
).

Claim (1) follows immediately from Lemma 4.3(a). Part (b) of this lemma implies
that if a region of A misses the two rectangles {(r, θ) : |f ′(θ)| < δ} in all of its forward
iterates, then it is foliated by stable curves. Sincef ′(p2) �= 0, Claim (2) is easily arranged
by choosing δ sufficiently small. "#

4.2.2. Transient chaos. We return to the family f̂a where λ is now assumed to be small.
Let c1 and c2 be the critical points of 	0. Then f̂a has exactly two critical points s1 and
s2 near c1 and c2. Let a be fixed for now. As λ is varied, the critical values f̂a(s1) and
f̂a(s2) move at rates ∼ 1

λ
in opposite directions. There exists, therefore, a sequence of

λ for which they coincide. Observe that this sequence is independent of a. We now fix
each of these λ and adjust a so that f̂a(s1) = s1, where s1 is the critical point with the
property that |	′′

0(c1)| ≤ |	′′
0(c2)|. We will show that for the (λ, a)-pairs selected above,

f = f̂a has the following properties: (i) it has a sink, and (ii) when restricted to the set
of points that are not attracted to the sink, f is uniformly expanding.

By design, we have f (s1) = s1, which is therefore a sink, and f (s2) = s1. For

i = 1, 2, let αi =
√

1.5
|	′′

0(ci )|λ and Ii = [si − αi, si + αi].
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Lemma 4.4.Assume λ is sufficiently small. Then

(a) for s �∈ I1 ∪ I2, we have |f ′(s)| > √
1.4;

(b) for s ∈ I1 ∪ I2, we have f ns → s1 as n → ∞.

Proof. (a) We may assume for s �∈ I1 ∪ I2 that |f ′(s)| ≥ |f ′(si ±αi)| for some i. Since
this is = 1

λ
|	′′

0(ξi)|αi for some ξi ∈ Ii , it is >
√

1.4.
(b) First we check f (Ii) ⊂ I1, i = 1, 2:

|f (si ± αi) − f (si)| = 1

2λ
|	′′

0(ξi)|α2
i ≤ 1

2λ
|	′′

0(ξi)| · 1.5

|	′′
0(ci)|2

λ2

≤ λ

|	′′
0(ci)|

≤ λ

|	′′
0(c1)| < α1.

A similar computation shows that f restricted to I1 is a contraction. "#
Let F = Ta,b, where λ and a are near the ones selected above and t0 and b are

sufficiently small. Let Bi, i = 1, 2, be the two components of A \ {(θ, r) : θ ∈ I1 ∪ I2}.
With λ sufficiently small, F wraps each Bi around A (in the horizontal direction) at least
once, with F(Bi) crossing completely Bj every time they meet. This, on the topological
level, is the standard construction of a horseshoe. Let

� := {z ∈ A : Fn(z) ∈ B1 ∪ B2 ∀n ∈ Z}.
With b sufficiently small, the uniform hyperbolicity of F |� follows from Lemma 4.3.

This completes the proof of Theorem 2.

5. Proof of Theorem 3

5.1. Conditions from [WY] for strange attractors. As explained in the introduction, the
proof of Theorem 3 is obtained largely via a direct application of [WY] – provided the
conditions in Sect. 1.1 of [WY] are verified. For the convenience of the reader, we give
a self-contained discussion of these conditions here, modifying one of them to improve
its checkability and adding a new one, (C4), to guarantee mixing. The notation in this
section is that in [WY].

We consider a family of maps Ta,b : A = S1 ×[−1, 1] → A, where a ∈ [a0, a1] ⊂ R

and b ∈ B0 ⊂ R, B0 being any subset with 0 as an accumulation point.4

In this setup, b is a measure of dissipation; our results hold for b sufficiently small.
We explain the role of the parameter a: For systems that are not uniformly hyperbolic, a
scenario that competes with that of strange attractors and SRB measures is the presence
of periodic sinks. In general, arbitrarily near systems with SRB measures, there are open
sets of maps with sinks; proving directly the existence of an SRB measure for a given
dynamical system requires information of arbitrarily high precision. We get around this
problem by considering one-parameter families, in our case a �→ Ta,b, and by showing
that if a family satisfies certain reasonable conditions, then a positive measure set of
parameters with SRB measures is guaranteed. We now state our conditions on these
families.

4 In [WY], B0 is taken to be an interval but the formulation here is all that is used.
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(C1) Regularity conditions.

(i) For each b ∈ B0, the function (x, y, a) �→ Ta,b(x, y) is C3; and as b → 0, these
functions converge in the C3 norm to (x, y, a) �→ Ta,0(x, y).

(ii) For each b �= 0, Ta,b is an embedding of A into itself, whereas Ta,0 is a singular
map with Ta,0(A) ⊂ S1 × {0}.

(iii) There exists K > 0 such that for all a, b with b �= 0,

| det DTa,b(z)|
| det DTa,b(z′)| ≤ K ∀z, z′ ∈ S1 × [−1, 1].

As before, we refer to Ta,0 as well as its restriction to S1 × {0}, i.e. the family of
one-dimensional maps fa : S1 → S1 defined by fa(x) = Ta,0(x, 0), as the singular
limit of Ta,b. The rest of our conditions are imposed on the singular limit alone.

The second condition in [WY] is:

(C2) There exists a∗ ∈ [a0, a1] such that f = fa∗ satisfies the Misiurewicz condition.

The Misiurewicz condition (see [M]) encapsulates a number of properties some of
which are hard to check or not needed in full force. We propose here to replace it by
(C2’ ), a set of conditions that is more directly checkable (although a little cumbersome
to state). That the results in [WY] are valid when (C2) is replaced by (C2’ ) below is
proved in Lemma A.1 in the Appendix.

(C2’) Existence of a sufficiently expanding map from which to perturb.
There exists a∗ ∈ [a0, a1] such that f = fa∗ has the following properties: There are
numbers c1 > 0, N1 ∈ Z+, and a neighborhood I of the critical set C such that

(i) f is expanding on S1 \ I in the following sense:
(a) if x, f x, · · · , f n−1x �∈ I, n ≥ N1, then |(f n)′x| ≥ ec1n;
(b) if x, f x, · · · , f n−1x �∈ I and f nx ∈ I , any n, then |(f n)′x| ≥ ec1n;

(ii) f nx �∈ I ∀x ∈ C and n > 0;
(iii) in I , the derivative is controlled as follows:

(a) |f ′′| is bounded away from 0;
(b) by following the critical orbit, every x ∈ I \ C is guaranteed a recovery time

n(x) ≥ 1 with the property that f jx �∈ I for 0 < j < n(x) and |(f n(x))′x| ≥
ec1n(x).

Next we introduce the notion of smooth continuations. Let Ca denote the critical set
of fa . For x = x(a∗) ∈ Ca∗ , the continuation x(a) of x to a near a∗ is the unique critical
point of fa near x. If p is a hyperbolic periodic point of fa∗ , then p(a) is the unique
periodic point of fa near p having the same period. It is a fact that in general, if p is a
point whose fa∗ -orbit is bounded away from Ca∗ , then for a sufficiently near a∗, there
is a unique point p(a) with the same symbolic itinerary under fa .

(C3) Conditions onfa∗ and Ta∗,0.

(i) Parameter transversality.For each x ∈ Ca∗ , let p = f (x), and let x(a) and p(a)

denote the continuations of x and p respectively. Then

d

da
fa(x(a)) �= d

da
p(a) at a = a∗.
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(ii) Nondegeneracy at “turns”.

∂

∂y
Ta∗,0(x, 0) �= 0 ∀x ∈ Ca∗ .

The following fact often facilitates the checking of condition (C3)(i):

Lemma 5.1 ([TTY], Sect. VII). Let f = fa∗ , and suppose
∑

n≥0
1

|(f n)′(f x)| < ∞ for
all x ∈ C. Then

∞∑
k=0

[(∂afa)(f kx)]a=a∗

(f k)′(f x)
=
[

d

da
fa(x(a)) − d

da
p(a)

]
a=a∗

.

The main conditions in [WY] are contained in (C1)–(C3) (or, equivalently, (C1),
(C2’ ) and (C3)). The conclusions of Theorem 3, however, are more specific than those
of [WY], which allow the co-existence of multiple ergodic SRB measures. We now
introduce a fourth condition,5 which along with (C1)–(C3) implies the uniqueness of
SRB measures and their mixing properties. This implication is proved in Lemma A.2 in
the Appendix.

(C4) Conditions for mixing.

(i) ec1 > 2 where c1 is in (C2’).
(ii) Let J1, · · · , Jr be the intervals of monotonicity of fa∗ , and let P = (pi,j ) be the

matrix defined by

pi,j =
{

1 if f (Ji) ⊃ Jj ,

0 otherwise.

Then there exists N2 > 0 such that PN2 > 0.

The discussion in this subsection can be summarized as follows:

Theorem 3’. Assume {Ta,b} satisfies (C1), (C2’), (C3) and (C4) above. Then for all
sufficiently small b > 0, there is a positive measure set of a for which Ta,b has the
properties in (1), (2) and (3) of Theorem 3.

We remark that [WY] contains a more detailed description of the dynamical pic-
ture than the statement of Theorem 3 and refer the interested reader there for more
information.

In the rest of this section the discussion pertains to the differential Eq. (1) defined
in Sect. 1.1.All notation is as in Sect. 2.1. To prove Theorem 3, it suffices to verify that
for the parameters in question, Ta,b satisfies the conditions above. This is carried out in
the next three subsections.

5 Condition (*) in Sect. 1.2 of [WY], the only condition in [WY] not implied by (C1)–(C3), is clearly
contained in (C4).
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5.2. Verification of (C2’): Expanding properties. Among the conditions to be checked,
(C2’ ), which guarantees a suitable environment from which to perturb, is arguably the
most fundamental of the four. It is also the one that requires the most work. In this
subsection, we will – after placing some restrictions on λ and t0 – show that (C2’ ) is
valid for all fa for which (C2’ )(ii) is satisfied. The existence of a satisfying (C2’ )(ii) is
the topic of the next subsection.

Let x̄1, x̄2, · · · , x̄k1 be the critical points of 	0, and let k2 = min{1, 1
2 mini |	′′

0(x̄i)|}.
We fix ε = ε(	0) > 0 with the property that |x̄i − x̄j | > 4ε for i �= j and |	′′

0| > k2
on ∪i (x̄i − 2ε, x̄i + 2ε), and claim that by choosing λ and t0 sufficiently small, we may
assume the following about fa . Let C denote the critical set of fa , and let Cε denote the
ε-neighborhood of C. Then

(i) C = {x1, · · · , xk1} with |xi − x̄i | < ε;
(ii) on Cε, |f ′′

a | > k2
λ

.

To justify these claims, observe first that by taking λ small enough, the critical set of f̂a
can be made arbitrarily close to that of 	0. Second, by choosing t0 sufficiently small
(independent of λ), we can make ‖fa − f̂a‖C3 < ε1

λ
for ε1 as small as we please

(Lemma 2.3). These observations together with f̂ ′′
a = 1

λ
	′′

0 imply (i) and (ii).
A number of other conditions will be imposed on λ; they will be specified as we go

along. Some of these conditions are determined via an auxiliary constant K > 1 which
depends only on 	0 and which will be chosen to be large enough for certain purposes.
Let σ := 2k−1

2 K3λ. We assume 1
2σ < ε, so that |f ′

a(x)| > K3 for x ∈ Cε \ C 1
2 σ

. We

also assume λ is small enough that |f ′
a| > K3 outside of Cε. Together these imply

(iii) |f ′
a| > K3 outside of C 1

2 σ
.

For simplicity of notation, we write f = fa in the rest of this subsection.

Lemma 5.2.Let c ∈ C be such that f n(c) �∈ Cσ∀n > 0. Consider x with |x − c| < 1
2σ ,

and let n(x) be the smallest n such that |f n(x) − f n(c)| > 1
3K0

K3λ. Then n(x) > 1

and |(f n(x))′| ≥ k3K
n(x) for some k3 = k3(K0, k2).

Before giving the proof of this lemma, we first prove a distortion estimate.

Sublemma 5.1.Let x, y ∈ S1 and n ∈ Z+ be such that ωi , the segment between f ix

and f iy, satisfies |ωi | < 1
3K0

K3λ and dist(ωi, C) > 1
2σ for all i with 0 ≤ i < n. Then

(f n)′x
(f n)′y

≤ 2.

Proof.

log
(f n)′x
(f n)′y

=
n−1∑
i=0

log
f ′(f ix)

f ′(f iy)
≤

n−1∑
i=0

|f ′(f ix) − f ′(f iy)|
|f ′(f iy)|

≤
n−1∑
i=0

(1 + K0
λ
)|f ix − f iy|
K3

<
(1 + K0

λ
)

K3

(
n−1∑
i=0

1

K3i

)
|f n−1x − f n−1y|.
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Assuming that 1
λ

and K are sufficiently large, this is < 1
2 . "#

Proof of Lemma 5.2. First we show n(x) > 1. Given the location of x, we have

K > |f ′x| = |f ′′(ξ)||x − c|
for some ξ between x and c. This implies

|f x − f c| = 1

2
|f ′′(ζ )||x − c|2 <

1

2

|f ′′(ζ )|
|f ′′(ξ)|2 K

2

which we may assume is < 1
3K0

K3λ. For n(x) = 2, use

|(f 2)′x| · |x − c| ≥ constK3λ and |x − c| < constKλ.

We assume from here on that n = n(x) ≥ 3, and estimate |(f n)′(x)| as follows.
Since |f nx − f nc| > 1

3K0
K3λ, it follows from Sublemma 5.1 that for some ξ1,

1

2
|f ′′(ξ1)||x − c|2 · 2|(f n−1)′(f c)| > 1

3K0
K3λ. (12)

Reversing the inequality at time n − 1 and using Sublemma 5.1 again, we have

1

2
|f ′′(ξ2)||x − c|2 · 1

2
|(f n−2)′(f c)| < 1

3K0
K3λ. (13)

Substituting the estimate for |(f n−1)′(f c)| from (12) into

|(f n)′x| ≥ |f ′′(ζ )||x − c| · 1

2
|(f n−1)′(f c)|,

we obtain

|(f n)′x| ≥ 1

2

|f ′′(ζ )|
|f ′′(ξ1)|

1

2K0
K3λ

1

|x − c| .

Now plug the estimate for |x − c| from (13) into the last inequality and use the lower
bounds for |f ′′(ξ2)| and |(f n−2)′(f c)| from (ii) and (iii) earlier on in this subsection.
We arrive at the estimate

|(f n)′x| > 1

2

|f ′′(ζ )|
|f ′′(ξ1)|

1

3K0
K3λ

√√√√ k2
λ
K3(n−2)

4 1
3K0

K3λ
= constK

3
2 (n−2)+ 3

2 .

The power to whichK is raised is ≥ n for n ≥ 3. This completes the proof of Lemma 5.2.
"#

We have proved the following: Suppose fa has the property that each of its critical
points c satisfies f n

a (c) �∈ Cσ for all n > 0. Then (C2’ )(i) and (iii) hold for fa with
I = C 1

2 σ
. This follows from properties (ii) and (iii) in the first part of this subsection

and from Lemma 5.2.
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5.3. Verification of (C2’): “Multiple Misiurewicz points”. The goal of this section is
to show that for many values of the parameter a, fa has the property that its critical
orbits (in strictly positive time) stay away from its critical set. Precise statements will
be formulated later. We remark that for the quadratic family x �→ 1 − ax2 or any other
family with a single critical point, this is a trivial exercise: there are many periodic
orbits or compact invariant Cantor sets � disjoint from the critical set, and if changes in
parameter correspond to the movement of fa(c) in a reasonable way, then there would be
many parameters for which fa(c) ∈ �. We call these parameters “Misiurewicz points” .
For maps with more than one critical point, as circle maps necessarily are, the required
condition is that all of the critical orbits are trapped in some invariant set away from
C. This is clearly more problematic, especially with � having measure zero. We call
parameters with these properties “multiple Misiurewicz points” . Their existence and
O(λ)-density within the family {fa} is the concern of this subsection.

Recall that σ = 2k−1
2 K3λ and Cσ is the σ -neighborhood of C. Recall also from

Sect. 5.2 that outside of Cσ , |f ′
a| > K3. We are looking for a parameter a∗ such that

f = fa∗ has the property that for all c ∈ C, f nc �∈ Cσ∀n > 0. Write C = {x1, · · · , xk1}
as before, and let � be a parameter interval. For k = 1, 2, · · · , k1 and i = 1, 2, · · · , we
introduce the curves of critical points

a �→ γ
(k)
i (a) := f i

a (xk), a ∈ �.

Observe that for all k, d
da

γ
(k)
1 = 1, and for all i,

d

da
γ
(k)
i+1(a) = d

da
γ
(k)
i (a)f ′

a(γ
(k)
i (a)) + 1.

Thus if γ (k)
j (a) �∈ Cσ for all j ≤ i and K is sufficiently large, then

d

da
γ
(k)
i+1(a) ≈ d

da
γ
(k)
i (a)f ′

a(γ
(k)
i (a)) (14)

and

d

da
γ
(k)
i+1(a) ≥ 1

2
K3i . (15)

We also have the following distortion estimate:

Sublemma 5.2.For k = 1, 2, · · · , k1 and n ∈ Z+, let � ⊂ [0, 1) be such that γ (k)
i (a) �∈

Cσ for i = 1, 2, · · · , n − 1. Assume that |γ (k)
n−1| ≤ 1

3K0
K3λ. Then for all a, a′ ∈ �, we

have ∣∣∣∣∣
d
da

γ
(k)
n (a)

d
da

γ
(k)
n (a′)

∣∣∣∣∣ ≤ 2.

Using (14) and (15), we see that the proof is entirely parallel to that of Sublemma 5.1
with slightly weaker estimates. We leave it as an exercise for the reader.

Let d be the minimum distance between critical points. Choosing λ sufficiently small,
we may assume 6k1σ << d. The following is the main result of this subsection.

Lemma 5.3.Given �0 ⊂ [0, 1) with |�0| = 6k1σ , there exists a∗ ∈ �0 such that
∀c ∈ C, f n

a∗c �∈ Cσ∀n > 0.
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Proof. We describe first an algorithm for selecting a sequence of intervals �0 ⊃ �1 ⊃
�2 ⊃ · · · so that a∗ ∈ ∩i�i has the desired property:

At step n, the (k1 +1)-tuple (�n; i1,n, i2,n, · · · , ik1,n) is called an “admissible config-
uration” if �n is a subinterval of �0, ik,n ≤ n, and the following conditions are satisfied
for each k:

(A1) γ
(k)
i |�n ∩ Cσ = ∅ for all i ≤ ik,n;

(A2) for all a, a′ ∈ �n, ∣∣∣∣∣∣
d
da

γ
(k)
ik,n

(a)

d
da

γ
(k)
ik,n

(a′)

∣∣∣∣∣∣ ≤ 2;

(A3) (“minimum length condition” ) |γ (k)
ik,n+1|�n | ≥ 12k1σ .

Observe that (A3) is about the length of the critical curve one iterate later.
Let us first show that we have an admissible configuration for n = 1. Let ik,1 = 1

for all k. The parameter interval �1 is chosen as follows. Since d
da

γ
(k)
1 = 1, we have

|γ (k)
1 |�0 | = 6k1σ , so that γ (k)

1 meets at most one component of Cσ and |(γ (k)
1 )−1Cσ | ≤

2σ . Even in the worst case scenario when all k1 intervals (γ (k)
1 )−1Cσ are evenly spaced,

there exists an interval �1 ⊂ �0 with |�1| = 2σ such that γ (k)
1 |�1 ∩ Cσ = ∅ for all k.

Equations (A1) and (A2) are trivially satisfied, as is (A3) since |γ (k)
2 |�1 | > 2σK3, and

2K3 is assumed to be > 12k1.
We now discuss how to proceed at a generic step, i.e. step n, assuming we are

handed an admissible configuration (�n; i1,n, i2,n, · · · , ik1,n). First, we divide the set
{1, 2, · · · , k1} into indices k that are “ ready to advance” , meaning the situation is right
for the kth curve to progress to the next iterate, and those that are not. Say k ∈ A if

(A4) |γ (k)
ik,n

|�n | < 1
3K0

K3λ (distortion estimate holds for the next iterate);

(A5) |γ (k)
ik,n+1|�n | < d (image of the next iterate meets at most one interval in Cσ ).

Consider first the case where A �= ∅. We set ik,n+1 = ik,n+1 for k ∈ A, ik,n+1 = ik,n
otherwise, and look for �n+1 ⊂ �n so that (�n+1; i1,n+1, · · · , ik1,n+1) is again an
admissible configuration.

Let k ∈ A. By virtue of (A3) and (A5), we have 12k1σ < |γ (k)
ik,n+1

|�n | < d , so that

the fraction of γ (k)
ik,n+1

|�n in Cσ is ≤ 1
6k1

. By virtue of (A4) and Sublemma 5.2, we have

good control of the distortion of a �→ d
da

γ
(k)
ik,n+1

. Together this gives

|(γ (k)
ik,n+1

|�n)
−1Cσ | ≤ 1

3k1
|�n|. (16)

By the same geometric argument as in the case n = 1, there exists a subinterval �n+1 ⊂
�n of length 1

3k1
|�n| with the property that γ (k)

ik,n+1
|�n+1 ∩ Cσ = ∅ for all k ∈ A. For

this choice of �n+1, we have (A1) by design, and (A2) is given by (A4) from step n. As
for (A3), observe that by the same reasoning as in (16), the pullback of any interval of
S1 of length 2σ has length ≤ 1

3k1
|�n|, so |γ (k)

ik,n+1
|�n+1 | ≥ 2σ , and one iterate later, it is

guaranteed to have length > 2K3σ .
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Consider now k �∈ A. Conditions (A1) and (A2) are inherited from the previous step,
and (A3) is checked as follows: If k �∈ A because (A4) fails, then

|γ (k)
ik,n+1

|�n+1 | ≥ 1

2
· 1

3k1
|γ (k)

ik,n
|�n | ≥ cK3λ,

where c is a constant independent of K of λ. Notice that this uses only the distortion
estimate from step n. One iterate later, this curve will have length > cK6λ, which we
may assume is > 12k1σ . If (A4) holds but (A5) fails, then the distortion estimate holds
for the next iterate, and

|γ (k)
ik,n+1+1|�n+1 | ≥ 1

6k1
|γ (k)

ik,n+1|�n | ≥ cd,

which we may also assume is > 12k1σ . This completes the construction from step n to
step n + 1 when A �= ∅.

If A = ∅, then we let �′
n be the left half of �n, and observe that the (n + 1)-

tuple (�′
n; i1,n, i2,n, · · · , ik1,n) is again admissible. To verify (A3), we fix k, and argue

separately as in the last paragraph the two cases corresponding to (i) the failure of
(A4) with respect to �n and (ii) the failure of (A5) but not (A4). Repeat this process if
necessary until A �= ∅. "#

5.4. Verification of (C1), (C3) and (C4). We now verify the remaining conditions in
Sect. 5.1. Observe from the arguments below that (C1) and (C3)(ii) are quite natural for
systems arising from differential equations, while (C3)(i) and (C4) are, to a large extent,
consequences of the fact that the maps fa are sufficiently expanding.

Verification of (C1): Let Ft0 denote the time-t0-map of (2) (the period of the forcing
continues to be T ). Then (i) follows from the fact that Ft0 has bounded C3 norms on
S1 × [−1, 1]; (ii) is obvious, and (iii) is a consequence of the fact that det(DFT ) =
e−λ(T−t0) det(DFt0).

Verification of (C3): For (i), since (∂afa)(·) = 1 and |(f k)′(f x)| ≥ Kk , Lemma 5.1
applies, and the quantity in question has absolute value ≥ 1 −∑

i≥1
1
Ki > 0. Part (ii) is

Lemma 2.3(i).

Verification of (C4): (i) is proved since ec1 = K > 2. For (ii), by choosing λ sufficiently
small depending on 	0, it is easily arranged that pi,j = 1 for all i, j .

This completes the proof of Theorem 3.

Appendix

We supply here the proofs of the two lemmas promised in Sect. 5.1. This appendix has
to be read in conjunction with [WY].

Lemma A.4. All the theorems in [WY] remain valid if the Misiurewicz condition in
Step I, Sect.1.1, of [WY] is replaced by condition (C2’) in Sect. 5.1 of this paper.

Proof. The three most important uses of the Misiurewicz condition in [WY] are:

– the nondegeneracy of the critical points (this is guaranteed by (C2’ )(iii)(a));
– every critical orbit stays a fixed distance away from C (this is precisely (C2’ )(ii));
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– there exist c0, c > 0 such that for every critical point x, |(f n)′(f x)| > c0e
cn (this is

guaranteed by (C2’ )(i) and (ii)).

These three properties aside, the only consequences of the Misiurewicz condition used
in [WY] are contained in

Lemma 2.5 of [WY]. Let Cδ denote the δ-neighborhood of C. Then there exist ĉ0, ĉ1 >

0 such that the following hold for all sufficiently small δ > 0: Let x ∈ S1 be such that
x, f x, · · · , f n−1x �∈ Cδ , any n. Then

(i) |(f n)′x| ≥ ĉ0δe
ĉ1n;

(ii) if, in addition, f nx ∈ Cδ , then |(f n)′x| ≥ ĉ0e
ĉ1n.

We claim that the conclusions of this lemma also follow from (C2’ ). Let n1 < · · · <
nq , 0 ≤ n1, nq ≤ n, be the times when f ni x ∈ I . Then

– |(f n1)′x| ≥ ec1n1 by (C2’ )(i)(b);
– |(f ni+1−ni )′(f ni x)| ≥ ec1(ni+1−ni) by (C2’ )(iii)(b) followed by (i)(b);
– |(f n−nq )′(f nq x)| = |f ′(f nq x)| · |(f n−(nq+1))′(f nq+1x)|,

where |f ′(f nq x)| ≥ |f ′′(ξ)|d(x, C) ≥ c′
0δ by (C2’ )(iii)(a)

and |(f n−(nq+1))′(f nq+1x)| ≥ c′′
0e

c1(n−(nq+1)) by (C2’ )(i)(a).

Together these inequalities prove both of the assertions in the lemma. "#
Lemma A.5. Let {Ta,b} be as in Sect. 5.1 of this paper, and let � be the set of (a, b)
such that T = Ta,b satisfies the conclusions of Theorem 1 in [WY]. Suppose {Ta,b} also
satisfies (C4), and δ is smaller than a number depending on c1. Then

(i) T admits at most one SRB measure µ;
(ii) (T , µ) is mixing.

Proof. Let {x1 < · · · < xr} be the set of critical points of f . Consider a segment
ω ⊂ ∂R0 corresponding to an outermost Iµj at one of the components of C(0). First we
claim there exist N ∈ Z+ and ω̂ ⊂ ω such that T iω̂ ∩ C(0) = ∅ for all 0 < i < N and
T Nω̂ connects two components of C(0).

This claim is proved as follows. Let ω′ denote the image of ω at the end of its bound
period. Then ω′ has length > δKβ . We continue to iterate, deleting all parts that fall
into C(0). Then i steps later, the undeleted part of T iω′ is made up of finitely many
segments. Suppose that for all i ≤ n, none of these segments is long enough to connect
two components of C(0), so that the number of segments deleted up to step i is ≤ 2i . We
estimate the average length of these segments at time n as follows: First, the pull-back
to ω′ of all the deleted parts has total measure ≤ ∑

i≤n 2ie−c1i (2δ) by (C2’ )(i)(b). Since

2 < ec1 by (C4)(i), we may assume this is < 1
2δ

Kβ provided δ is sufficiently small. The
undeleted segments of T nω add up, therefore, to > ec1n 1

2δ
Kβ in length, and since there

are at most 2n of them, their average length is > 2−nec1n 1
2δ

Kβ . Thus one sees that as n

increases, there must come a point when our claim is fulfilled.
Next we observe that if ω is a C2(b) segment connecting two components of C(0),

then using (C4)(ii) and reasoning as with finite state Markov chains, we have that for
every n ≥ N2 and every k ∈ {1, · · · , r}, there is a subsegment ωn,k ⊂ ω such that for
all i < n, T iωn,k ∩ C(0) = ∅ and T nωn,k stretches across the region between xk and
xk+1, extending beyond the critical regions containing these two points.
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Recall that in [WY], Sects. 8.1 and 8.2, a finite number of ergodic SRB measures
{µi, i ≤ r ′} are constructed, and it is shown in Sect. 8.3 that these are all the ergodic
SRB measures T has. The discussion above shows that starting at any reference set, a
segment ω ⊂ ∂R0 as above will spend a positive fraction of time in every reference set,
proving that r ′ ≤ 1. Furthermore, starting from any reference set, the return time to it
takes on all values greater than some N0, proving that µ1 is mixing. "#

6. Concluding Remarks

• For area-preserving maps, it is well known that when integrability first breaks down,
the phase portrait is dominated by KAM curves. Farther away from integrability, one
sees larger Birkhoff zones of instability interspersed with elliptic islands. Continuing to
move toward the chaotic end of the spectrum, it is widely believed – though not proved
– that most of the phase space is covered with ergodic regions with positive Lyapunov
exponents.

This paper deals with the corresponding pictures for strongly dissipative systems.
We consider a simple model consisting of a periodically forced limit cycle. Keeping the
magnitude of the “kick” constant, we prove that scenarios roughly parallel to those in the
last paragraph occur for our Poincaré maps, with attracting invariant circles (taking the
place of KAM curves), periodic sinks (instead of elliptic islands), and as the contractive
power of the cycle diminishes, we prove that the stage is shared by at least two scenarios
occupying parameter sets that are delicately intertwined: horseshoes and sinks, and
strange attractors.

By “strange attractors” , we refer to attractors characterized by SRB measures,
positive Lyapunov exponents, and strong mixing properties. For the differential equation
in question, we prove that the system has global strange attractors of this kind for a
positive measure set of parameters.

• Our second point has to do with bridging the gap between abstract theory and con-
crete problems. Today we have a fairly good hyperbolic theory, yet chaotic phenomena
in naturally occurring dynamical systems have continued to resist analysis. One of the
messages of this paper is that for certain types of strange attractors, the situation is
now improved: For attractors with strong dissipation and one direction of insta-
bility, there are now relatively simple, checkable conditions which, when satisfied,
guarantee the existence of an attractor with a detailed package of statistical and
geometric properties.Our conditions are formulated to give rigorous results, but where
rigorous analysis is out of reach, they can also serve as a basis for numerical work to
provide justification for various mathematical statements about strange attractors.
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