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In this article, the word entropy is used exclusively to refer to the entropy of a
dynamical system, i.e. a map or a flow. It measures the rate of increase in dynamical
complexity as the system evolves with time. This is not to be confused with other
notions of entropy connected with spatial complexity.

I will attempt to give a brief survey of the role of entropy in dynamical systems
and especially in smooth ergodic theory. The topics are chosen to give a flavor of
this invariant; they are also somewhat biased toward my own interests. This article is
aimed at nonexperts. After a review of some basic definitions and ideas, I will focus on
one main topic, namely the relation of entropy to Lyapunov exponents and dimension,
which I will discuss in some depth. Several other interpretations of entropy, including
its relations to volume growth, periodic orbits and horseshoes, large deviations and
rates of escape are treated briefly.

1 Topological and metric entropies: a review

We begin with topological entropy because it is simpler, even though chronologically
metric entropy was defined first. Topological entropy was first introduced in 1965 by
Adler, Konheim and McAndrew [AKM]. The following definition is due to Bowen and
Dinaburg. A good reference for this section is [W], which contains many of the early
references.

Definition 1.1 Let f : X → X be a continuous map of a compact metric space X.
For ε > 0 and n ∈ Z

+, we say E ⊂ X is an (n, ε)-separated set if for every x, y ∈ E,
there exists i, 0 ≤ i < n, such that d(f ix, f iy) > ε. Then the topological entropy of
f , denoted by htop(f), is defined to be

htop(f) = lim
ε→0

{
lim sup

n→∞

1

n
log N(n, ε)

}

where N(n, ε) is the maximum cardinality of all (n, ε)-separated sets.
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Roughly speaking, we would like to equate “higher entropy” with “more orbits”,
but since the number of orbits is usually infinite, we need to fix a finite “resolution”,
i.e. a scale below which we are unable to tell points apart. Suppose we do not
distinguish between points that are < ε apart. Then N(n, ε) represents the number
of distinguishable orbits of length n, and if this number grows like ∼ enh, then h is the
topological entropy. Another way of counting the number of distinguishable n-orbits
is to use (n, ε)-spanning sets, i.e. sets E with the property that for every x ∈ X,
there exists y ∈ E such that d(f ix, f iy) < ε for all i < n; N(n, ε) is then taken to be
the minimum cardinality of these sets. The original definition in [AKM] uses open
covers but it conveys essentially the same idea.

Facts If follows immediately from Definition 1.1 that
(i) htop(f) ∈ [0,∞], and
(ii) if f is a differentiable map of a compact d-dimensional manifold, then

htop(f) ≤ d log ‖Df‖.

Metric or measure-theoretic entropy for a transformation was introduced by Kolo-
mogorov and Sinai in 1959; the ideas go back to Shannon’s information theory. We
begin with some notation. Let (X,B, µ) be a probability space, i.e. X is a set, B a
σ-algebra of subsets of X, and µ a probability measure on (X,B). Let f : X → X
be a measure-preserving transformation, i.e. for all A ∈ B, we have f−1A ∈ B
and µ(A) = µ(f−1A). Let α = {A1, · · · , Ak} be a finite partition of X. Then f−iα
= {f−iA1, · · · f−iAk}, and we say j is the α-address of x ∈ X if x ∈ Aj . For two parti-
tions α and β, α∨β := {A∩B : A ∈ α, B ∈ β}, so that elements of

∨n−1
i=0 f−iα are sets

of the form {x : x ∈ Ai0 , fx ∈ Ai1 , · · · , fn−1x ∈ Ain−1} for some (i0, i1, · · · , in−1),
which we call the α-addresses of the n-orbit starting at x.

Definition 1.2 The metric entropy of f , written hµ(f), is defined as follows:

H(α) := H(µ(A1), · · · , µ(Ak)) where H(p1, · · · , pk) = −
∑

pi log pi ;

hµ(f, α) := lim
n→∞

1

n
H(

n−1∨
0

f−iα) = lim
n→∞

H(f−nα|
n−1∨

0

f−iα) ;

hµ(f) := sup
α

hµ(f, α) .

The objects in the definition above have the following interpretations: H(α) mea-
sures the amount of uncertainty, on average, as one attempts to predict the α-address
of a randomly chosen point. The two limits in the second line can be shown to be
equal. The quantity in the middle is the average uncertainty per iteration in guessing
the α-addresses of a typical n-orbit, while the one on the right is the uncertainly in
guessing the α-address of fnx conditioned on the knowledge of the α-addresses of
x, fx, · · · , fn−1x. The following facts make it easier to compute the quantity in the
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third line: hµ(f) = hµ(f, α) if α is a generator; it can also be realized as lim hµ(f, αn)
where αn is an increasingly refined sequence of partitions such that

∨
αn partitions

X into points.
The following theorem gives a very nice interpretation of metric entropy:

Theorem 1 (The Shannon-McMillan-Breiman Theorem) Let f and α be as
above, and write h = hµ(f, α). Assume for simplicity that (f, µ) is ergodic. Then
given ε > 0, there exists N such that the following holds for all n ≥ N :

(i) ∃Yn ⊂ X with µ(Yn) > 1 − ε such that Yn is the union of ∼ e(h±ε)n atoms of∨n−1
0 f−iα each having µ-measure ∼ e−(h±ε)n;

(ii) − 1
n

log µ((
∨n−1

0 f−iα)(x)) → h a.e. and in L1 where α(x) is the element of α
containing x.

SUMMARY Both hµ and htop measure the exponential rates of growth of n-orbits:
– hµ counts the number of typical n-orbits, while
– htop counts all distinguishable n-orbits.

We illustrate these ideas with the following coin-tossing example. Consider σ :
Π∞

0 {H, T} → Π∞
0 {H, T}, where each element of Π∞

0 {H, T} represents the outcome
of an infinite series of trials and σ is the shift operator. Since the total number of
possible outcomes in n trials is 2n, htop(σ) = log 2. If P (H) = p, P (T ) = 1− p, then
hµ(σ) = −p log p − (1 − p) log(1 − p). In particular, if the coin is biased, then the
number of typical outcomes in n trials is ∼ enh for some h < log 2.

From the discussion above, it is clear that hµ ≤ htop. We, in fact, have the
following variational principle:

Theorem 2 Let f be a continous map of a compact metric space. Then

htop(f) = sup
µ

hµ(f)

where the supremum is taken over all f -invariant Borel probability measures µ.

The idea of expressing entropy in terms of local information has already appeared
in Theorem 1 (ii). Here is another version of this idea, more convenient for certain
purposes. In the context of continuous maps of compact metric spaces, for x ∈ X,
n ∈ Z

+ and ε > 0, define

B(x, n, ε) := {y ∈ X : d(f ix, f iy) < ε, 0 ≤ i < n} .

Theorem 3 [BK] Assume (f, µ) is ergodic. Then for µ-a.e. x,

hµ(f) = lim
ε→0

{
lim sup

n→∞
−1

n
log µB(x, n, ε)

}
.

Thus metric entropy also has the interpretation of being the rate of loss of infor-
mation on nearby orbits. This leads naturally to its relation to Lyapunov exponents,
which is the topic of the next section.
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2 Entropy, Lyapunov Exponents and Dimension

In this section, we focus on a set of ideas in which entropy plays a central role.

Setting for this section: We consider (f, µ) where f : M → M is a C2 dif-
feomorphism of a compact Riemannian manifold M and µ is an f -invariant Borel
probability measure. For simpllicity, we assume (f, µ) is ergodic. (This assumption
is not needed but without it the results below are a little more cumbersome to state.)
Let λ1 > λ2 > · · · > λr denote the distinct Lyapunov exponents of (f, µ), and let
Ei be the linear subspaces corresponding to λi, so that the dimension of Ei is the
multiplicity of λi.

We have before us two ways of measuring dynamical complexity: metric entropy,
which measures the growth in randomness or number of “typical” orbits, and Lya-
punov exponents, which measure the rates at which nearby orbits diverge. The first
is a purely probabilistic concept, while the second is primarily geometric. We now
compare these two invariants. Write a+ = max(a, 0).

Theorem 4 (Pesin’s Formula) [P] If µ is equivalent to the Riemannian measure
on M , then

hµ(f) =
∑

λ+
i dim Ei .

Theorem 5 (Ruelle’s Inequality) [R2] Without any assumptions on µ, we have

hµ(f) ≤
∑

λ+
i dim Ei .

To illustrate what is going on, consider the following two examples: Assume for
simplicity that both maps are affine on each of the shaded rectangles and their images
are as shown. The first map is called “baker’s transformation”. Lebesgue measure is
preserved, and hµ(f) = log 2 = λ1, the positive Lyapunov exponent. The second map
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is easily extended to Smale’s horseshoe; we are interested only in points that remain
in the shaded vertical strips in all (forward and backward) times. As with the first
map, we let µ be the Bernoulli measure that assigns mass 1

2
to each of the two vertical

strips. Here hµ(f) = log 2 < λ1.
Theorems 4 and 5 suggest that entropy is created by the exponential divergence

of nearby orbits. In a conservative system, i.e. in the setting of Theorem 4, all
the expansion goes back into the system to make entropy, leading to the equality
in Pesin’s entropy formula. A strict inequality occurs when some of the expansion
is “wasted”, and that can happen only if there is “leakage” or dissipation from the
system.

The reader may have noticed that the results above involve only positive Lyapunov
exponents. Indeed there is the following complete characterization:

Theorem 6 ([LS], [L], [LY1]) For (f, µ) with λ1 > 0, Pesin’s entropy formula holds
if and only if µ is an SRB measure.

Definition 2.1 An f -invariant Borel probability measure µ is called a Sinai-Ruelle-
Bowen measure or SRB measure if f has a positive Lyapunov exponent µ-a.e.
and µ has absolutely continuous conditional measures on unstable manifolds.

The last sentence is an abbreviated way of saying the following: If f has a positive
Lyapunov exponent µ-a.e., then local unstable manifolds are defined µ-a.e. Each one
of these submanifolds inherits from M a Riemannian structure, which in turn induces
on it a Riemannian measure. We call µ an SRB measure if the conditional measures
of µ on local unstable manifolds are absolutely continuous with respect to these
Riemannian measures.

SRB measures are important for the following reasons: (i) They are more general
than invariant measures that are equivalent to Lebesgue (they are allowed to be
singular in stable directions); (ii) they can live on attractors (which cannot support
invariant measures equivalent to Lebesgue); and (iii) singular as they may be, they
reflect the properties of positive Lebesgue measure sets in the sense below:

Fact [PS] If µ is an ergodic SRB measure with no zero Lyapunov exponents, then
there is a positive Lebesgue measure set V with the property that for every continuous
function ϕ : M → R,

1

n

n−1∑
i=0

ϕ(f ix) →
∫

ϕdµ

for Lebesgue-a.e. x ∈ V .

Theorems 4, 5 and 6 and Definition 2.1 are generalizations of ideas first worked
out for Anosov and Axiom A systems by Sinai, Ruelle and Bowen. See [S], [R1] and
[B] and the references therein.
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Next we investigate the discrepancy between entropy and the sum of positive
Lyapunov exponents and show that it can be expressed precisely in terms of fractal
dimension. Let ν be a probability measure on a metric space, and let B(x, r) denote
the ball of radius r centered at x.

Definition 2.2 We say that the dimension of ν, written dim(ν), is well defined and
equal to α if for ν-a.e. x,

lim
ε→0

log νB(x, ε)

log ε
= α .

The existence of dim(ν) means that locally ν has a scaling property. This is clearly
not true for all measures.

Theorem 7 [LY2] Corresponding to every λi �= 0, there is a number δi with 0 ≤
δi ≤ dim Ei such that

(a) hµ(f) =
∑

λ+
i δi = −∑

λ−
i δi ;

(b) dim(µ|W u) =
∑

λi>0 δi , dim(µ|W s) =
∑

λi<0 δi .

The numbers δi have the interpretation of being the partial dimensions of µ in
the directions of the subspaces Ei. Here µ|W u refers to the conditional measures of
µ on unstable manifolds. The fact that these conditional measures have well defined
dimensions is part of the assertion of the theorem.

Observe that the entropy formula in Theorem 7 can be thought of as a refinement
of Theorems 4 and 5: When µ is equivalent to the Riemannian volume on M , δi =
dim Ei and the formula in Theorem 7(a) is Pesin’s formula. In general, we have
δi ≤ dim Ei. Plugged into (a) above, this gives Ruelle’s Inequality. We may think of
dim(µ|W u) as a measure of the dissipativeness of (f, µ) in forward time.

I would like to include a very brief sketch of a proof of Theorem 7, using it as an
excuse to introduce the notion of entropy along invariant foliations.

Sketch of Proof I. The “conformal” case. By “conformal”, we refer here to
situations where all the Lyapunov exponents are = λ for some λ > 0. This means in
particular that f cannot be invertible, but let us not be bothered by that. In fact,
let us pretend that locally, f is a dilation by eλ. Let B(x, n, ε) be as defined toward
the end of Section 1. Then

B(x, n, ε) ∼ B(x, εe−λn) .

By Theorem 3,
µB(x, n, ε) ∼ e−nh

where h = hµ(f). Comparing the expressions above and setting r = e−λn, we obtain

µB(x, r) ∼ r
h
λ ,
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which proves that dim(µ) exists and = h
λ
.

II. The general picture. Let λ1 > · · · > λu be our positive Lyapunov exponents. It is a
fact from nonuniform hyperbolic theory that for each i ≤ u, there exists at µ-a.e. x an
immersed submanifold W i(x) passing through x and tangent to E1(x) + · · ·+ Ei(x).
These manifolds are invariant, i.e. fW i(x) = W i(fx), and the leaves of W i are
contained in those of W i+1. Our strategy here is to work our way up this hierarchy
of W is, dealing with one exponent at a time.

For each i, we introduce a notion of entropy along W i, written hi. Intuitively, this
number is a measure of the randomness of f along the leaves of W i; it ignores what
happens in transverse directions. Technically, it is defined using (infinite) partitions
whose elements are contained in the leaves of W i. We prove that for each i there
exists δi such that

(i) h1 = δ1λ1;
(ii) hi − hi−1 = δiλi for i = 2, . . . , u, and
(iii) hu = hµ(f).

The proof of (i) is similar to that in the “conformal” case since it involves only
one exponent. To give an idea of why (ii) is true, consider the action of f on the
leaves of W i, and pretend somehow that a quotient dynamical system can be defined
by collapsing the leaves of W i−1 inside W i. This “quotient” dynamical system has
exactly one Lyapunov exponent, namely λi. It behaves as though it leaves invariant a
measure with dimension δi and has entropy hi−hi−1. A fair amount of technical work
is needed to make this precise, but once properly done, it is again the single exponent

principle at work. Summing the equations in (ii) over i, we obtain hu =
u∑

i=1

σiλi.

Step (iii) says that zero and negative exponents do not contribute to entropy. This
completes the outline of the proof in [LY2]. �

Random dynamical systems

We close this section with a brief discussion of dynamical systems subjected to ran-
dom noise. Let ν be a probability measure of Diff(M), the space of diffeomorphisms
of a compact manifold M . Consider one- or two-sided sequences of diffeomorphisms

· · · , f−1, f0, f1, f2, · · ·
chosen independently with law ν. This setup applies to stochastic differential equa-
tions

dξt = X0dt +
∑

i

Xi ◦ dBi
t

where the Xi are time-independent vector fields and the fi are time-one-maps of the
stochastic flow.

The random dynamical system above defines a Markov process on M with P (E|x)
= ν{f, f(x) ∈ E}. Let µ be the marginal of a stationary measure of this process, i.e.

7



µ =
∫

f∗µ dν(f). As individual realizations of this process, our random maps also
have a system of invariant measures {µf̄} defined for ν�-a.e. f̄ = (fi)

∞
i=−∞. These

measures are invariant in the sense that (f0)∗µf̄ = µσf̄ where σ is the shift operator,
and they are related to µ by µ =

∫
µf̄ dν�.

Extending slightly ideas for a single diffeomorphism, it is easy to see that Lya-
punov exponents and entropy are well defined for almost every sequence f̄ and are
nonrandom. We continue to use the notation λ1 > · · · > λr and h.

Theorem 8 [LY3] Assume that µ has a density wrt Lebesgue measure. If λ1 > 0,
then

h =
∑

λ+
i dim Ei .

We remark that µ has a density if the transition probabilities P (·|x) do. In light
of Theorem 6, when λ1 > 0 the µf̄ may be regarded as random SRB measures.

3 Other interpretations of entropy

3.1 Entropy and volume growth

Let M be a compact m-dimensional C∞ Riemannian manifold, and let f : M → M
be a C1 mapping. In this subsection, h(f) is the topological entropy of f . As we
will see, there is a strong relation between h(f) and the rates of growth of areas or
volumes of fn-images of embedded submanifolds. To make these ideas precise, we
begin with the following definitions:

For 
, k ≥ 1, let Σ(k, 
) be the set of Ck mappings σ : Q� → M where Q� is the

-dimensional unit cube. Let ω(σ) be the 
-dimensional volume of the image of σ in
M counted with multiplicity, i.e. if σ is not one-to-one, and the image of one part
coincides with that from another part, then we will count the set as many times as it
is covered. For n = 1, 2, · · · , k ≤ ∞ and 
 ≤ m, let

V�,k(f) = sup
σ∈Σ(k,�)

lim sup
n→∞

1

n
log ω(fn ◦ σ) ,

V (f) = max
�

V�,∞(f) ,

and

R(f) = lim
n→∞

1

n
log max

x∈M
‖Dfn(x)‖ .

Theorem 9 (i) [N] If f is C1+ε, ε > 0, then h(f) ≤ V (f).

(ii) [Yom] For f ∈ Ck, k = 1, · · · ,∞,

V�,k(f) ≤ h(f) +
2


k
R(f) .

In particular, for f ∈ C∞, (i) and (ii) together imply h(f) = V (f).
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For (i), Newhouse showed that V (f) as a volume growth rate is in fact attained by
a large family of disks of a certain dimension. The factor 2�

k
R(f) in (ii) is a correction

term for pathologies that may (and do) occur in low differentiability.
Ideas related to (ii) are also used to resolve a version of the Entropy Conjec-

ture. Let S�(f), 
 = 0, 1, · · · , m, denote the logarithm of the spectral radius of
f∗ : H�(M, R) → H�(M, R) where H�(M, R) is the 
th homology group of M , and let
S(f) = max� S�(f).

Theorem 10 [Yom] For f ∈ C∞, S(f) ≤ h(f).

Intuitively, S(f) measures the complexity of f on a global, topological level; it tells
us which handles wrap around which handles and how many times. These crossings
create “generalized horseshoes” which contribute to entropy. This explains why S(f)
is a lower bound for h(f). On the other hand, entropy can also be created locally,
say, inside a disk, without involving any action on homology. This is why h(f) can
be strictly larger.

3.2 Horseshoes and growth of periodic points

Recall that a “horseshoe” is a uniformly hyperbolic invariant set on which the map
is topologically conjugate to σ : Σ2 → Σ2, the full shift on two symbols. The next
theorem says that in the absence of neutral directions, entropy can be thought of as
carried by sets of this type.

Theorem 11 [K] Let f : M → M be a C2 diffeomorphism of a compact manifold,
and let µ be an invariant Borel probability measure with no zero Lyapunov exponents.
If hµ(f) > 0, then given ε > 0, there exist N ∈ Z

+ and Λ ⊂ M such that
(i) fN(Λ) = Λ and fN |Λ is uniformly hyperbolic,
(ii) fN |Λ is topologically conjugate to σ : Σs → Σs for some s,
(iii) 1

N
log htop(f

N |Λ) > 1
N

log hµ(f) − ε.
In particular, if dim(M) = 2 and htop(f) > 0, then (i) and (ii) hold and the inequality
in (iii) is valid with hµ(f) replaced by htop(f).

The assertion for dim(M) = 2 follows from the first part of the theorem because
in dimension two, any µ with hµ(f) > 0 has one positive and one negative Lyapunov
exponent.

Since shift spaces contain many periodic orbits, the following is an immediate
consequence of Theorem 11:

Theorem 12 [K] Let f be a C2 surface diffeomorphism. Then

lim inf
n→∞

1

n
log Pn ≥ htop(f)

where Pn is the number of fixed points of fn.
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For Anosov and Axiom A diffeomorphisms in any dimension, we in fact have

lim
n→∞

1

n
log Pn = htop(f) ,

(see [B]) but this is a somewhat special situation. Recent results of Kaloshin show
that in general Pn can grow much faster than entropy.

For more information on the relations between topological entropy and various
growth properties of a map or flow, see [KH].

3.3 Large deviations and rates of escape

We will state some weak results that hold quite generally and some stronger results
that hold in specialized situations. This subsection is taken largely from [You].

Let f : X → X be a continuous map of a compact metric space, and let m be a
Borel probability measure on X. We think of m as a reference measure, and assume
that there is an invariant probability measure µ such that for all continuous functions
ϕ : X → R, the following holds for m-a.e. x:

1

n
Snϕ(x) :=

1

n

n−1∑
i=0

ϕ(f ix) →
∫

ϕdµ := ϕ̄ as n → ∞ .

For δ > 0, we define

En,δ = {x ∈ X : | 1
n

Snϕ(x) − ϕ̄| > δ}

and ask how fast mEn,δ decreases to zero as n → ∞.
Following standard large deviation theory, we introduce a dynamical version of

relative entropy: Let ν be a probability measure on X. We let hm(f ; ν) be the
essential supremum with respect to ν of the function

hm(f, x) = lim
ε→0

lim sup
n→∞

−1

n
log mB(x, n, ε)

where B(x, n, ε) is as defined in Section 1. (See also Theorem 3.) Let M denote
the set of all f -invariant Borel probability measures on X, and let Me be the set of
ergodic invariant measures. The following is straightforward:

Proposition 3.1 For every δ > 0,

lim sup
n→∞

1

n
log mEn,δ ≥ sup

{
hν(f) − hm(f ; ν) : ν ∈ Me, |

∫
ϕdν − ϕ̄| > δ

}
.
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Without further conditions on the dynamics, a reasonable upper bound cannot
be expected. More can be said, however, for systems whose dynamics have better
statistical properties. A version of the following result was first proved by Orey and
Pelikan. For ν ∈ Me, let λν be the sum of the positive Lyapunov exponents of (f, ν)
counted with multiplicity.

Theorem 13 Let f |Λ be an Axiom A attractor, and let U ⊃ Λ be its basin of
attraction. Let m be the (normalized) Riemannian measure on U , and let µ be the
SRB measure on the attractor (see Section 2). Then 1

n
Snϕ satisfies a large deviation

principle with rate function

k(s) = − sup

{
hν(f) − λν : ν ∈ Me,

∫
ϕdµ = s

}
.

A similar set of ideas applies to rates of escape problems. Consider a differentiable
map f : M → M of a manifold with a compact invariant set Λ (which is not necessarily
attracting). Let U be a compact neighborhood of Λ and assume that Λ is the maximal
invariant set in Ū , the closure of U . Define

En,U = {x ∈ Ū : f ix ∈ Ū , 0 ≤ i < n} .

Here, M is the set of invariant measures in Ū . For ν ∈ M, let λν be as before,
averaging over ergodic components if ν is not ergodic. Let m be Lebesgue measure
as before. The uniformly hyperbolic case of the next theorem is first proved in [B].

Theorem 14 In general,

lim inf
n→∞

1

n
log mEn,U ≥ sup {hν(f) − λν : ν ∈ M} .

If Λ is uniformly hyperbolic or partially uniformly hyperbolic, then the limit above
exists and is equal to the right side.

The reader may recall that hν(f) ≤ λν is Ruelle’s Inequality (Theorem 5). The
quantity on the right side of Theorem 14 is called topological pressure. There is a
variational principle similar to that in Theorem 2 but with a potential (see [R1] or
[B] for the theory of equilibrium states of uniformly hyperbolic systems).

We finish with the following interpretations: The numbers λν , ν ∈ M, describe
the forces that push a point away from Λ. For example, if Λ consists of a single fixed
point of saddle type, then the sum of the logarithms of its eigenvalues of modulus
greater than one is precisely the rate of escape from a neighborhood of Λ. The
entropies of the system, hν(f), represent, in some ways, the forces that keep a point
in U , so that hν(f) − λν gives the net escape rate. One cannot, however, expect
equality in general in Theorem 14, the reason being that not all parts of an invariant
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set are “seen” by invariant measures. For a simple example, consider the time-one-
map of the “figure 8” flow where Λ ⊂ R

2 consists of a saddle fixed point p together
with its separatrices both of which are homoclinic orbits. If | detDf(p)| < 1, then Λ
is an attractor, from whose neighborhood there is no escape. For its unique invariant
measure µ = δp, however, 0 = hν < λν .
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