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Abstract We study the reliability of phase oscillator networks in response to fluc-
tuating inputs. Reliability means that an input elicits essentially identical responses
upon repeated presentations, regardless of the network’s initial condition. Single os-
cillators are well known to be reliable. We show in this paper that unreliable behavior
can occur in a network as small as a coupled oscillator pair in which the signal is
received by the first oscillator and relayed to the second with feedback. A geometric
explanation based on shear-induced chaos at the onset of phase-locking is proposed.
We treat larger networks as decomposed into modules connected by acyclic graphs,
and give a mathematical analysis of the acyclic parts. Moreover, for networks in this
class, we show how the source of unreliability can be localized, and address questions
concerning downstream propagation of unreliability once it is produced.
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1 Introduction

This paper contains a mathematical treatment of the question of reliability in the con-
text of oscillator networks. Reliability here refers to whether a system produces iden-
tical responses when it is repeatedly presented with the same stimulus. Such questions
are relevant to signal processing in biological and engineered systems. Consider, for
example, a network of interconnected neurons with some background activity. An
external stimulus in the form of a time-dependent signal is applied to this neural cir-
cuitry, which processes the signal and produces a response in the form of voltage
spikes. We say the system is reliable if, independent of its state at the time of presen-
tation, the same stimulus elicits essentially identical responses following an initial pe-
riod of adjustment, that is, the response to a given signal is reproducible (Pikovsky et
al. 2001; Bryant and Segundo 1976; Mainen and Sejnowski 1995; Nakao et al. 2005;
Zhou and Kurths 2003; Teramae and Tanaka 2004; Ritt 2003; Pakdaman and Mes-
tivier 2001; Kosmidis and Pakdaman 2003; Goldobin and Pikovsky 2005, 2006; Tera-
mae and Fukai 2007).

The present study is carried out in the context of (heterogeneous) networks of in-
terconnected oscillators. We assume the input signal is received by some components
of the network and relayed to others, possibly in the presence of feedback connec-
tions. Our aim is to understand the relation between a network’s reliability properties
and its architecture (or “circuit diagram”) and the strengths of various connections.
This problem is quite different from the simpler and much studied situation of uncou-
pled oscillators driven by a common input. The latter is equivalent to single, isolated
oscillators, the reliability of which has been studied extensively (Pikovsky et al. 2001;
Nakao et al. 2005; Zhou and Kurths 2003; Teramae and Tanaka 2004; Ritt 2003; Pak-
daman and Mestivier 2001; Kosmidis and Pakdaman 2003; Goldobin and Pikovsky
2005, 2006). To simplify the analysis, we assume the constituent oscillators are phase
oscillators or circle rotators, and that they are driven by a fluctuating input which, for
simplicity, we take to be white noise. Under these conditions, systems consisting of
a single, isolated phase oscillator have been shown to be reliable; see, e.g., Teramae
and Tanaka (2004), Ritt (2003).

Our results are presented in 3 separate parts. As the reader will see from the brief
description below, Parts II and III are largely independent, while they both build on
the material in Part I.

Part I: Model and Preliminaries. This part contains a detailed description of the
models studied in this paper, a formal definition of reliability, and a review of random
dynamical systems theory which justifies the use of Lyapunov exponents as a measure
of reliability.

Part II: Two-Oscillator Systems. Part II contains an in-depth study of a small net-
work consisting of two oscillators. It is motivated in part by the following naive (and
partly rhetorical) question: Are networks of coupled phase oscillators reliable, and if
not, how large must a network be to exhibit unreliable behavior? Our answer to this
question is that unreliable behavior occurs already in 2-oscillator systems with recur-
rent connections. Our results demonstrate clearly that such a system can be reliable
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or unreliable, and that both types of behaviors are quite prominent depending on the
strengths of the feedforward and feedback couplings.

Geometric explanations are given for some of the phenomena observed. Our most
striking result, which occupies much of Part II, is to relate reliability properties in
response to weak stimuli to shear-induced chaos. Recent advances in dynamical sys-
tems theory have identified a mechanism for producing chaos via the interaction of
forcing with the underlying shear in a system. The dynamical environment near the
onset of phase-locking is particularly susceptible to this mechanism. Applying the
cited theory, which we review, we are able to predict the reliability or lack thereof for
a range of coupling parameters. At low drive amplitudes, this is the primary cause for
unreliability.

Part III. Larger Networks. A clear message from Part II is that networks, even small
networks, with recurrent connections can exhibit very complex behavior, and that a
complete classification of their reliability properties is not likely to be feasible. On
the other hand, acyclic networks, or networks whose coupling connections have no
cycles, are quite tractable. These two observations suggest that it may be profitable
to group nodes which are interconnected with recurrent couplings into modules, so
that the network as a whole can be described by an acyclic graph connecting these
modules. That is to say, we isolate the parts that are too complicated to analyze, treat
them as black boxes, and focus on the remaining picture. Such an approach can be
effective for certain types of networks, and it is the approach taken in much of Part III.

A rigorous mathematical analysis of the decomposition into modules, including
a representation of the Lyapunov exponents of the network in terms of those within
modules, is presented. Via this decomposition, we are able to localize the source of
any unreliability that may be present, and to study which sites are affected. Among
our findings is that once produced, unreliability propagates; no site downstream can
be completely reliable. We finish by raising what we believe is an important but sel-
dom addressed question, namely how to deduce reliability of a system from knowl-
edge of its parts. Simple examples are given to demonstrate that this can sometimes
be done.

This completes our brief description of what is in each of the 3 parts.
Rigorous mathematical results in this paper are presented in the form of Theorems,

Propositions, etc. Simulations and heuristic reasoning are used abundantly where rig-
orous analysis is not available. Many of our findings are qualitative. Our aim is to
identify and explain relevant phenomena, and to make contact with rigorous math-
ematics whenever we can, hoping in the long run to help bring dynamical systems
theory closer to biologically relevant systems.

There is a vast literature on networks of oscillators; it is impossible to give general
citations without serious omissions. We have limited our citations to a sample of
papers and books with settings closer to ours or which treat specifically the topic
of reliability (see below). We mention in particular the preprint (Teramae and Fukai
2007), which discusses the reliability of large, sparsely coupled networks in a way
that complements ours.
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Fig. 1 Schematic of a forced
oscillator network

2 Part I. Model and Preliminaries

2.1 Model

2.1.1 Coupled Phase Oscillator Systems

We consider in this paper networks of coupled phase oscillators in the presence of ex-
ternal stimuli. A schematic picture of such a setup is shown in Fig. 1. The networks
considered are of the type that arise in many settings; see, e.g., Pikovsky et al. (2001),
Strogatz (2000), Kuramoto (1997), Hoppensteadt and Izhikevich (1997), Winfree
(2001), Rinzel and Ermentrout (1998), Brown et al. (2003), Ermentrout (1991), Er-
mentrout and Kopell (1991).

The unforced systems, i.e., the systems without external stimuli, are described by

θ̇i = ωi + z(θi)
∑

j �=i

ajig(θj ), i = 1, . . . ,N. (1)

Except in Part II (where we treat two-oscillator systems), N can be any number
≥1; in particular, it can be arbitrarily large. The state of oscillator i is described
by an angular variable θi ∈ S

1 ≡ R/Z, i = 1, . . . ,N . Its intrinsic frequency is given
by a constant ωi . We allow these frequencies to vary from oscillator to oscillator.
The second term on the right represents the coupling: aji ∈ R, g is a “bump func-
tion” vanishing outside of a small interval (−b, b); on (−b, b), it is smooth, ≥0,
and satisfies

∫ b

−b
g(θ) dθ = 1; z(θ) is a function which in this paper is taken to be

z(θ) = 1
2π

(1 − cos(2πθ)). The meaning of this coupling term is as follows: We
say the j th oscillator “spikes” when θj (t) = 0. Around the time that an oscillator
spikes, it emits a pulse which modifies some of the other oscillators (Peskin 1988;
Strogatz and Mirollo 1990; Herz and Hopfield 1995; Nunes and Pereira 1985). The
sign and magnitude of aji describe how oscillator j affects oscillator i: aji > 0 (resp.,
aji < 0) means oscillator j excites (resp., inhibits) oscillator i when it spikes, and
aji = 0 means oscillator i is not directly affected. In this paper, b is taken to be
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about 1
20 , and the aji are taken to be O(1). Finally, the function z(θ), often called

the phase response curve (Winfree 1974; Guckenheimer 1975; Ermentrout 1996;
Kuramoto 1997), measures the variable sensitivity of an oscillator to coupling and
stimulus inputs (see below).

The stimulus-driven systems are of the form

dθi = ωi dt + z(θi)

(∑

j �=i

ajig(θj ) dt + Ii(t)

)
,

Ii(t) = εi dWi(t), i = 1, . . . ,N.

(2)

Here, Ii(t) is the external stimulus received by oscillator i; it is taken to be white
noise with amplitude εi . For simplicity, we assume that for i �= j , dWi(t) and dWj(t)

are either independent, or they are one and the same, i.e., the same input is received
by both oscillators although the amplitudes may differ. As discussed earlier, we are
primarily interested in situations where inputs are received by only a subset of the
oscillators, with εi ≈ 0 for the rest. Likewise, we are sometimes interested in the
response registered at only a subset of the oscillators rather than the whole network.

2.1.2 Neuroscience Interpretations

Coupled phase oscillators arise in many settings (Pikovsky et al. 2001; Strogatz 2000;
Kuramoto 1997; Hoppensteadt and Izhikevich 1997; Winfree 2001; Rinzel and Er-
mentrout 1998). Here, we briefly discuss their use in mathematical neuroscience.

We think of phase oscillators as paradigms for systems with rhythmic behav-
ior. Such models are often derived as limiting cases of oscillator models in two
or more dimensions. In particular, the specific form of z(·) chosen here corre-
sponds to the normal form for oscillators near saddle-node bifurcations on their limit
cycles (Ermentrout 1996). This situation is typical in neuroscience, where neural
models with z(θ) ≈ 1 − cos(θ) are referred to as “Type I.” The pulse- or spike-
based coupling implemented by g(·) may also be motivated by the synaptic im-
pulses sent between neurons after they fire action potentials (although this is not
the only setting in which pulsatile coupling arises) (Winfree 2001; Brown et al. 2003;
Ermentrout and Kopell 1991; Taylor and Holmes 1998; Strogatz and Mirollo 1990;
Herz and Hopfield 1995; Nunes and Pereira 1985; Peskin 1988; Hoppensteadt and
Izhikevich 1997).

The general conclusions that we will present do not depend on the specific choices
of z(·) and g(·), but rather on their qualitative features. Specifically, we have checked
that our main results about reliability and phase locking are essentially unchanged
when the z(·) function becomes asymmetric and the location of the g(·) impulse is
somewhat shifted, as would correspond more closely to neuroscience (Ermentrout
1996). Therefore, the behavior we find here can be expected to be fairly prototypical
for pulse-coupled networks of Type I oscillators.

A standard way to investigate the reliability of a system of spiking oscillators—
both in the laboratory and in simulations—is to repeat the experiment using a differ-
ent initial condition each time but driving the system with the same stimulus εI (t),
and to record spike times in raster plots. Figure 2 shows such a raster plot for an
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Fig. 2 Raster plot for an isolated oscillator. In each experiment, 75 trials are performed, and dots are
placed at spike times. Nearly identical spike times are observed after a transient, indicating reliability

isolated oscillator of the present type, as studied by Ritt (2003), Gutkin et al. (2003).
Note that, for each repetition, the oscillator produces essentially identical spike times
after a transient, demonstrating its reliability.

2.2 Measuring Reliability

2.2.1 A Working Definition of Reliability

We attempt to give a formal definition of reliability in a general setting. Consider
a dynamical system on a domain M (such as a manifold or a subset of Euclidean
space). A signal in the form of ι(t) ∈ R

n, t ∈ [0,∞), is presented to the system. The
response F(t) of the system to this signal is given by F(t) = F(x0, t, {ι(s)}0≤s<t ).
That is to say, the response at time t may, in principle, depend on x0 ∈ M , the initial
state of the system when the signal is presented, and the values of the signal up to
time t .

In the model as described in Sect. 2.2.1, F(t) can be thought of as the N -tuple
(θ1(t), θ2(t), . . . , θN(t)) or Ψ (θ1(t), θ2(t), . . . , θN(t)), the value of an observable at
time t .

We propose now one way to define reliability. Given a dynamical system, a class
of signals I , and a response function F , we say the system is reliable if for almost
all ι ∈ I and x0, x

′
0 ∈ M ,

∥∥F
(
x0, t,

{
ι(s)

}
0≤s<t

) − F
(
x′

0, t,
{
ι(s)

}
0≤s<t

)∥∥ → 0 as t → ∞.

Here ‖ · ‖ is a norm on the range space of F . We do not claim that this is the only
way to capture the idea of reliability, but will use it as our operational definition.

We point out some of the pitfalls of this definition: In practice, signals are never
presented for infinite times, and in some situations, responses can be regarded as
reliable only if the convergence above is rapid. By the same token, not all initial
conditions are equally likely, leaving room for probabilistic interpretations.

Finally, one should not expect unreliable responses to be fully random. On the
contrary, as we will show in Sect. 2.2.2, they tend to possess a great deal of structure,
forming what are known as random strange attractors.
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2.2.2 Reliability, Lyapunov Exponents, and Random Attractors

We discuss here some mathematical tools that can be used to quantify how reliable
or unreliable a driven system is. With I (t) taken to be realizations of white noise,
(2) can be put into the framework of a random dynamical system (RDS). We begin
by reviewing some relevant mathematics (Arnold 2003; Baxendale 1992). Consider
a general stochastic differential equation (SDE)

dxt = a(xt ) dt +
k∑

i=1

bi(xt ) ◦ dWi
t . (3)

In this general setting, xt ∈ M where M is a compact Riemannian manifold, the Wi
t

are independent standard Brownian motions, and the equation is of Stratonovich type.
Clearly, (2) is a special case of (3): xt = (θ1(t), . . . , θN(t)), M = T

N ≡ S
1 × S

1 ×
· · ·×S

1 (and we have the choice between the Itô or Stratonovich integral), and k = 1.
In general, one fixes an initial x0, and looks at the distribution of xt for t > 0.

Under fairly general conditions, these distributions converge to the unique stationary
measure μ, the density of which is given by the Fokker–Planck equation. Since re-
liability is about a system’s reaction to a single stimulus, i.e., a single realization of
(W 1

t , . . . ,Wk
t ), at a time, and concerns the simultaneous evolution of all or large en-

sembles of initial conditions, of relevance to us are not the distributions of xt but flow-
maps of the form Ft1,t2;ω. Here t1 < t2 are two points in time, ω is a sample Brownian
path, and Ft1,t2;ω(xt1) = xt2 where xt is the solution of (3) corresponding to ω. A well
known theorem states that such stochastic flows of diffeomorphisms are well defined
if the functions a(x) and b(x) in (3) are sufficiently smooth; see, e.g., Kunita (1990).
More precisely, the maps Ft1,t2;ω are well defined for almost every ω, and they are in-
vertible, smooth transformations with smooth inverses. Moreover, Ft1,t2;ω and Ft3,t4;ω
are independent for t1 < t2 < t3 < t4. These results allow us to treat the evolution of
systems described by (3) as compositions of random, i.i.d., smooth maps. Many of
the techniques for analyzing smooth deterministic systems have been extended to this
random setting. We will refer to the resulting body of work as RDS theory.

Similarly, the stationary measure μ, which gives the steady-state distribution av-
eraged over all realizations ω, does not describe what we see when studying a sys-
tem’s reliability. Of relevance are the sample measures {μω}, which are the condi-
tional measures of μ given the past. More precisely, we think of ω as defined for all
t ∈ (−∞,∞) and not just for t > 0. Then μω describes what one sees at t = 0 given
that the system has experienced the input defined by ω for all t < 0. Two useful facts
about these sample measures are

(a) (F−t,0;ω)∗μ → μω as t → ∞, where (F−t,0;ω)∗μ is the measure obtained by
transporting μ forward by F−t,0;ω , and

(b) the family {μω} is invariant in the sense that (F0,t;ω)∗(μω) = μσt (ω) where σt (ω)

is the time-shift of the sample path ω by t .

Thus, if our initial distribution is given by a probability density ρ and we apply
the stimulus corresponding to ω, then the distribution at time t is (F0,t;ω)∗ρ. For
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Fig. 3 Snapshots of sample measures for (2) with N = 2 oscillators, at various times in response to a
single realization of the stimulus. Two different sets of parameters are used in (a) and (b). In (a), the
sample measures converge to a random fixed point. In (b), the sample measures converge to a random
strange attractor. See Theorem 1

t sufficiently large, one expects in most situations that (F0,t;ω)∗ρ is very close to
(F0,t;ω)∗μ, which by (a) above is essentially given by μσt (ω). The time-shift by t of
ω is necessary because by definition, μω is the conditional distribution of μ at time 0.

Figure 3 shows some snapshots of (F0,t;ω)∗ρ for a system with N = 2 cells, for
two different sets of parameters. As noted earlier in the panels corresponding to
t � 1, the distributions approximate μσt (ω). In these simulations, the initial distribu-
tion ρ is the stationary density of (2) with a small-amplitude noise, the interpretation
being that the system is intrinsically noisy even in the absence of external stimuli.
Observe that these pictures evolve with time, and for large enough t , they have sim-
ilar qualitative properties depending on the underlying system. This is in agreement
with RDS theory, which tells us in fact that the μσt (ω) obey a statistical law for almost
all ω. Observe also the strikingly different behaviors in the top and bottom panels.
We will follow up on this observation presently. First, we recall two mathematical
results that describe the dichotomy.

In deterministic dynamics, Lyapunov exponents measure the exponential rates of
separation of nearby trajectories. Let λmax(x) denote the largest Lyapunov exponent
along the trajectory starting from x. Then a positive λmax for a large set of initial
conditions is generally thought of as synonymous with chaos, while the presence of
stable equilibria is characterized by λmax < 0. For smooth random dynamical sys-
tems, Lyapunov exponents are also known to be well defined; moreover, they are
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nonrandom, i.e., they do not depend on ω. If, in addition, the invariant measure is
ergodic, then λmax is constant almost everywhere in the phase space. In Theorem 1
below, we present two results from RDS theory that together suggest that the sign of
λmax is a good criterion for distinguishing between reliable and unreliable behavior:

Theorem 1 In the setting of (3), let μ be an ergodic stationary measure.

(1) (Random sinks) (Le Jan 1987) If λmax < 0, then with probability 1, μω is sup-
ported on a finite set of points.

(2) (Random strange attractors) (Ledrappier and Young 1988) If μ has a density and
λmax > 0, then with probability 1, μω is a random SRB measure.

In Part (1) above, if in addition to λmax < 0, two mild conditions (on the relative
motions of two points) are assumed, then almost surely μω is supported on a single
point (Baxendale 1992). Observe that this corresponds exactly to reliability for almost
every ω as defined in Sect. 2.2.1, namely the collapse of trajectories starting from
almost all initial conditions to a point (which continues to evolve with time). See
Fig. 3(a). In view of this interpretation, we will take the liberty to equate λmax < 0
with reliability in the rest of this paper.

The conclusion of Part (2) requires clarification: In deterministic dynamical sys-
tems theory, SRB measures are natural invariant measures that describe the asymp-
totic dynamics of chaotic dissipative systems (in the same way that Liouville mea-
sures are the natural invariant measures for Hamiltonian systems). SRB measures are
typically singular. They are concentrated on unstable manifolds, which are families
of curves, surfaces, etc. that wind around in a complicated way in the phase space
(Eckmann and Ruelle 1985). Part (2) of Theorem 1 generalizes these ideas to ran-
dom dynamical systems. Here, random (meaning ω-dependent) SRB measures live
on random unstable manifolds, which are complicated families of curves, surfaces,
etc. that evolve with time. In particular, in a system with random SRB measures, dif-
ferent initial conditions lead to very different outcomes at time t when acted on by
the same stimulus; this is true for all t > 0, however large. It is, therefore, natural to
regard λmax > 0 and the distinctive geometry of random SRB measures as a signature
of unreliability.

In the special case where the phase space is a circle, such as in the case of a single
oscillator, that the Lyapunov exponent λ is nonpositive is an immediate consequence
of Jensen’s Inequality. In more detail,

λ(x) = lim
t→∞

1

t
logF ′

0,t;ω(x)

for typical ω by definition. Integrating over initial conditions x, we obtain

λ =
∫

S1
lim

t→∞
1

t
logF ′

0,t;ω(x) dx = lim
t→∞

1

t

∫

S1
logF ′

0,t;ω(x) dx.

The exchange of integral and limit is permissible because the required integrabil-
ity conditions are satisfied in stochastic flows (Kifer 1986). Jensen’s Inequality then
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gives

∫

S1
logF ′

0,t;ω(x) dx ≤ log
∫

S1
F ′

0,t;ω(x) dx = 0. (4)

The equality above follows from the fact that F0,t;ω is a circle diffeomorphism. Since
the gap in the inequality in (4) is larger when F ′

0,t;ω is farther from being a constant
function, we see that λ < 0 corresponds to F ′

0,t;ω becoming “exponentially uneven”
as t → ∞. This is consistent with the formation of random sinks.

The following results from general RDS theory shed light on the situation when
the system is multi-dimensional:

Proposition 2.1 (See, e.g., Chap. 5 of Kifer (1986) or Le Jan (1987)) In the setting
of (3), assume μ has a density, and let {λ1, . . . , λd} be the Lyapunov exponents of the
system counted with multiplicity. Then

(i)
∑

i λi ≤ 0.
(ii)

∑
i λi = 0 if and only if Fs,t,ω preserves μ for almost all ω and all s < t .

(iii) If
∑

i λi < 0, and λi �= 0 for all i, then μω is singular.

A formula giving the dimension of μω is proved in Ledrappier and Young (1988)
under mild additional conditions.

The reliability of a single oscillator, i.e., that λ < 0, is easily deduced from Propo-
sition 2.1: μ has a density because the transition probabilities have densities, and no
measure is preserved by all the Fs,t,ω because different stimuli distort the phase space
differently. Proposition 2.1(i) and (ii) together imply that λ < 0. See also Pakdaman
and Mestivier (2001), Nakao et al. (2005), Teramae and Tanaka (2004), Ritt (2003).

For the 2-oscillator system illustrated in Fig. 3, assuming that μ has a density (this
is explained in Sect. 3.1), Proposition 2.1(i) and (ii) together imply that λ1 + λ2 < 0.
Here λ1 = λmax can be positive, zero, or negative. If it is > 0, then it will follow from
Proposition 2.1(i) that λ2 < 0, and by Proposition 2.1(iii), the μω are singular. From
the geometry of random SRB measures, we conclude that different initial conditions
are attracted to lower dimensional sets that depend on stimulus history. Thus, even
in unreliable dynamics, the responses are highly structured and far from uniformly
distributed, as illustrated in Fig. 3(b).

Finally, we observe that since λmax is nonrandom, the reliability of a system is
independent of the realization ω once the stimulus amplitude ε is fixed.

Remark In this paper, we compute λmax numerically by solving the variational equa-
tion associated with the SDE (3) using the Milstein scheme. For examples of systems
where analytical estimates of positive λmax have been obtained, see Baxendale and
Goukasian (2002), Arnold et al. (2004), Teramae and Fukai (2007).
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3 Part II. Two-Oscillator Systems

We consider in Part II a special case of the general model described in Sect. 2.1.1,
namely two coupled phase oscillators forced by an external stimulus as shown:

(5)

Equation (2) here simplifies to

θ̇1 = ω1 + afbz(θ1)g(θ2) + εz(θ1)I (t),

θ̇2 = ω2 + affz(θ2)g(θ1),
(6)

where we have written aff and afb (for “feedforward” and “feedback”) instead of a12
and a21.

Part II is comprised of three sections. Our main result, which relates reliability
properties at low drive amplitudes to the theory of shear induced chaos, is discussed
in Sect. 3.2, after some preparatory material in Sect. 3.1 on the undriven system.
Other results on the reliability profile as a function of aff, afb and ε are discussed in
Sect. 3.3.

3.1 Coupling Geometry and Zero-Input Dynamics

How a system responds to weak stimuli is strongly dependent on its geometry at zero
input. This section sets the stage for Sect. 3.2 by discussing this geometry, focusing in
particular on the set of parameters for which the system is phase-locked (Sect. 3.1.2).

3.1.1 Preliminary Observations

First we describe the flow ϕt on the 2-torus T
2 defined by (6) when the stimulus is

absent, i.e., when ε = 0. We begin with the case where the two oscillators are uncou-
pled, i.e., aff = afb = 0. In this special case, ϕt is a linear flow; depending on whether
ω1/ω2 is rational, it is either periodic or quasiperiodic. Adding coupling distorts flow
lines inside the two strips {|θ1| < b} and {|θ2| < b}. These two strips correspond to
the regions where one of the oscillators “spikes,” transmitting a coupling impulse to
the other (see Sect. 2.1.1). For example, if aff > 0, then an orbit entering the verti-
cal strip containing θ1 = 0 will bend upward. Because of the variable sensitivity of
the receiving oscillator, the amount of bending depends on aff as well as the value
of θ2, with the effect being maximal near θ2 = 1

2 and negligible near θ2 = 0 due to
our choice of the function z(θ). The flow remains linear outside of these two strips.
See Fig. 4.

Because the phase space is a torus and (6) does not have fixed points for the pa-
rameters of interest, ϕt has a global section, e.g., Σ0 = {θ2 = 0}, with a return map
T0 : Σ0 → Σ0. The large-time dynamics of ϕt are therefore described by iterating T0,
a circle diffeomorphism. From standard theory, we know that circle maps have non-
positive Lyapunov exponents for almost all initial conditions with respect to Lebesgue
measure. This in turn translates into λmax = 0 for the flow ϕt .
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Fig. 4 Plots of a few orbits of (6) with ε = 0 showing the strips in which flowlines are distorted. In both
sets, ω1 = 1,ω2 = 1.1. Note the directions of bending in relation to the signs of aff and afb

We consider next two special but instructive cases of (6), namely the “pure feed-
forward” case corresponding to afb = 0 and the “pure feedback” case corresponding
to aff = 0. In these two special cases, the geometry of the system prohibits it from
being unreliable:

Proposition 3.1 For every ε > 0,

(a) the system (6) has an ergodic stationary measure μ with a density
(b) (i) if afb = 0, then λmax ≤ 0

(ii) if aff = 0, then λmax = 0.

Proposition 3.1(b) is a special case of a more general theorem on acyclic networks,
which we state and prove in Sect. 4.2. Rather than give a formal proof here, we discuss
informally the underlying geometric intuition. Proposition 3.1(a) is proved at the end
of this subsection.

Consider the case afb = 0. Notice that when ε = 0, the time-t map of the flow
generated by (6) sends vertical circles (meaning sets of the form {θ1 = c} where c is
a constant) to vertical circles. As our stimulus acts purely in the horizontal direction
and its magnitude is independent of θ2, vertical circles continue to be preserved by the
flow-maps Fs,t,ω when ε > 0. (One can also see this from the variational equations.)
As is well known, λmax > 0 usually results from repeated stretching and folding of
the phase space. Maps that preserve all vertical circles are far too rigid to allow this
to happen. Thus we expect λmax ≤ 0 when afb = 0.

Moreover, when afb = 0 it can be shown that two nearby trajectories that are ini-
tially separated in the θ1 direction will converge exponentially fast (see Theorem 3
in Sect. 4.2.2). The value of λmax therefore hinges on the growth rate of the distance
between two trajectories initially separated in the θ2 direction. However, even though
this growth rate also involves compositions of random circle maps, the maps here are
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not i.i.d.: The kicks received by the second oscillator are in randomly timed pulses
that cannot be put into the form of the white noise term in (3). We know of no math-
ematical result that guarantees a strictly negative Lyapunov exponent in this setting,
but believe it is unlikely that (3) will have a robust zero Lyapunov exponent unless
aff = 0.

In the pure feedback case aff = 0, the second oscillator rotates freely without input
from either external stimuli or the first oscillator. Thus, the system always has a zero
Lyapunov exponent corresponding to the uniform motion in the direction of θ2.

Proof of Proposition 3.1(a) To verify that (6) has a stationary measure with a density,
first note that because the white noise stimulus εI (t) instantaneously spreads trajec-
tories in the horizontal (θ1) direction, an invariant measure must have a density in
this direction. At the same time, the deterministic part of the flow carries this density
forward through all of T

2 since flowlines make approximately 45 degree angles with
the horizontal axis. Therefore, the two-oscillator system has a 2-D invariant density
whenever ε > 0. �

To summarize, it is impossible for a two-oscillator system to exhibit an unreliable
response without recurrent connections.

3.1.2 Phase Locking in Zero-Input Dynamics

This subsection concerns the dynamics of the coupled oscillator system when ε = 0.
Recall that the intrinsic frequencies of the two oscillators, ω1 and ω2, are assumed to
be ≈1. Our main result is that if ω1 and ω2 differ by a little, then in regions of the
(aff, afb)-parameter plane in the form of a square centered at (0,0), the two oscillators
are 1:1 phase-locked for about half of the parameters. Two examples are shown in
Fig. 5, and more detail will be given as we provide a mathematical explanation for
this phenomenon. (Phase locking of pairs of coupled phase oscillators is studied in
e.g., Gerstner et al. (1996), Hansel et al. (1995), Ermentrout (1996, 1981), Chow
(1998), Taylor and Holmes (1998). A primary difference is that we treat the problem
on an open region of the (aff, afb)-plane centered at (0,0).)

Fig. 5 The critical value a∗
fb as functions of aff. In both plots, the dashed line is the a∗

fb curve (see text),
and the shaded regions are the parameters for which 1:1 phase-locking occurs
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Let ϕt be the flow on T
2 defined by (6) with ε = 0. To study ϕt , we consider its

return map T : Σb → Σb where Σb = {θ2 = b}. Working with the section Σb (as op-
posed to, e.g., Σ0) simplifies the analysis as we will see, and substantively the results
are not section-dependent. Let ρ(T ) be the rotation number of T (Guckenheimer
and Holmes 1983). Since ω1 ≈ ω2, it is natural to define ρ(T ) in such a way that
ρ(T ) ≈ 1 when aff = afb = 0, so that ρ(T ) may be interpreted as the average number
of rotations made by the first oscillator for each rotation made by the second. It is
well known that if ρ(T ) is irrational, then ϕt is equivalent to a quasi-periodic flow
via a continuous change of coordinates, while ρ(T ) ∈ Q corresponds to the presence
of periodic orbits for ϕt . In particular, attracting fixed points of T correspond to at-
tracting periodic orbits of ϕt that are 1:1 phase-locked, “1:1” here referring to the fact
that oscillator 2 goes around exactly once for each rotation made by oscillator 1.

We begin with the following elementary facts:

Lemma 3.1

(a) With ω1, ω2, and aff fixed and letting T = Tafb , the function afb �→ Tafb(θ1) is
strictly increasing for each θ1; it follows that ρ(Tafb) is a nondecreasing function1

of afb.
(b) With ω1, aff, and afb fixed, ω2 �→ Tω2(θ1) is strictly decreasing for each θ1, and

ρ(Tω2) is a non-increasing function of ω2.

Analogous results hold as we vary aff and ω1 separately keeping the other three
quantities fixed.

Proof This follows from the way each coupling term bends trajectories; see
Sect. 3.1.1 and Fig. 4. We show (a); the rest are proved similarly. Consider two
trajectories, both starting from the same point on Σb but with different afb. They will
remain identical until their θ2-coordinates reach 1 − b, as afb does not affect this part
of the flow. Now at each point in the horizontal strip H = {1 − b < θ2 < 1 + b},
the vector field corresponding to the larger afb has a larger horizontal component
while the vertical components of the two vector fields are identical. It follows that the
trajectory with the larger afb will be bent farther to the right as it crosses H . �

Our main result identifies regions in parameter space where T has a fixed point,
corresponding to 1:1 phase-locking as discussed above. We begin with the following
remarks and notation: (i) Observe that when ω1 = ω2 and aff = afb, we have T (x) = x

for all x ∈ Σb; this is a consequence of the symmetry of z(θ) about θ = 1
2 . (ii) We

introduce the notation �ω = 1 − ω1
ω2

, so that when aff = afb = 0, x − T (x) = �ω for
all x, i.e., �ω measures the distance moved by the return map T under the linear flow
when the two oscillators are uncoupled. Here, we have used T to denote not only the
section map but its lift to R with T (1) = 1 in a harmless abuse of notation.

We will state our results for a bounded range of parameters. For definiteness, we
consider aff, afb ∈ [−2,2] and 0.9 ≤ ωi ≤ 1.1. The bounds for aff and afb are quite
arbitrary. Once chosen, however, they will be fixed; in particular, the constants in

1This is to allow for phase locking at rational values of ρ(Tafb ).
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our lemmas below will depend on these bounds. It is implicitly assumed that all
parameters considered in Theorem 2 are in this admissible range. We do not view
b as a parameter in the same way as ω1,ω2, aff or afb, but instead of fixing it at 1

20 ,
we will take b as small as need be, and assume |g| = O( 1

b
) in the rigorous results to

follow.

Theorem 2 The following hold for all admissible (ω1,ω2, aff, afb) and all b suffi-
ciently small:

(a) If ω2 > ω1, then there exist a∗
fb = a∗

fb(ω1,ω2, aff) > aff and � = �(�ω) > 0 such
that T has a fixed point for afb ∈ [a∗

fb, a
∗
fb + �] and no fixed point for afb < a∗

fb.
(b) If ω2 < ω1, then there exist a∗

fb = a∗
fb(ω1,ω2, aff) < aff and � = �(�ω) > 0 such

that T has a fixed point for afb ∈ [a∗
fb − �, a∗

fb] and no fixed point for afb > a∗
fb.

Moreover, |a∗
fb − aff| = O(�ω); and for each �ω �= 0, � increases as b decreases.

A proof of Theorem 2 is given in the Appendix.
Our proof shows, in fact, that for as long as ω2 �= ω1, the lengths of the phase-

locked intervals, �, can be made arbitrarily large by taking b small. On the other hand,
if we fix b and shrink �ω, then these intervals will shrink. This is consistent with
the phenomenon that the phase-locked region lies on opposite sides of the diagonal
afb = aff when we decrease ω2 past ω1, as shown in Fig. 5. Instead of tracking the
numerical constants in the proofs, we have checked numerically that for b = 1

20 , the
pictures in Fig. 5 are quite typical, meaning about 50% of the parameters are phase
locked. Specifically, for �ω up to about 10% and |aff| < 2, we find a∗

fb − aff � 0.2,
so that the a∗

fb-curve describing the onset of phase-locking is still quite close to the
diagonal aff = afb. Also, for �ω as small as 0.5%, the phase locked intervals have
length � > 4. These facts together imply that for parameters in the admissible range,
the pictures are as shown in Fig. 5.

Figure 6 shows numerically-computed rotation numbers ρ and the rates of con-
traction to the corresponding limit cycle, i.e., the smaller Lyapunov exponent λmin of
the flow ϕt . Notice that as afb increases past a∗

fb, λmin decreases rapidly, so that the
fixed point of T becomes very stable, a fact consistent with the large interval on which
the system is 1:1 phase-locked. Furthermore, for the full range of |aff|, |afb| ≤ 2 and

Fig. 6 The rotation number ρ and Lyapunov exponent λmin as functions of afb
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Fig. 7 The stretch-and-fold
action of a kick followed by
relaxation in the presence of
shear

0.9 ≤ ωi ≤ 1.1, we find numerically that 0.53 < ρ(T ) < 1.89. Phase-locking corre-
sponding to rational ρ(T ) with small denominators q (e.g., q = 3,4,5) is detected,
but the intervals are very short and their lengths decrease rapidly with q . In other
words, when the system is not 1:1 phase-locked—which occurs for about 50% of the
parameters of interest—modulo fine details the system appears to be roughly quasi-
periodic over not too large timescales. When the white-noise stimulus εI (t) is added,
these fine details will matter little.

3.2 Responses to Weak Stimuli

Numerical evidence is presented in Sect. 3.2.2 (see Fig. 9) showing that unreliability
can occur even when the stimulus amplitude ε is relatively small, and that its occur-
rence is closely connected with the onset of phase-locking in the zero-input system.
A geometric explanation in terms of shear-induced chaos is proposed. We begin with
a review of the general theory.

3.2.1 A Brief Review of Shear-Induced Chaos

A rough idea of what we mean by “shear-induced chaos” is depicted in Fig. 7: An
external force is transiently applied to a limit cycle (horizontal line), causing some
phase points to move up and some to move down. Suppose the speeds with which
points go around the limit cycle are height dependent. If the velocity gradient, which
we refer to as “shear”, is steep enough, then the bumps created by the forcing are
exaggerated as the system relaxes, possibly causing the periodic orbit to fold. Such
folding has the potential to lead to the formation of strange attractors. If the attraction
to the limit cycle is large relative to the velocity gradient or the perturbation size,
however, the bumps in Fig. 7 will dissipate before any significant stretching occurs.

This subsection reviews a number of ideas surrounding the mechanism above. This
mechanism is known to occur in many different dynamical settings. We have elected
to introduce the ideas in the context of discrete-time kicking of limit cycles instead
of the continuous-time forcing in (6) because the geometry of discrete-time kicks is
more transparent, and many of the results have been shown numerically to carry over
with relatively minor modifications. Extensions to relevant settings are discussed later
on in this subsection. A part of this body of work is supported by rigorous analysis.
Specifically, theorems on shear-induced chaos for periodic kicks of limit cycles are
proved in Wang and Young (2001, 2002, 2003, 2009); it is from these articles that
many of the ideas reviewed here have originated. Numerical studies extending the
ideas in Wang and Young (2002, 2003) to other types of underlying dynamics and
forcing are carried out in Lin and Young (2008). For readers who wish to see a more
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Fig. 8 Geometry of folding in
relation to the Wss -foliation.
Shown are a segment γ0 ⊂ γ , its
image after one kick, and two of
the subsequent images under the
flow

in-depth (but not too technical) account of the material in this subsection, Lin and
Young (2008) is a good place to start. In particular, Sect. 1 in Lin and Young (2008)
contains a fairly detailed exposition of the rigorous work in Wang and Young (2001,
2002, 2003, 2009).

Discrete-Time Kicks of Limit Cycles

We consider a flow ϕt in any dimension, with a limit cycle γ . Let T0 < T1 < T2 < · · ·
be a sequence of kick times, and let κn,n = 0,1,2, . . . , be a sequence of kick maps
(for the moment κn can be any transformation of the phase space). We consider a sys-
tem kicked at time Tn by κn, with ample time to relax between kicks, i.e., Tn+1 − Tn

should not be too small on average.
Central to the geometry of shear-induced chaos is the following dynamical struc-

ture of the unforced system: For each x ∈ γ , the strong stable manifold Wss(x) of ϕt

through x is defined to be

Wss(x) =
{
y : lim

t→∞d
(
ϕt (x),ϕt (y)

) = 0
}
.

These codimension 1 submanifolds are invariant under the flow, meaning ϕt car-
ries Wss(x) to Wss(ϕt (x)). In particular, if τ is the period of the limit cycle, then
ϕτ (W

ss(x)) = Wss(x) for each x. Together these manifolds partition the basin of
attraction of γ into hypersurfaces, forming what is called the strong stable foliation.

Figure 8 shows a segment γ0 ⊂ γ , its image γ +
0 = κ(γ ) under a kick map κ ,

and two images of γ +
0 under ϕnτ and ϕmτ for n > m ∈ Z

+. If we consider integer
multiples of τ , so that the flow-map carries each Wss -leaf to itself, we may think
of it as sliding points in γ +

0 toward γ along Wss -leaves. (For t that are not integer
multiples of τ , the picture is similar but shifted along γ .) The stretching created in this
combined kick-and-slide action depends both on the geometry of the Wss -foliation
and on the action of the kick. Figure 8 sheds light on the types of kicks that are
likely to lead to folding: A forcing that drives points in a direction roughly parallel
to the Wss -leaves will not produce folding. Neither will kicks that essentially carry
one Wss -leaf to another, because such kicks necessarily preserve the ordering of the
leaves. What causes the stretching and folding is the variation along γ in how far
points x ∈ γ are kicked as measured in the direction transverse to the Wss -leaves; we
think of this as the “effective deformation” of the limit cycle γ by the kick.

To develop a quantitative understanding of the factors conducive to the production
of chaos, it is illuminating to consider the following linear shear model (Zaslavsky
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1978; Wang and Young 2002):

θ̇ = 1 + σy,

ẏ = −λy + A sin(2πθ) ·
∞∑

n=0

δ(t − nT ).
(7)

Here, θ ∈ S
1 and y ∈ R are phase variables, and σ,λ,A are constants.2 We assume

for definiteness that σ and λ are > 0, so that when A = 0, the system has a limit cycle
γ at {y = 0}. Its Wss -leaves are easily computed to be straight lines with slope = − λ

σ
.

When A �= 0, the system is kicked periodically with period T . For this system, it has
been shown that the shear ratio

σ

λ
· A ≡ shear

damping
· deformation = 1

|slope(Wss)| · deformation (8)

is an excellent predictor of the dynamics of the system. Roughly speaking, if λmax

denotes the largest observed Lyapunov exponent, then

(a) if the shear ratio is sufficiently large, λmax is likely to be > 0
(b) if the shear ratio is very small, then λmax is slightly < 0 or equal to 0
(c) as the shear ratio increases from small to large, λmax first becomes negative, then

becomes quite irregular (taking on both positive and negative values), and is even-
tually dominated by positive values.

To get an idea of why this should be the case, consider the composite kick-and-slide
action in Fig. 8 in the context of (7). The time-T map of (7) is easily computed to be

θT = θ + T + σ

λ
· [A sin(2πθ) + y

] · (1 − e−λT
)

(mod 1),

yT = e−λT ·(y + A sin(2πθ)
)
.

(9)

When the contraction in y is sufficiently strong, the first component of this map gives
a good indication of what happens in the full 2-D system. As an approximation,
define fT (θ) = θT and view fT as a map of γ to itself. When the shear ratio is
large and (1 − e−λT ) is not too small, |f ′

T | is quite large over much of γ , and the
associated expansion has the potential to create the positive λmax mentioned in (a).
At the opposite extreme, when the shear ratio is very small, fT is a perturbation of
the identity; this is the scenario in (b). Interestingly, it is for intermediate shear ratios
that fT tends to have sinks, resulting in λmax < 0 for the 2-D system. The 1-D map
f = limT →∞ fT is known variously as the phase resetting curve or the singular limit.
It is used heavily in Wang and Young (2001, 2002, 2003, 2009) to produce rigorous
results for large T .

We now return to the more general setting of ϕt with discrete kicks κn, and try to
interpret the results above as best we can. To make a meaningful comparison with

2In this subsection, λ denotes the damping constant in (7).
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the linear shear flow, we propose to first put our unforced system in “canonical coor-
dinates,” i.e., to reparametrize the periodic orbit γ so it has unit speed, and to make
the kick directions perpendicular to γ —assuming the kicks have well defined direc-
tions. In these new coordinates, sizes of vertical deformations make sense, as do the
idea of damping and shear, even though these quantities and the angles between Wss -
manifolds and γ all vary along γ . Time intervals between kicks may vary as well.
The general geometric picture is thus a distorted version of the linear shear flow. We
do not believe there is a simple formula to take the place of the shear ratio in this
general setting; replacing the quantities σ,λ and A by their averages is not quite the
right thing to do. We emphasize, however, that while system details affect the nu-
merical values of λmax and the amount of shear needed to produce λmax > 0, the fact
that the overall trends as described in (a)–(c) above are valid has been repeatedly
demonstrated in simulation; see, e.g., Lin and Young (2008).

Generalization to Stochastic Forcing. We now replace the discrete-time kicks in
the discussion above by a directed (degenerate) continuous stochastic forcing, i.e.,
by a term of the form V (x)dWt where V is a vector field and dWt is white noise.
By Trotter’s product formula, the dynamics of the resulting stochastic flow can be
approximated by a sequence of composite maps of the form ϕ�t ◦ κ�t,ω where �t is
a small time step, κ�t,ω are kick maps (of random sizes) in the direction of V , and
ϕ�t is the unforced flow. Most of the time, the maps κ�t,ω have negligible effects.
This is especially the case if the size of V is not too large and damping is present.
Once in a while, however, a large deviation occurs, producing an effect similar to that
of the discrete-time kicks at times Tn described above. Cast in this light, we expect
that the ideas above will continue to apply—albeit without the factors in the shear
ratio being precisely defined.

We mention two of the differences between stochastic forcing and periodic, dis-
crete kicks. Not surprisingly, stochastic forcing gives simpler dependence on para-
meters: λmax varies smoothly, irregularities of the type in (c) above having been “av-
eraged out”. Overall trends such as those in (a)–(c) tend to be unambiguous and more
easily detected than for deterministic kicks. Second, unlike periodic kicks, very small
forcing amplitudes can elicit chaotic behavior without σ

λ
being very large; this is at-

tributed to the effects of large deviations.

Generalization to Quasi-Periodic Flows. We have chosen to first introduce the ideas
above in the context of limit cycles where the relevant geometric objects or quantities
(such as σ,λ and Wss ) are more easily extracted. These ideas apply in fact to flows
on a torus that are roughly “quasi-periodic”—meaning that orbits may or may not
be periodic but if they are, the periods are large—provided the forcing, stochastic
or discrete, has a well-defined direction as discussed earlier. The main difference
between the quasi-periodic setting and that of a limit cycle is that Wss -leaves are
generally not defined. A crucial observation made in Lin and Young (2008) is that
since folding occurs in finite time, what is relevant to the geometry of folding is
not the usual Wss -foliation (which takes into consideration the dynamics as t → ∞)
but finite-time strong stable foliations. Roughly speaking, a time-t Wss -leaf is a curve
segment (or submanifold) that contracts in the first t units of time. For the ideas above
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Fig. 9 Maximum Lyapunov exponent λmax versus coupling strengths in the two-cell network. In all plots,
we use ω1 = 1. The a∗

fb-curve from Fig. 5 is overlaid. All computed λmax shown here have standard errors
of ≤ 0.002 as estimated by the method of batched means. By the Central Limit Theorem, this means the
actual λmax should lie within ≈2.5×0.002 = 0.005 of the computed value with �99% probability. Remark
on plots: We have chosen the dynamic range in shading the figures to allow meaningful comparison of
figures; a side effect is that some contour lines may not be visible. We always indicate the actual range of
values through explicit labels

to apply, we must verify that time-t Wss -manifolds exist, have the characteristics of
a large shear ratio, and that t is large enough for the folding to actually occur. If these
conditions are met, then one can expect shear-induced chaos to be present for the
same reasons as before.
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3.2.2 Phase-Locking, Shear and Reliability

We now return to reliability questions for (6). In this subsection, numerical data on
λmax as functions of aff, afb and ε are discussed. We limit ourselves to relatively
small ε, and to phenomena related to the onset of phase-locking, which we have
shown in Sect. 3.1.2 to occur at a curve in (aff, afb)-space that runs roughly along
the diagonal. We will refer to this curve as the a∗

fb-curve. Figure 9 shows λmax as a
function of aff and afb for several choices of parameters, with a∗

fb-curves from Fig. 5
overlaid for ease of reference. In the top two panels, where ε is very small, evi-
dence of events connected with the onset of phase-locking is undeniable: definitively
reliable (λmax < 0) and definitively unreliable (λmax > 0) regions are both present.
Continuing to focus on neighborhoods of the a∗

fb-curves, we notice by comparing the
top and bottom panels that for each (aff, afb), the tendency is to shift in the direction
of unreliability as ε is increased. We will argue in the paragraphs to follow that these
observations are entirely consistent with predictions from Sect. 3.2.1.

Shearing Mechanisms

For concreteness, we consider the case ω2 > ω1, and consider first parameters at
which the unforced system has a limit cycle, i.e., for each aff ∈ [−1.5,1.5], we con-
sider values of afb that are > a∗

fb and not too far from a∗
fb. From Sect. 3.2.1, we learn

that to determine the propensity of the system for shear-induced chaos, we need infor-
mation on (i) the geometry of the limit cycle, (ii) the orientation of its Wss -manifolds
in relation to the cycle, and (iii) the effective deformation due to the forcing.

The answer to (i) is simple: As with all other trajectories, the limit cycle is linear
with slope �1 outside of the two corridors |θ1| < b and |θ2| < b, where it is bent;
see Fig. 4. As for (ii) and (iii), we already know what happens in two special cases,
namely when aff = 0 or afb = 0. As discussed in Sect. 3.1, when afb = 0, vertical cir-
cles are invariant under ϕt . Since Wss -leaves are the only manifolds that are invariant,
that means the Wss -manifolds are vertical. We noted also that the forcing preserves
these manifolds. In the language of Sect. 3.2.1, this means the forcing creates no vari-
ation transversal to Wss -leaves: The ordering of points in this direction is preserved
under the forcing. Hence, shear-induced chaos is not possible here, and not likely for
nearby parameters. A similar argument (which we leave to the reader) applies to the
case aff = 0. From here on, we assume aff, afb are both definitively nonzero.

We now turn to a treatment of (ii) when aff, afb are both definitively nonzero,
and claim that Wss -leaves generally have a roughly diagonal orientation, i.e., they
point in a roughly southwest-northeast (SW–NE) direction. To see this, first recall
that the orientation of the Wss leaves can be found in the following way: fix a point
p on the limit cycle γ and any nonzero tangent vector v at p (see Fig. 10). We
then flow backwards in time, letting p−t = ϕ−t (p) and v−t = Dϕ−t (p)v. The strong
stable direction at p−t is the limiting direction of v−t−nτ (τ = period of γ ) as n →
∞. (Exact orientations of Wss -leaves depend on aff, afb and are easily computed
numerically.)

We now demonstrate how one can deduce the general orientation of the Wss -leaves
in the two-oscillator system from the signs of its couplings, following the simple
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Fig. 10 Rotation of vectors in
backwards time. Here, ω1 = 1,
ω2 = 1.1, aff = 1, afb = 1.5

strategy outlined above. For definiteness, we consider aff > 0, so that a∗
fb is also pos-

itive and slightly larger than aff. Here, a typical situation is that if we identify the
phase space with the square [0,1] × [0,1], then the limit cycle crosses the right edge
{1} × [0,1] in the bottom half, and the bottom edge [0,1] × {0} in the right half. See
Fig. 10, which shows a lift of the limit cycle to R

2. Let A,B and C be as shown, and
consider a point p at A. Flowing backwards, suppose it takes time tB to reach point
B , and time tC to reach point C. We discuss how v−t changes as we go from A to
C, starting with the vector v0 that points from p to a nearby point p′. The rest of the
time the flow is linear and v−t is unchanged.

From A to B: Compare the backward orbits of p and p′, where p′ = p + kv and
k > 0 is thought of as infinitesimally small. As these orbits reach the vertical strip
{g > 0}, both are bent downwards due to aff > 0. However, the orbit of p′ is bent more
because the function z(θ) peaks at θ = 1/2 (see Fig. 10). Thus, v−tB = v + (0,−δ1)

for some δ1 > 0, as seen in the southwest-pointing arrow by “B" in Fig. 10.

From B to C: Continuing to flow backwards, we see by an analogous argument that
as the two orbits cross the horizontal strip {g > 0}, both are bent to the left, and the
orbit of p′ is bent more. Therefore, v−tC = v−tB + (−δ2,0) for some δ2 > 0.

Combining these two steps, we see that each time the orbit of p−t goes from A

to C, a vector of the form (−δ2,−δ1) is added to v−t . We conclude that as t → ∞,
the direction of v−t is asymptotically SW–NE. Moreover, it is a little more W than S
compared to the limit cycle because v−t must remain on the same side of the cycle.

Numerical computations of strong stable directions are shown in Fig. 11. Specif-
ically, the short line segments that intersect the limit cycles are linear approxima-
tions to the strong stable manifolds with the corresponding base points. The plot in
Fig. 11(a) is an example of the situation just discussed, demonstrating the SW–NE
orientation of these manifolds. The plot in (b) is for aff, afb < 0, for which a similar
analysis can be carried out. Notice how small the angles are between the limit cycle
and its Wss -leaves; this is true for all the parameter sets we have examined where
afb is close to a∗

fb. Recall from Sect. 3.2.1 that it is, in fact, the angles in canonical
coordinates that count. Since the limit cycle is roughly diagonal and the forcing is
horizontal, putting the system in canonical coordinates will not change these angles
by more than a moderate factor (except in one small region in picture (a)); i.e., the
angles will remain small.
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Fig. 11 Strong stable directions along limit cycles. In (a), afb = a∗
fb + 0.1; in (b), afb = a∗

fb + 0.2. Addi-
tionally in (a), horizontal arrows indicate the direction and (via their length) the magnitude of the forcing
at various points along the cycle; the variable impact is due to the function z(θ1)

Finally, we come to (iii), the deformation due to the forcing. Given that the forc-
ing is in the horizontal direction and its amplitude depends on θ1 (it is negligible
when θ1 ≈ 0 and has maximal effect when θ1 ≈ 1

2 ), it causes “bump-like” perturba-
tions transversal to the Wss -manifolds (which are roughly SW–NE) with a geometry
similar to that in Fig. 8; see Fig. 11(a).

This completes our discussion of the limit cycle case. We move now to the other
side of the a∗

fb-curve, where the system is, for practical purposes, quasi-periodic (but
not far from periodic). As discussed in the last part of Sect. 3.2.1, the ideas of shear-
induced chaos continue to apply, with the role of Wss -leaves now played by finite-
time stable manifolds. Since these manifolds change slowly with aff and afb, it can
be expected—and we have checked—that they continue to make small angles with
flowlines. Likewise, the forcing continues to deform flowlines by variable amounts
as measured in distances transversal to finite-time stable manifolds.

We conclude that when aff, afb are both definitively nonzero, the geometry is favor-
able for shear-induced stretching and folding. Exactly how large a forcing amplitude
is needed to produce a positive λmax depends on system details. Such information
cannot be deduced from the ideas reviewed in Sect. 3.2.1 alone.

Reliability–unreliability interpretations

We now examine more closely Fig. 9, and attempt to explain the reliability properties
of those systems whose couplings lie in a neighborhood of the a∗

fb-curve. The discus-
sion below applies to |aff| > about 0.3. We have observed earlier that for aff or afb
too close to 0, phase-space geometry prohibits unreliability.

Consider first Fig. 9(a), where the stimulus amplitude ε = 0.2 is very weak. Re-
gions showing positive and negative Lyapunov exponents are clearly visible in both
panels. Which side of the a∗

fb-curve corresponds to the phase-locked region is also
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readily recognizable to the trained eye (lower triangular region in the picture on the
left and upper triangular region on the right; see Fig. 5).

We first explore the phase-locked side of the a∗
fb-curve. Moving away from this

curve, λmax first becomes definitively negative. This is consistent with the increased
damping noted in Sect. 3.1.2; see Fig. 6 (right). As we move farther away from the
a∗

fb-curve still, λmax increases and remains for a large region close to 0. Intuitively,
this is due to the fact that for these parameters the limit cycle is very robust. The
damping is so strong that the forcing cannot (usually) deform the limit cycle appre-
ciably before it returns near its original position. That is to say, the perturbations are
negligible. With regard to the theory in Sect. 3.2.1, assuming σ remains roughly con-
stant, that λmax should increase from negative to 0 as we continue to move away from
a∗

fb is consistent with increased damping; see (b) and (c) in the interpretation of the
shear ratio.

Moving now to the other side of the a∗
fb-curve, which is essentially quasi-periodic,

regions of unreliability are clearly visible. These regions, in fact, begin slightly on the
phase-locked side of the curve, where a weakly attractive limit cycle is present. We
have presented evidence to support our contention that this is due to shear-induced
chaos, or folding of the phase space. The fact that λmax is more positive before the
limit cycle is born than after can be attributed to the weaker-to-nonexistent damping
before its birth. Thus, the general progression of λmax from roughly 0 to definitively
negative to positive as we cross the a∗

fb-curve from the phase-locked side to the quasi-
periodic side is altogether consistent with scenarios (a)–(c) in Sect. 3.2.1 together
with the observations in the paragraph on stochastic forcing.

We point out that the unreliability seen in these panels is fairly delicate, perhaps
even unexpected a priori for the smaller values of aff and afb, such as 0.3 < |aff|,
|afb| < 0.8: The bending of the flow lines is rather mild at these smaller coupling
parameters. Moreover, we know that no chaotic behavior is possible at ε = 0, and the
stimulus amplitude of ε = 0.2 in the top panels is quite small. Recall, however, that
the stimulus is a fluctuating white noise, and ε gives only an indication of its average
amplitude. As noted in Sect. 3.2.1, we believe the unreliability seen is brought about
by an interaction between the large fluctuations in the stimulus presented and the
shearing in the underlying dynamics.

In Fig. 9(b), the stimulus amplitude is increased to ε = 0.8. A close examination
of the plots shows that near to and on both sides of the a∗

fb-curve, λmax has increased
for each parameter pair (aff, afb), and that the reliable regions are pushed deeper into
the phase-locked side compared to the top panels. This is consistent with the shear
ratio increasing with forcing amplitude as predicted in Sect. 3.2.1.

This completes our discussion in relation to Fig. 9.
To complement the theoretical description of the geometry of folding given in

Sect. 3.2.1, we believe it is instructive to see an actual instance of how such a fold
is developed when the system (6) is subjected to an arbitrary realization of white
noise. A few snapshots of the time evolution of the limit cycle under such a forcing
is shown in Fig. 12. Notice that at the beginning, the combined action of the coupling
and forcing causes the curve to wriggle left and right in an uncertain manner, but
once a definitive kink is developed (such as at t = 3), it is stretched by the shear as
predicted.
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Fig. 12 Folding action caused by white noise forcing and shear near the limit cycle (with afb > a∗
fb). At

t = 0, the curve shown is the lift of the limit cycle γ to R
2. The remaining panels show lifts of the images

F0,t,ω(γ ) at increasing times. The parameters are ω1 = 1, ω2 = 1.05, aff = 1, afb = 1.2, and ε = 0.8.
Note that it is not difficult to find such a fold in simulations: very roughly, 1 out of 4 realizations of forcing
gives such a sequence for t ∈ [0,5]

Fig. 13 λmax as function of afb
and ε, with ω1 = 1, ω2 = 1.1,
and aff = 1

3.3 Dependence of Lyapunov Exponent on Parameters

This section concerns the dependence of λmax on aff, afb and ε as these parameters
vary over a broad range. Our aim is to identify the salient features in the reliability
profile and to attempt to explain the phenomena observed. Our observations are based
on plots of the type in Figs. 9 and 13. Some of the explanations we venture below are
partial and/or speculative; they will be so indicated.

1. Triple point: This phenomenon is the main topic of discussion in Sect. 3.2.2. Fig-
ure 13 shows a different view of the parameter dependence of λmax. At about
afb = 1.4, which is near a∗

fb for the parameters used, both positive and negative
Lyapunov exponents are clearly visible for very small ε in a manner that is con-
sistent with Fig. 9 (even though the ω’s differ slightly from that figure). We note
again that this region, which we refer to as the “triple point,” is an area of extreme
sensitivity for the system, in the sense that the system may respond in a defini-
tively reliable or definitively unreliable way to stimuli of very small amplitudes,
with the reliability of its response depending sensitively on coupling parameters.

2. Unreliability due to larger couplings: Figure 9 and other plots not shown point to
the occurrence of unreliability when |aff| and |afb| are both relatively large. We
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are referring here specifically to the “off-diagonal” regions of unreliability (far
from the a∗

fb-curve) in Fig. 9. This phenomenon may be partly responsible for the
unreliability seen for the larger values of aff and afb on the diagonal as well; it is
impossible to separate the effects of the different mechanisms.

We do not have an explanation for why one should expect λmax > 0 for larger
|aff| and |afb| aside from the obvious, namely that tangent vectors are more
strongly rotated as they cross the strips {|θi | < b}, making it potentially easier
for folding to occur. But folding does not occur at ε = 0 in spite of this larger
bending. We believe the difference between the two situations is due to the fol-
lowing noise-assisted mechanism: For p ∈ T

2 and a tangent vector u at p, let us
say u is positively oriented with respect to flowlines if starting from the direction
of the flow and rotating counter-clockwise, one reaches u before reaching the di-
rection of the backward vector field. Without external forcing, if u is positively
oriented, Dϕt(p) · u will remain positively oriented for all t , because these vec-
tors cannot cross flowlines. Now, in order for folding to occur, as in the formation
of a horseshoe (Guckenheimer and Holmes 1983), the flow-maps must reverse the
orientations of some tangent vectors. Even though larger values of |aff| and |afb|
mean that tangent vectors are more strongly rotated, a complete reversal in direc-
tion cannot be accomplished without crossing flowlines. A small amount of noise
makes this crossing feasible, opening the door (suddenly) to positive exponents.

3. The effects of increasing ε (up to around ε = 2):
(a) Unreliable regions grow larger, and λmax increases: A natural explanation

here is that the stronger the stimulus, the greater its capacity to deform and
fold the phase space—provided such folding is permitted by the underlying
geometry. Because of the form of our stimulus, however, too large an am-
plitude simply pushes all phase points toward {θ1 = 0}. This will not lead to
λmax > 0, a fact supported by numerics (not shown).

(b) Reliable regions grow larger, and the responses become more reliable: As
ε increases, the reliable region includes all parameters (aff, afb) in a large
wedge containing the afb = 0 axis. Moreover, in this region λmax becomes
significantly more negative as ε increases. We propose the following heuristic
explanation: In the case of a single oscillator, if we increase ε, λmax becomes
more negative. This is because larger distortions of phase space geometry lead
to more uneven derivatives of the flow-maps Fs,t;ω, which in turn leads to a
larger gap in Jensen’s Inequality (see the discussion before Proposition 2.1).
For two oscillators coupled as in (6), increasing ε has a similar stabilizing
effect on oscillator 1. Feedback kicks from oscillator 2 may destabilize it,
as happens for certain parameters near the a∗

fb-curve. However, if aff is large
enough and enhanced by a large ε, it appears that the stabilizing effects will
prevail.

4 Part III Larger Networks

We now return to the general model defined in Sect. 2.1.1, where the size of the net-
work, N , is arbitrary and can be �1. Our main analytical results in Part III are on
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network decomposition and Lyapunov exponents; they are presented in Sect. 4.2. This
decomposition is assumed in subsequent sections. Section 4.3 discusses the propaga-
tion of unreliability to sites downstream, and Sect. 4.4 discusses a reassembly ques-
tion, namely how to deduce the reliability of a system from knowledge of its parts.
We begin Part III, however, by acknowledging a new issue, one that could not have
happened in Part II as it requires at least 3 oscillators, namely intrinsic network chaos.

The mathematical analysis in Sect. 4.2 is rigorous, as are the facts reviewed in
Sect. 4.3.1. The rest of the investigation is primarily numerical, supported whenever
possible by facts from dynamical systems theory. Findings that have direct bearing
on the broader mathematical questions are highlighted as Observations.

4.1 Intrinsic Network Chaos

4.1.1 Chaotic Behavior in Undriven Networks

Our criterion for unreliability, λmax > 0, is generally equated with chaos. In the
2-oscillator network studied in Part II, this chaotic behavior is triggered by the in-
put: Without this forcing term, the system cannot be chaotic as it is a flow on a
two-dimensional surface. The situation is quite different for larger networks.

Observation 1 Networks of 3 or more pulse-coupled phase oscillators can be chaotic
in the absence of any external input.

We explain what we mean by “chaotic” for systems without external input. It is
well known that systems of 3 or more coupled oscillators can have homoclinic orbits
or horseshoes (see, e.g., Popovych et al. 2005; Nunes and Pereira 1985, and also
Guckenheimer and Holmes 1983; Ermentrout 1991 for general references). These
orbits by themselves do not necessarily constitute a seriously chaotic environment,
however, for they are not always easy to detect, and the chaotic behavior seen can
be transient (e.g., when horseshoes coexist with sinks). We claim that networks with
3 or more oscillators can support a stronger form of chaos, a form of chaos that is
sustained in time and observable on large parts of the phase space. Mathematically, it
is characterized by having positive Lyapunov exponents on large, positive Lebesgue
measure sets in the phase space. Under quite general conditions, this is implied by
the existence of SRB measures or physical measures (Eckmann and Ruelle 1985;
Young 1995, 2002). In the discussion below, we settle for having positive Lyapunov
exponents for all initial conditions tested as our operational definition of intrinsic
network chaos.

One of the simplest configurations that supports intrinsic network chaos is

(10)

The setup above is similar to that studied in Part II, except that the (2,3)-subsystem
is kicked periodically by pulses from oscillator 1 rather than driven by an external
stimulus in the form of white noise. Ignoring the presence of oscillator 1 for the
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moment, we saw in Sect. 3.2.2 that when a23 and a32 are roughly comparable and
away from 0, the phase space geometry of oscillators 2 and 3 is favorable for shear-
induced chaos, a geometric mechanism for producing chaotic behavior. Simulations
show definitively positive exponents for these values of a23 and a32 for certain ranges
of a12. Specifically, with (ω1,ω2,ω3) = (0.93,1,1.1), and (a23, a32) = (1,1.45), we
find that λmax increases from about 0.025 to 0.12 for a12 ∈ (1,1.5).

While there are certainly large classes of networks that do not exhibit intrinsic net-
work chaos (see, e.g., Sect. 4.2), from the example above one would expect that such
chaos is commonplace among larger networks. Moreover, for intrinsically chaotic
networks, one would expect λmax to remain positive when relatively weak stimuli are
added to various nodes in the network. This raises the following issue of interpreta-
tion: In an intrinsically chaotic network that also displays λmax > 0 in the presence of
inputs, it is unclear how to attribute the source of unreliability, since the effects of in-
puts and intrinsic chaos are largely inseparable. We adopt here the view that whatever
the cause, such a network is unreliable.

4.1.2 Suppression of Network Chaos by Inputs: a Case Study

An interesting question is whether or not networks with intrinsic chaos of the form
described above, i.e., with λmax > 0 for large sets of initial conditions in the absence
of inputs, necessarily respond unreliably to external stimuli. We find that the answer
is “no”: We have come across a number of instances where weakly chaotic networks
are stabilized by sufficiently strong inputs. An example is in the following 3-cell ring:

(11)

We find small regions of parameter space near a12 = 1, a23 = 2, a31 = 0.6 with in-
trinsic network chaos, as evidenced by positive values of λmax: see Fig. 14(a). As
the reader will notice, λmax oscillates quite wildly in this region, with λmax > 0 and
λmax = 0 occurring at parameter values in close proximity.

We now consider the effects of adding a stimulus, that is, taking ε > 0 for sys-
tem (11). Informally, one may think of the stimulus as sampling nearby parameters,
averaging (in a loose sense) the different tendencies, with chaos suppression made
possible by the presence of the mixed behavior. A sample of our numerical results
is shown in Fig. 14(b). At ε = 0, λmax > 0, indicating network chaos. As expected,
λmax remains positive for small ε. But, as ε increases, λmax steadily decreases and
eventually becomes mildly negative, demonstrating that sufficiently strong forcing
can suppress intrinsic network chaos and make a network more reliable. A possible
mechanistic explanation is that when ε is large enough, oscillator 1 is affected more
by the stimulus than by oscillator 3 due to the relatively weak coupling a31. As in the
case of a single oscillator, the stimulus has a stabilizing effect on oscillator 1, making
it reliable.

Our understanding from the discussion above may be summarized as follows:
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Fig. 14 Suppression of intrinsic chaos in the 3-cell network in Diagram (11). Left: the Lyapunov exponent
λmax with ε = 0 is shown as a function of a23 and a31 (a12 is fixed at 1). Each exponent is computed
using 4 initial conditions. For the vast majority (≥95%) of the points computed, the error in the computed
exponent is �0.005. Right: we show the response to ε > 0 for a23 = 2.075 and a31 = 0.6025. In all plots,
we use ω1 = 1, ω2 = 0.95, and ω3 = 1.1

Observation 2 Some networks with weak intrinsic chaos will respond reliably to
moderately strong stimuli.

4.2 Acyclic Networks and Modular Decompositions

Having seen from Part II that recurrent connections can lead to very complex behav-
ior, we begin with the class of acyclic networks. These are networks in which there
is a well defined direction of information flow. We will show that acyclic networks
are not intrinsically chaotic, and they are never unreliable. Building on the analysis
developed for acyclic networks, we identify a broader class that may be accessible
to analysis, namely networks that admit a decomposition into modules with acyclic
inter-module connections.

For simplicity, we assume throughout that the stimuli are independent; it is trivial
to modify the results of this section to accommodate the situation when some of them
are identical to each other.

4.2.1 Skew-Product Representation of Acyclic Networks

We first describe the connection graph that corresponds to an oscillator network. Let
each node of this graph, i ∈ {1, . . . ,N}, correspond to an oscillator. Assign a directed
edge from node i to node j , i �= j , if oscillator i provides input to oscillator j , i.e.,
if aij �= 0; in this case, we write i → j . (For simplicity, we do not allow nodes to
connect to themselves.) A cycle in such a directed graph is a sequence of nodes and
edges i1 → i2 → ·· · → ik → i1 for some k > 1.

Definition 4.1 We say an oscillator network is acyclic if its connection graph has no
cycles.

Given any pair of oscillators in an acyclic network, either they are “unrelated”, or
one is “upstream” from the other. We say oscillator i is “upstream” from oscillator
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j if there is a sequence of nodes and edges that goes from i to j . The absence of
cycles is precisely what makes this “upstream”–“downstream” notion well defined.
We say oscillators i and j are “unrelated” if there is no chain that goes from i to j or
vice versa. Unrelated oscillators do not necessarily behave independently: They may,
for example, receive input from the same source. Overall, the structures of acyclic
networks can still be quite complex, with tree-like branching and recombinations
possible.

Our first task is to find a systematic way to treat the dynamics within these net-
works.

Lemma 4.1 In an acyclic graph, one can define for each node j a number m(j)

representing its maximum number of ancestors, meaning

(i) there is a chain of the form i1 → i2 → ·· · → im(j) → j , and
(ii) there is no chain of the form i1 → i2 → ·· · → im(j)+1 → j .

The proof is simple: chains cannot be arbitrarily long without a node repeating,
and such repeats are impossible in acyclic graphs.

Using the notation introduced in Part I, we now discuss the dynamical structure
of acyclic oscillator networks. First, let ϕt denote the flow on T

N in the absence of
inputs, i.e., with εi ≡ 0. We say ϕt factors into a hierarchy of skew-products with
1-dimensional fibers if after a permutation of the names of the N oscillators, we have
the following: For each k = 1, . . . ,N , there is a vector field X(k) on T

k such that if
ϕ

(k)
t is the flow generated by X(k), then (i) ϕ

(k)
t describes the dynamics of the network

defined by the first k oscillators and the relations among them, and (ii) ϕ
(k+1)
t is a

skew-product over ϕ
(k)
t , that is, the vector field X(k+1) on T

k+1 has the form

X(k+1)(θ1, . . . , θk+1) = (
X(k)(θ1, . . . , θk), Y(θ1,...,θk)(θk+1)

)
(12)

where {Y(θ1,...,θk)} is a family of vector fields on S1 parametrized by (θ1, . . . , θk) ∈ T
k .

In particular, ϕ
(N)
t = ϕt . In the system defined by (12), we refer to ϕ

(k)
t on T

k as the
flow on the base, and each copy of S1 over T

k as a fiber.

Proposition 4.1 The flow of every acyclic network of N oscillators with no inputs
can be represented by a hierarchy of skew-products with 1-dimensional fibers.

Proof Let Nm be the set of oscillators j with m(j) = m. Assign an ordering to the
oscillators so that all the oscillators in N0 come first, followed by those in N1, then
N2, and so on. The order within each Nm is immaterial. Let us denote this ordering
by i1 < i2 < · · · < iN . A skew-product is built inductively as follows: For k ≥ 1,
consider the subnetwork consisting of oscillators i1, . . . , ik . None of the oscillators
ij , j ≤ k, receives input from any of the oscillators i�, � > k. (To see this, note that
i� → ij implies m(ij ) > m(i�) by definition, but this is impossible under the ordering
we have chosen.) Therefore, the dynamics of oscillators i1, . . . , ik as a subsystem of
the entire network may be described by a vector field of the form X(k)(θi1, . . . , θik ),
obtained by projecting X(N) onto these k coordinates. Starting with k = 1, the skew-
products in the lemma are constructed inductively for increasing k. �



J Nonlinear Sci (2009) 19: 497–545 527

Next we generalize to acyclic networks with stimuli. Such networks can also be
represented by a directed graph of the type described above, except that some of
the nodes correspond to stimuli and others to oscillators. If i is a stimulus and j an
oscillator, then i → j if oscillator j receives information directly from stimulus i.
No arrow can terminate at a stimulus, so that m(i) = 0 if i is a stimulus. Clearly, a
network driven by stimuli is acyclic if and only if the corresponding network without
stimuli is acyclic.

Proceeding to skew-product representations, consider first the case of a single os-
cillator driven by a single stimulus. Let Ω denote the set of all Brownian paths defined
on [0,∞), and let σt : Ω → Ω be the time shift. Then the dynamics of the stochastic
flow discussed in Sect. 2.2.2 can be represented as the skew-product on Ω × S1 with

Φt : (ω, x) �→ (
σt (ω),F0,t;ω(x)

)
.

Similarly, a network of N oscillators driven by q independent stimuli can be rep-
resented as a skew-product with base Ωq (equipped with product measure) and
fibers T

N .

Proposition 4.2 The dynamics of an acyclic network driven by q stimuli can be rep-
resented by a hierarchy of skew-products over Ωq with 1-dimensional fibers.

The proof is identical to that of Proposition 4.1, except that when enumerating
the nodes of the graph, we first list all of the stimuli (in any order) before listing the
oscillators.

4.2.2 Lyapunov Exponents of Acyclic Networks

Consider a network of N oscillators driven by q independent stimuli. We first review
some notation. Let ω ∈ Ωq denote a q-tuple of Brownian paths, and let F0,t;ω denote
the corresponding stochastic flow on T

N . For a fixed ω ∈ Ωq,x ∈ T
N and tangent

vector v at x, define the Lyapunov exponent

λω(x, v) = lim
t→∞

1

t
log

∣∣DF0,t;ω(x)v
∣∣ (13)

if this limit exists. If μ is a stationary measure of the stochastic flow, then for a.e. ω

and μ-a.e. x, λω(x, v) is well defined for all v. The following is the main result of
this section:

Theorem 3 Consider a network of N oscillators driven by q independent stimuli,
and let μ be a stationary measure for the stochastic flow. Assume

(a) the network is acyclic, and
(b) μ has a density on T

N .

Then λω(x, v) ≤ 0 for a.e. ω ∈ Ωq and μ-a.e. x.

One way to guarantee that condition (b) is satisfied is to set εi to a very small
but strictly positive value if oscillator i is not originally thought of as receiving a
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stimulus, so that εi > 0 for all i. Such tiny values of εi have minimal effect on the
network dynamics. Condition (b) may also be satisfied in many cases where some
εi = 0 if suitable hypoellipticity conditions are satisfied, but we do not pursue this
here (Nualart 2006).

Before proceeding to a proof, it is useful to recall the following facts about
Lyapunov exponents. For a.e. ω and μ-a.e. x, there is an increasing sequence of
subspaces {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vr = R

N and numbers λ1 < · · · < λr such that
λω(x, v) = λi for every v ∈ Vi \ Vi−1. The subspaces depend on ω and x, but the
exponents λj are constant a.e. if the flow is ergodic. We call a collection of N vec-
tors {vj } a Lyapunov basis if exactly dim(Vi) − dim(Vi−1) of these vectors are in
Vi \ Vi−1. If {vj } is a Lyapunov basis, then for any u,v ∈ {vj }, u �= v,

lim
t→∞

1

t
log

∣∣sin∠
(
DF0,t;ω(x)u,DF0,t;ω(x)v

)∣∣ = 0, (14)

that is, angles between vectors in a Lyapunov basis do not decrease exponentially
fast; see, e.g., Young (1995) for a more detailed exposition.

Proof of Theorem 3 Since the network is acyclic, it factors into a hierarchy of skew-
products. The kth of these is a stochastic flow F

(k)
0,t;ω on T

k . It describes the (driven)
dynamics of the first k oscillators assuming they have been reordered so that oscillator
i is upstream from or unrelated to oscillator j for i < j . Let μ(k) denote the projection
of μ onto T

k . Then μ(k) is an stationary measure for F
(k)
0,t;ω , and it has a density since

μ has a density. We will show inductively in k that the conclusion of Theorem 3 holds
for F

(k)
0,t;ω .

For k = 1, λω(x, v) ≤ 0 for a.e. ω and μ(1)-a.e. x. This is a consequence of
Jensen’s Inequality; see, e.g., Sect. 2.2.2 for more details.

Assume we have shown the conclusion of Theorem 3 up to k − 1, and view F
(k)
0,t;ω

as a skew-product over Ωq ×T
k−1 with S1-fibers. Choose a vector vk in the direction

of the S1-fiber. Note that this direction is invariant under the variational flow DF
(k)
0,t;ω

due to the skew-product structure. Starting with vk , we complete a Lyapunov basis
{v1, . . . , vk} at all typical points. Due to the invariance of the direction of vk , we may
once more use Jensen’s Inequality to show that λω(x, vk) ≤ 0 for a.e. x and ω. We
next consider vi with i < k. First, define the projection π : T

k → T
k−1, and note that

∣∣DF
(k)
0,t;ω(x)vi

∣∣ = |π(DF
(k)
0,t;ω(x)vi)|

| sin∠(vk,DF
(k)
0,t;ω(x)vi)|

.

Due to (14), we have λω(x, vi) = limt→∞ 1
t

log |π(DF
(k)
0,t;ω(x)vi)|. But the skew-

product structure yields π(DF
(k)
0,t;ω(x)vi) = DF

(k−1)
0,t;ω (πx)(πvi), so by our induction

hypothesis, λω(x, vi) ≤ 0. �

Remarks on Reliability of Acyclic Networks: Our conclusion of λmax ≤ 0 falls short
of reliability, which corresponds to λmax < 0. When there are free-rotating oscillators
in a network, i.e., oscillators that are not driven by either a stimulus or another oscil-
lator, then clearly λmax = 0. When no free-rotating oscillators are present, typically
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one would expect λmax < 0. We do not have a rigorous proof, but this intuition is
supported by numerical simulations.

Arguments similar to those in the proof of Theorem 3 (but in the absence of stimuli
and without the use of an invariant measure) give the following:

Proposition 4.3 Acyclic networks are never intrinsically chaotic, in the sense that at
Lebesgue-a.e. x ∈ T

N , all Lyapunov exponents (with lim sup instead of limit in (13))
are ≤ 0.

4.2.3 Modular Decompositions and Quotient Systems

We next describe how the reliability of more general networks may be analyzed by
decomposition into subunits. Consider a graph with nodes {1, . . . ,N} as in the begin-
ning of Sect. 4.2.1, and let ∼ be an equivalence relation on the set {1, . . . ,N}. The
quotient graph defined by ∼ has as its nodes the equivalence classes [i] of ∼, and we
write [i] → [j ] if there exists i′ ∈ [i] and j ′ ∈ [j ] such that i′ → j ′. The following is
a straightforward generalization of Proposition 4.2:

Proposition 4.4 In a network of oscillators driven by q independent stimuli, if an
equivalence relation leads to an acyclic quotient graph, then the dynamics of the
network can be represented by a hierarchy of skew-products over Ωq , with the di-
mensions of the fibers equal to the sizes of the corresponding equivalence classes.

We pause to discuss in more detail the structure in Proposition 4.4, as it is im-
portant in the rest of this paper. An equivalence relation on the nodes of a net-
work describes a decomposition of the network into smaller subunits called mod-
ules. Introducing directed edges between modules as above, we obtain what we call
a quotient network in this paper. Assume this quotient network is acyclic, and let
M1,M2, . . . ,Mp be the names of the modules ordered in such a way that Mi is up-
stream from or unrelated to Mj for all j > i. Let kj be the number of nodes in module

Mj . For si = k1 + k2 + · · · + ki , let F
(si)
0,t,ω denote, as before, the stochastic flow de-

scribing the dynamics within the union of the first i modules; we do not consider
F

(s)
0,t,ω when s �= si for some i. The dynamics of the entire network can then be built

up layer by layer as follows: We begin with the stochastic flow F
(k1)
0,t,ω . Then pro-

ceed to F
(k1+k2)
0,t,ω , which we view as a skew-product over F

(k1)
0,t,ω . This is followed by

F
(k1+k2+k3)
0,t,ω , which we view as a skew-product over F

(k1+k2)
0,t,ω , and so on.

Let λ
(1)
1 , . . . , λ

(1)
k1

denote the Lyapunov exponents of F
(k1)
0,t,ω . Clearly, these are the

Lyapunov exponents of a network that consists solely of module M1 and the stimuli
that feed into it. We wish, however, to view M1 as part of the larger network. If λ

(1)
max ≡

maxj λ
(1)
j > 0, we say unreliability is produced within M1. An interesting question

is the effect of this unreliability on sites downstream. Leaving this to Sect. 4.3, we
continue with the present discussion: For i > 1, let λ

(i)
1 , . . . , λ

(i)
ki

denote the fiber

Lyapunov exponents in the skew-product representation of F
(si)
0,t,ω over F

(si−1)

0,t,ω , and let

λ
(i)
max = maxj λ

(i)
j . Then λ

(i)
max > 0 has the interpretation that unreliability is produced
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within module Mi as it operates in the larger network. It is important not to confuse
this with the Lyapunov exponents of module Mi in isolation, an issue we will follow
up in Sect. 4.4.1.

Analogous interpretations for the zero-input systems are obvious: for i > 1,
λ

(i)
max > 0 at ε = 0 means there is intrinsic network chaos within the module Mi as a

subsystem of the larger system, and so on.
The proof of the following result is virtually identical to that of Theorem 3:

Proposition 4.5 Suppose for a driven network there is an equivalence relation lead-
ing to an acyclic quotient graph. Then, with respect to any ergodic stationary measure
μ, the numbers λ

(i)
j ,1 ≤ i ≤ p,1 ≤ j ≤ ki , are precisely the Lyapunov exponents of

the network.

Proposition 4.5 says in particular that if, in each of the p skew-products in the
hierarchy, the fiber Lyapunov exponents are ≤ 0, i.e., if no unreliability is produced
within any of the modules, then λmax for the entire network is ≤ 0. Conversely, if
unreliability is produced within any one of the modules as it operates within this net-
work, then λmax > 0 for the entire network. On the practical level, the skew product
structure (which implies that DF0,t;ω is block-lower-triangular) and the proposition
together give a more efficient way to numerically compute Lyapunov exponents of
networks with acyclic quotients.

Important Remarks. In the rest of this paper, we will often take the view that the net-
work in question is equipped with a modular decomposition connected by an acyclic
graph. Such a decomposition always exists for any network, but it can be trivial (e.g.,
when the entire network is a single module).3 If the decomposition is nontrivial and
λmax > 0 for the network, Proposition 4.5 enables us to localize the source of the
unreliability, i.e., to determine in which module unreliability is produced via their
fiber Lyapunov exponents. In particular, modules that are themselves acyclic cannot
produce unreliability.

As noted earlier, the idea of “upstream”–“downstream” for acyclic networks ex-
tends to modules connected by acyclic graphs, so that it makes sense to speak of a
module as being downstream from another module, or a site as being downstream
from another site, meaning the modules in which they reside are so related.

4.3 Propagation of Unreliability

In this section, we address the following basic question: Under what conditions
will unreliability generated in one part of a network propagate downstream? In
Sect. 4.3.1, we discuss how to measure unreliability at specific network sites, and in
Sect. 4.3.2, we address the question posed.

3It is straightforward to show that there is always a unique modular decomposition connected by an acyclic
graph that is “maximal” in the sense that it cannot be refined any further without introducing cycles into
the quotient graph.
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4.3.1 Measuring Reliability at Individual Network Sites

Often, it is the response of a network measured at specific oscillators (or sites) that
is of relevance, rather than the response of the network as a whole. While λmax > 0
tells us that there is unreliability somewhere in the system, it does not tell us which
oscillators are affected. To capture the idea of reliability at individual sites, recall
that the reliability of the entire system is reflected in the sample measures μω (see
Sect. 2.2.2). By the same reasoning, the reliability at site i is reflected in the mar-
ginals of μω in the variable θi ; we denote this marginal distribution by μω,i . We
say a network is reliable at site i if μω,i is concentrated at a single point; the more
uniformly distributed these projected sample measures are, the greater the site unre-
liability. These ideas are easily generalized to groups of more than one site, but we
will treat only single site reliability.

The following are three standard ways in which the distribution of μω,i can be
described:

A. Site Entropy. For each i and ω, we let H(i,ω) denote the entropy of the distribu-
tion μω,i , i.e., if ρω,i is the density of μω,i with respect to Lebesgue measure on S1,
then

H(i,ω) = −
∫

S1
logρω,i dρω,i,

and we set H(i,ω) = −∞ if μω,i is singular. The site entropy H(i) is defined to be
the expected value of this random variable, i.e., H(i) = ∫

H(i,ω)P (dω). In practice,

H(i) is computed as limT →∞ 1
T

∫ T

0 H(i, σt (ω)) dt via the Ergodic Theorem. This
number can range from −∞ to 0, with H(i) = 0 corresponding to uniform distribu-
tion and H(i) = −∞ corresponding to the distribution being singular with respect to
Lebesgue measure. A drawback of site entropy is that it does not distinguish among
singular distributions.

B. Information Dimension. We define

D(i,ω) = lim
k→∞Dk(i,ω) where Dk(i,ω) = −∑k

j=1 pj logpj

log k
.

In the quantity on the right, S1 is divided into k equal intervals, and pj is the proba-
bility with respect to μω,i of finding the phase of oscillator i in the j th subinterval.
The relevant quantity is then D(i) = ∫

D(i,ω)P (dω). This takes values on [0,1],
with D(i) = 1 corresponding to any distribution having a density. Information di-
mension does not, for example, distinguish between the uniform distribution on S1

and a distribution supported uniformly on a tiny subinterval of S1.

C. Cumulative Distribution Functions (CDFs). The most direct way to assess site
distributions is to compute the CDF of μσtω,i , defined as CDF(θ) = ∫ θ

0 dμσtω,i , i.e.,
the probability at time t of finding the phase of oscillator i at a value less than θ . The
CDF is very simple to compute numerically, and is especially effective in establishing
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whether the measure is concentrated at a single point. A drawback of using CDFs is
that it is not a number. Moreover, to be certain that one is seeing “typical” CDFs, one
needs to compute them for μσtω,i for many values of ω, as CDFs cannot be averaged.

Above, we discussed various ways to assess μω,i from a purely theoretical stand-
point. Returning to the situation at hand, recall from Theorem 1 that when λmax > 0,
i.e., when the system is unreliable, μω is a random SRB measure. These measures
have densities on complicated families of smooth manifolds. In particular, they have
dimensions >1; e.g., in the case of 2 oscillators, the dimension of the random SRB
measures is 1 + α for some α ∈ (0,1) where α describes the dimension of the fractal
part. A well known result in analysis of Mattila (1995) tells us that when measures of
dimensions >1 are projected onto 1-dimensional subspaces, the projected measures
have a density for projections along almost all directions. Now not all projections are
“good” in this sense, and we cannot be certain that the projection onto any particular
site is “good” (projections onto sites upstream from where unreliability is produced
are obviously not). Still, if the projection to site i is good, then λmax > 0 would im-
ply that μω,i has a density. This being the case, it is more important to be able to
compare different distributions with densities than to distinguish different singular
distributions. We therefore favor site entropy over information dimension as a mea-
sure of site reliability.

In this paper, we will use a combination of site entropy and CDFs: If the computed
values of H(i) appear bounded below, then it is safe to conclude site unreliability, and
the closer H(i) is to 0, the more unreliable. If, on the other hand, the computed values
of H(i) appear unbounded, then CDFs are used to confirm site reliability.

4.3.2 Sites Downstream from Unreliable Modules

We now return to the question of propagation of unreliability to sites downstream
from an unreliable module. The simplest network with which to investigate this is the
N -chain system

(15)
Suppose we choose a12, a21, and ε1 so that the (1,2)-subsystem is unreliable. Notice
that no unreliability is produced elsewhere. The question is: will this unreliability
be observable downstream, at sites i = 3,4, . . . ,N , or does it somehow “dissipate?”
We run the following numerical experiment: we set ω1 = 1, ω2 = 1.05, a12 = 1,
a21 = 1.05, and ε1 = 1, so that the Lyapunov exponent λmax of the (1,2)-subsystem
is ≈ 0.1. For i ≥ 3, we draw randomly (and fix) ωi from [0.9,1.1] and ai,i+1 from
±[0.6,1.2]. Computing the site entropies4 H(i) for sites i = 3,7,10, we find:

To help interpret these numbers, recall that identifying S1 with [0,1], the entropy
of the uniform distribution on an interval [a, b] is log(b − a), and log 1

2 ≈ −0.7. The

4We compute site entropies by simulating the response of 10 000 initial conditions to the same realization
of the stimulus, then applying the “binless” estimator of Kozachenko and Leonenko (1987) (see also Victor
2002).
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Fig. 15 Site distributions for the system (15) with N = 10. Shown are the site-i CDFs for i = 3,7,10, at
times t = 500 (solid) and t = 1000 (dash). The parameters are as follows: for the (1,2)-subsystem, we set
ω1 = 1, ω2 = 1.05, a12 = 1, a21 = 1.18, and ε = 1 (so that λmax ≈ 0.13). For i ≥ 3, we draw ωi from
[0.9,1.1] and ai,i+1 from ±[0.6,1.2]

Site i = 3 i = 7 i = 10

Entropy H(i) −0.4 −0.2 −0.01

data above thus indicate that the site distributions are fairly uniform, and, in fact,
seem to become more uniform for sites farther downstream. Figure 15 shows the
corresponding CDFs for some sites at representative times; CDFs at other sites are
qualitatively similar. The graphs clearly show that unreliability propagates, as they
are close to the diagonal lines that would represent uniform distributions at these
sites.

We give two explanations for why one should expect this result of propagating site
unreliability. The first is a plausibility argument along the lines of the projection ar-
gument in Sect. 4.3.1: it is possible—but highly unlikely—that the SRB measure μω

would project to point masses in any of the 8 directions corresponding to the 8 sites
downstream. A second, perhaps more intuitive explanation, is as follows. Consider
site 3 in the system (15). Fix a realization of the stimulus, and let (θ1, θ2, θ3) denote
the 3 phase coordinates. For each choice of (θ1(0), θ2(0)), the third oscillator receives
a sequence of coupling impulses from the (1,2)-subsystem. Since the (1,2)-subsystem
is unreliable, different choices of θ1(0) and θ2(0) will produce different sequences of
coupling impulses to oscillator 3, in turn leading to different values of θ3(t). This is
synonymous with site unreliability for oscillator 3.

What happens if an oscillator receives inputs from more than one source with
competing effects? The simplest situation is an oscillator driven by both an unreli-
able module upstream and an input stimulus, as depicted in Diagram (16). Note the
presence of competing terms: As we have just seen, the unreliable module leads to
unreliability at site 3. However, the stimulus ε3 has a stabilizing effect on that oscil-
lator.

(16)
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In the results tabulated below, the parameters used are ω1 = 1, ω2 = 1.05, a12 = 1,
a21 = 1.15, and ε1 = 1 (so that the (1,2)-subsystem is again unreliable), a23 = 0.5
and ω3 = 0.93. The site entropy H(3) is computed for various values of ε3. We find:

Stimulus amplitude ε3 = 0.2 ε3 = 1 ε3 = 2

Site entropy H(3) −0.4 −1.2 −2

These numbers tell us that at ε3 = 0.2, the distribution at site 3 is fairly uniform,
and that this distribution becomes more concentrated as ε3 increases. The CDFs (not
shown) confirm this. When ε3 = 2, for example, about 80% of the distribution μω,3
is concentrated on an interval of length ≤1/5 roughly 70% of the time. These data
show that the source of reliability, i.e., the stimulus into oscillator 3, attenuates the
propagation of unreliability; we call this phenomenon interference. Moreover, we find
that when ε3 is increased further, the support of a large fraction of μω,3 shrinks to
smaller and smaller intervals, decreasing the entropy and reflecting a greater tendency
to form random sinks in oscillator 3. However, simulations also show that oscillator 3
does not become fully site reliable even at fairly strong forcing. This is also expected:
intuitive arguments similar to those above suggest that once created, site unreliability
cannot be completely destroyed at downstream sites. To summarize:

Observation 3 Unreliability, once generated, propagates to all sites downstream

We finish by clarifying the relation between the material in Sect. 4.2.3 and this
section:

Propagation versus Production of Unreliability: The topic of Sect. 4.3 is whether or
not unreliability created upstream propagates, i.e., whether it can be observed down-
stream. This concept complements an idea introduced in Sect. 4.2.3, namely the pro-
duction of new unreliability within a module as measured by the positivity of fiber
Lyapunov exponents. Mathematically, site reliability (or unreliability) is reflected in
the marginals of μω at the site in question, while the unreliability produced within a
module is reflected in the dynamics and conditional measures of μω on fibers. Natu-
rally, when a module produces unreliability in the sense of Sect. 4.2.3, its sites will
also show unreliability in the sense of Sect. 4.3.1, and one cannot separate what is
newly produced from what is passed down from upstream.

4.4 A Question and a Final Illustrative Example

4.4.1 A Reassembly Problem

We now return to the strategy suggested in Sect. 4.2.3, to study the reliability of
networks by analyzing their component modules separately. An obvious benefit of
this strategy is that smaller modules are easier to test. However, the strategy will only
be successful if the reliability of modules in isolation gives a good indication of their
reliability when they are embedded in larger systems.
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Pictorially, the problem we face can be represented as follows:

(17)

Suppose our network can be decomposed into three parts: Module X, which is our
module of interest, a (possibly large) component upstream from Module X, and a
(possibly large) component downstream from Module X. The question is: Can the
reliability properties of Module X as a subsystem of this larger network be predicted
by its reliability properties when it is isolated and subjected to a white noise stimu-
lus?

At the heart of this question is the following issue: A module embedded in a net-
work may receive input from oscillators upstream in the form of coupling impulses;
it may also hear directly from the external stimuli. Inputs from other oscillators re-
semble a point process of impulses with statistics somewhere between Poisson and
periodic; moreover, when an oscillator receives kicks from multiple sources, these
kicks may be correlated to varying degrees. The question is then whether reliability
properties of a module are sufficiently similar under these different classes of inputs
that they can be predicted from studies using white noise stimuli.

We do not know the answer to this very difficult yet very important question. To
make some initial progress, we have conducted a numerical study in which the which
the 2-cell system studied in Part II (see beginning of Part II) is used as Module X
in the framework above. Specifically, we consider the following networks with Mod-
ule X enclosed in dotted lines:

Network A:

Network B:
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Network C:

The parameters ωi and aff for Module X are exactly as in Fig. 13.5 Let λfib
max denote

the largest fiber Lyapunov exponent of Module X in each of the networks above (see
Sect. 4.2.3 for a discussion of fiber Lyapunov exponents). As in Fig. 13, Lyapunov
exponents are plotted in Fig. 16 as functions of ε and afb—except that here we use
λfib

max and not λmax, and the stimulus ε is not fed directly into Module X but to some
sites upstream. Since the parts of the networks upstream from Module X in the 4
panels in Fig. 16 are all different (they are reliable in the top two panels and unreliable
in the bottom two), we do not expect these panels to be carbon copies of Fig. 13.
Yet, the qualitative resemblance i sundeniable. This general pattern persists for many
other simulations not shown: As the parameters governing the network within which
Module X is embedded are varied, the general tendency is that its reliability when
embedded continues to resemble its reliability when it receives white noise inputs,
even though the reliable and unreliable regions may shift and the magnitudes of λfib

max
may vary.

We take these results to be limited affirmative answer to the question posed above.
In sum:

Observation 4 The reliability profile of the two-oscillator system driven by white
noise is a reasonable guide to its reliability properties as a module embedded in a
larger network.

This observation is not totally unexpected, as we have seen in a number of situa-
tions in general dynamical systems theory that the response of a system to external
forcing depends considerably more strongly on its underlying geometry than on the
type of forcing. One systematic study of this type is carried out in Lin and Young
(2008). However, we emphasize that it remains to be seen whether the observation
above will carry over to other modules within the present framework.

4.4.2 An Illustrative Example

We finish with the following example, which illustrates many of the points discussed
in Part III.

The network depicted in Fig. 17(a) is made up of 9 oscillators. It receives a single
input stimulus through oscillator 1 and has “output terminals” at sites 6, 8 and 9—
it is here that we will assess the response of the network. We first discuss what to
expect based on the ideas above. This is then compared to the results of numerical
simulations.

A cursory inspection tells us that this network is acyclic except for the subsys-
tem (4,7). The finest decomposition that yields an acyclic quotient, then, is to regard

5 That is, for network A: ω2 = 1, ω3 = 1.1, a23 = 1, for network B: ω4 = 1, ω5 = 1.1, a45 = 1, and for
network C, ω3 = 1, ω4 = 1.1, a34 = 1.
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Fig. 16 The maximum fiber exponent λfib
max for Module X as an embedded subsystem. The parame-

ters within Module X correspond to the following values for the two-cell network of Part I: ω1 = 1,
ω2 = 1.1, and aff = 1 (see Footnote 5). The other parameters are as follows: for Network A, we use
ω1 = 0.97, a12 = 0.7. For Network B, we draw ωi ∈ [0.95,1.05] and set ai,4 = 1

3 · (0.6,0.8,0.9) and
ε1 = ε2 = ε3 = ε. For network C, we explore two different parameter sets. In panel (c1), we take a12 = 1.1,
a21 = 0.8, a23 = 0.5, and a34 = 1. In panel (c2), we take a12 = −1.1, a21 = −1.2, a23 = 0.95, and

a34 = 1. In both cases, we use ω1 = 1.03, ω2 = 0.98, ω3 = 1, and ω4 = 1.1

each oscillator as a module except for (4,7), which must be grouped together as one.
We choose, however, to work with a coarser decomposition, in which the (1,2,3,5,6)-
subsystem is viewed as Module A, the (4,7)-subsystem as Module B, and the (8,9)-
subsystem as Module C. Identifying the sites within each of these modules produces
an acyclic quotient, as shown in Fig. 17(b).

Since Module B is the only module that is not itself acyclic and hence that is
capable of generating unreliability, our results from Sect. 4.2 tell us that λmax for the
entire network is ≤ 0 if and only if no unreliability is produced in Module B. In fact,
since there are no freely rotating oscillators in the system, we expect λmax to be < 0
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Fig. 17 Example of a larger network and its quotient graph. In (a), we have labeled the edges with a
sample of coupling constants. The ωi are drawn from [0.95,1.05]

if Module B behaves reliably. The behavior of Module B hinges a great deal on (i) the
couplings a47 and a74, which determine its reliability in isolation, and (ii) intrinsic
network properties in the two Modules A and B together, especially when ε is small;
see Sects. 4.1 and 4.4.1. With regard to (i), the reliability profile of the 2-oscillator
system compiled in Part II is handy. If unreliability is produced in Module B, then
we expect to find sites 8 and 9 to be unreliable, with a lower reading of site entropy
at site 9 than 8 due to the stabilizing effects of Module A; see Sect. 4.3. This is what
general theory would lead one to predict.

We now present the results of simulations.
First we confirm that Module A alone is reliable as predicted:6 In addition to the

aij given in Fig. 17, we randomly drew coupling constants from ±[0.8,1.2] and fre-
quencies ωi ∈ [0.95,1.05], and find that λmax for Module A ranges from roughly
−0.3 to −0.07 when ε = 1. Site distributions for the sites in Module A are, as pre-
dicted, well-localized. For a majority of parameters tested, 90% of an ensemble of 104

uniformly-chosen initial conditions has collapsed into a cube of side length ≤10−2

after t = 60–110; in all our simulations, the ensemble collapses into a cube of side
length �10−7 after t ≈ 1000. In particular, the “output terminal” at site 6 is always
reliable.

Turning now to the reliability of Module B, we fixed the coupling constants as
shown in Fig. 17, with ωi ∈ [0.95,1.05] and ε = 1, and ran simulations for the fol-
lowing two sets of parameters:

(a) a47 = 1, a74 = −0.4: this case is predicted to be reliable.
(b) a47 = 1, a74 = 1.3: this case is predicted to be unreliable.

The predictions above are based on the behavior of the two-oscillator network “in iso-
lation” (receiving white-noise stimulus of amplitude 1, see Part II), and on the results

6All Lyapunov exponents presented in this section have standard errors of ≤0.004 as estimated by the
method of batched means. By the Central Limit Theorem, this means the actual λmax should lie within
≈2.5 × 0.004 = 0.01 of the computed value with �99% probability.
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of Sect. 4.2. The following table summarizes the reliability properties of Module B,
both in isolation and when embedded within the network:

Embedded in network

In isolation ε = 0 ε = 1

(a) a47 = 1, λmax = −0.07 λfib
max = 0.014 λfib

max = −0.15

a74 = −0.4

(b) a47 = 1, λmax = 0.13 λfib
max = 0.076 λfib

max = 0.097

a74 = 1.3

Note that these values are consistent with the proposal in Sect. 4.4.1: The behavior
of the module at ε = 1 when embedded within the network is effectively determined
by its behavior in isolation. Furthermore, by Proposition 4.5, we know the Lyapunov
exponent λmax of the entire network is equal to λfib

max of Module B in case (b), and is
≥λfib

max in case (a).
Finally, we study site distributions at sites 8 and 9. In case (a), we find again

that computed site distributions are well localized. In case (b), we find the ex-
pected evidence of propagated unreliability and interference, with H(8) = −0.3 and
H(9) = −0.7.

In summary, the results of our simulations are entirely consistent with predictions
based on the ideas developed in this paper.

5 Summary and Conclusions

In this paper, networks of phase oscillators with pulsatile coupling are considered.
External stimuli in the form of white noise are presented to a subset of the oscilla-
tors, and reliability properties of network responses are studied. The largest Lyapunov
exponent is used (in most places) as a measure of unreliability. Except where indi-
cated otherwise, most of our findings are based on a combination of simulations and
heuristic arguments using dynamical systems ideas.

For Two-Cell Systems: Our main finding is that

they can exhibit both reliable and unreliable responses depending on the signs
and strengths of network connections and the stimulus amplitude ε.

Specifically:

1. Dominantly feedforward networks are always reliable, and they become more reli-
able with increasing ε (while dominantly feedback networks are neutral to weakly
reliable).

2. When aff ∼ afb, i.e., when feedback and feedforward coupling strengths are com-
parable, be they both negative or both positive (mutually inhibitory or excitatory),
we have found:
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(a) For smaller ε, reliability depends extremely sensitively on coupling strengths,
with very reliable and quite unreliable configurations occurring in close prox-
imity. This phenomenon is explained by mechanisms of phase locking and
shear-induced chaos.

(b) For larger ε, the system is typically unreliable.

Results of the type in Item 2 will depend to varying degrees on the nature of the
coupling and the phase response function. Our choices here are commonly used in
neuroscience.

For Larger Networks:

1. Via a rigorous mathematical analysis, we proved the following:
(a) Acyclic networks, i.e., networks with a well defined direction of information

flow, are never chaotic in the absence of inputs, and never unreliable when
inputs are presented.

(b) Networks with a modular decomposition and acyclic quotient are reliable if
and only if all individual modules are reliable, the latter being given by fiber
Lyapunov exponents.

The last two points pertain to networks with nontrivial module decompositions:

4. Once produced, unreliability will propagate: it can be attenuated but not com-
pletely removed; without intervention it actually grows for sites farther down-
stream.

5. The question “Can the reliability of modules in isolation give information on their
behavior when embedded in a larger network?” is raised and some supporting
evidence presented.
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Appendix: Proof of Theorem 2

To prove Theorem 2 (see Sect. 3.1.2), we need two lemmas. Define �afb = afb − aff.

Lemma A.1 There exist b1 and K > 0 such that for all admissible (ω1,ω2, aff, afb),
if b < b1 and �afb < Kb−2�ω, then T (1 − b) < 1 − b.

Lemma A.2 There exist b2,C > 0 and x1 ∈ (0,1 − b) such that for all admissible
(ω1,ω2, aff, afb), if b < b2 and �afb > C�ω, then T (x1) > x1.

We first give the proof of Theorem 2 assuming these two lemmas.

Proof of Theorem 2 We prove (a); the proof of (b) is analogous. Let ω1,ω2 and aff
be given. Requirements on the size of b will emerge in the course of the proof.
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Fig. 18 Values used in proving
Lemma A.1

Observe first that with ω2 > ω1, T has no fixed point (and hence there is no 1:1
phase locking) when afb = aff. This is because T (x) = x when ω2 = ω1 and afb = aff
as noted earlier, and using Lemma 3.1(b), we see that for ω2 > ω1 and afb = aff, the
graph of T is strictly below the diagonal.

Keeping ω1,ω2 and aff fixed, we now increase afb starting from afb = aff. By
Lemma 3.1(a), this causes the graph of T to shift up pointwise. As afb is gradually
increased, we let a∗

fb be the first parameter at which the graph of T intersects the
diagonal, i.e., where there exists x∗ ∈ Σb such that T (x∗) = x∗—if such a parameter
exists. Appealing once more to Lemma 3.1, we see that ρ(T ) < 1 for all afb < a∗

fb, so
T can have no fixed point for these values of afb.

We show now that a∗
fb exists, and that the phase-locking persists on an interval of

afb beyond a∗
fb. First, if b is small enough, then by Lemma A.1, T (1 − b) < 1 − b

for all afb < aff + Kb−2�ω. Now if b is small enough that Kb−2 > C where C

is as in Lemma A.2, then for afb ∈ [aff + C�ω,aff + Kb−2�ω], T (x1) > x1 for
some x1 < 1 − b. For afb in this range, T maps the interval [x1,1 − b] into itself,
guaranteeing a fixed point. It follows that (i) a∗

fb exists and is < aff +C�ω, and (ii) T

has a fixed point for an interval of afb of length � ≥ (Kb−2 − C)�ω. This completes
the proof. �

We now proceed to the proofs of the lemmas. Let ω1, aff,�ω and �afb be given,
with �ω,�afb > 0. To study the system where ω2 is defined by �ω = 1 − ω1

ω2
and

afb = aff + �afb, we will seek to compare trajectories for systems with the following
parameter sets:

System A : aff, afb = aff, ω1, ω2 = ω1,

System B : aff, afb = aff ω1, ω2 = ω1 + �ω · ω2,

System C : aff, afb = aff + �afb, ω1, ω2 = ω1 + �ω · ω2.

That is, System C is the system of interest, and Systems A and B are used to help
analyze System C. We introduce also the following notation: H and V denote the
horizontal and vertical strips of width 2b centered at integer values of θ2 and θ1. We
will work in R

2 instead of T
2.

Proof of Lemma A.1 For each of the 3 parameter sets above, two orbits are consid-
ered: Orbit 1 starts from (θ1, θ2) = (1 − b, b) ∈ Σb and runs forward in time until
it meets Σ1−b = {θ2 = 1 − b}; orbit 2 starts from (2 − b,1 + b) ∈ Σ1+b and runs
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backward in time until it meets Σ1−b . We need to prove that for System C, under the
conditions in the lemma, the end point of orbit 1 lies to the left of the end point of
orbit 2 (as shown in Fig. 18). This is equivalent to T (1 − b) < 1 − b.

For System A, orbits 1 and 2 meet, since for this set of parameters, T (x) = x for
all x as noted in Sect. 3.1.2. Comparing Systems A and B, since the vector field for
System B has greater slope everywhere, and outside of H ∪ V it has slope ω2

ω1
> 1,

we conclude that for System B the end point of orbit 1 lies to the left of the end point
of orbit 2, with a separation h > �ω/2; see Fig. 18.

Next, we compare Systems B and C. Orbit 1 for the two systems is identical, since
the equation outside of H does not involve afb. Orbit 2, however, differs for the two
systems. To estimate by how much, we compare a, the distance from the end point
of orbit 2 to θ1 = 2 for System B, and a′, the corresponding distance for System C as
marked in Fig. 18. First, there exist b1 and k1 > 0 such that for θ1 ∈ (2 − 5b1,2), we
have z(θ1) < k1(2−θ1)

2 and |z′(θ1)| < 2k1(2−θ1). Shrinking b1 further if necessary,
we have that for b < b1, orbit 2 has slope > 1/2 everywhere and therefore the entire
orbit, for both Systems B and C, lies within the region H ∩{2−5b < θ1 < 2−b}. The
next step is to apply Gronwall’s Lemma to a system that incorporates both Systems B
and C. Since θ2(t) is identical for the two systems in the relevant region, we may
write the equations as

θ̇1 = −ω1 − (aff + δ)z(θ1)ĝ(t),

δ̇ = 0,

where δ = 0 corresponds to System B, δ = �afb corresponds to System C, and
ĝ(t) = g(θ2(t)). Notice that each trajectory reaches Σ1−b after a time τ = 2b/ω2.

Motivated by the observation that z(θ1) = O(b2) in the relevant rectangle, we
rescale the variable δ by δ̄ = b2δ, and define z̄(θ1) = 1

b2 z(θ1). This gives

θ̇1 = −ω1 − (
b2aff + δ̄

)
z̄(θ1)ĝ(t), (18)

˙̄δ = 0. (19)

To find a, we solve (18)–(19) over the time interval [0, τ ], starting from (θ1(0),

δ̄(0)) = (1−b,0); to find a′, we do the same, starting from (1−b, b2�afb). Applying
Gronwall’s Lemma gives |a′ − a| < b2�afb exp(Lτ), where L is the Lipschitz con-
stant for the allied vector field. To estimate L, note that |ĝ| = O( 1

b
), |z̄| = O(1), and

|z̄′| = O( 1
b
). This gives L = O(1/b), and exp(Lτ) = O(1). Therefore, |a′ − a| <

k2b
2�afb for some constant k2. Note that this constant can be made independent of

ω1,ω2, aff or afb.
Recall from the first part of the proof that to obtain the desired result for System C,

it suffices to guarantee |a′ − a| < h. This happens when

�afb <
�ω

2k2b2
:= Kb−2�ω. (20)

�
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Proof of Lemma A.2 All orbit segments considered in this proof run from Σb ∩ {θ1 ∈
(0,1)} to Σ1+b . We assume aff > 0; the case aff < 0 is similar. First, we fix x0, x1 > b

so that for all admissible (ω1,ω2, aff, afb), the trajectory starting from x1 intersects
H = {1−b < θ2 < 1+b} in H ∩{θ1 ∈ (1+x0,

3
2 )}. Such x0, x1 clearly exist for small

enough b. Starting from x1, we compare the trajectories for Systems A, B and C. We
know that the trajectory for System A will end in (1 + x1,1 + b). Thus, to prove the
lemma, we need to show the trajectory for System C ends to the right of this point.
This comparison is carried out in two steps:

Step 1: Comparing Systems A and B. We claim that the horizontal separation of
the end points of these two trajectories is < c�ω for some constant c > 0. It is not a
necessary assumption, but the comparison is simpler if we assume b is small: First,
a separation c1�ω in the θ2 direction develops between the trajectories as they flow
linearly from (x1, b) to θ1 = (1 − b). Next, while the trajectories flow through V ,
Gronwall’s Lemma can be used in a manner similar to the above to show they emerge
from V with a separation ≤ c2�ω in the θ2 direction. Third is the region of linear
flow, resulting in a separation ≤ c3�ω in the θ1 direction as the trajectories enter H .
Gronwall’s Lemma is again used in the final stretch as the trajectories traverse H .

Step 2: Comparing Systems B and C. Notice that up until they reach Σ1−b , the two
trajectories are identical. In H , their θ2 coordinates are equal, and the crossing time
is τ = 2b

ω2
. Let θB

1 (t) and θC
1 (t), t ∈ [0, τ ], denote their θ1 coordinates while in H .

We write

θC
1 (τ ) − θB

1 (τ ) =
∫ τ

0
aff

(
z
(
θC

1 (t)
) − z

(
θB

1 (t)
))

g
(
θ2(t)

)
dt

+
∫ τ

0
�afbz

(
θC

1 (t)
)
g
(
θ2(t)

)
dt.

The first integral is ≥ 0 by design: Via our choice of x1, we have arranged to have 1 <

θB
1 (t) < θC

1 (t) < 3
2 , and the z-function is monotonically increasing between θ1 = 1

and θ1 = 3
2 . As for the second integral, we know z(θC

1 (t)) is bounded away from 0
since 1 + x0 < θC

1 (t) < 3
2 , so the integral is > d�afb for some constant d > 0. It

follows that T (x1) > x1 if d�afb > c�ω. �

References

Arnold, L.: Random Dynamical Systems. Springer, New York (2003)
Arnold, L., Imkeller, P., Sri Namachchivaya, N.: The asymptotic stability of a noisy non-linear oscillator.

J. Sound Vib. 269, 1003–1029 (2004)
Baxendale, P.H.: Stability and equilibrium properties of stochastic flows of diffeomorphisms. In: Progress

Probab., vol. 27. Birkhauser, Boston (1992)
Baxendale, P.H., Goukasian, L.: Lyapunov exponents for small perturbations of Hamiltonian systems. Ann.

Probab. 30(1), 101–134 (2002)
Brown, E., Holmes, P., Moehlis, J.: Globally coupled oscillator networks. In: Kaplan, E., Marsden, J.E.,

Sreenivasan, K.R. (eds.) Problems and Perspectives in Nonlinear Science: A Celebratory Volume in
Honor of Lawrence Sirovich, pp. 183–215. Springer, New York (2003)



544 J Nonlinear Sci (2009) 19: 497–545

Bryant, H.L., Segundo, J.P.: Spike initiation by transmembrane current: a white-noise analysis. J. Physiol.
260, 279–314 (1976)

Chow, C.C.: Phase-locking in weakly heterogeneous neuronal networks. Physica D 118, 343–370 (1998)
Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656

(1985)
Ermentrout, G.B.: n : m phase locking of weakly coupled oscillators. J. Math. Biol. 12, 327–342 (1981)
Ermentrout, G.B.: Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61, 353–

430 (1991)
Ermentrout, G.B.: Type I membranes, phase resetting curves, and synchrony. Neural Comput. 8, 979–1001

(1996)
Ermentrout, G.B., Kopell, N.: Multiple pulse interactions and averaging in coupled neural oscillators.

J. Math. Biol. 29, 195–217 (1991)
Gerstner, W., van Hemmen, J.L., Cowan, J.D.: What matters in neuronal locking?. Neural Comput. 8(8),

1653–1676 (1996)
Goldobin, D., Pikovsky, A.: Synchronization and desynchronization of self-sustained oscillators by com-

mon noise. Phys. Rev. E 71, 045201–045204 (2005)
Goldobin, D., Pikovsky, A.: Antireliability of noise-driven neurons. Phys. Rev. E 73, 061906-1–061906-4

(2006)
Guckenheimer, J.: Isochronous and phaseless sets. J. Math. Biol. 1, 259–273 (1975)
Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector

Fields. Springer, Berlin (1983)
Gutkin, B., Ermentrout, G.B., Rudolph, M.: Spike generating dynamics and the conditions for spike-time

precision in cortical neurons. J. Comput. Neurosci. 15, 91–103 (2003)
Hansel, D., Mato, G., Meunier, C.: Synchrony in excitatory neural networks. Neural Comput. 7, 307–337

(1995)
Herz, A.V., Hopfield, J.J.: Earthquake cycles and neural reverberations: collective oscillations in systems

with pulse-coupled threshold elements. Phys. Rev. Lett. 75, 1222–1225 (1995)
Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Springer, New York (1997)
Kifer, Yu.: Ergodic Theory of Random Transformations. Birkhauser, Boston (1986)
Kosmidis, E., Pakdaman, K.: Analysis of reliability in the Fitzhugh–Nagumo neuron model. J. Comput.

Neurosci. 14, 5–22 (2003)
Kozachenko, L.F., Leonenko, N.N.: Sample estimate of the entropy of a random vector. Probl. Inf. Transm.

23 (1987)
Kunita, H.: Stochastic flows and stochastic differential equations. Cambridge Studies in Advanced Math-

ematics, vol. 24. Cambridge University Press, Cambridge (1990)
Kuramoto, Y.: Phase- and center-manifold reductions for large populations of coupled oscillators with

application to non-locally coupled systems. Int. J. Bifurc. Chaos 7, 789–805 (1997)
Le Jan, Y.: Équilibre statistique pour les produits de difféomorphismes aléatoires indépendants. Ann. Inst.

H. Poincaré Probab. Stat. 23(1), 111–120 (1987)
Ledrappier, F., Young, L.-S.: Entropy formula for random transformations. Probab. Theory Relat. Fields

80, 217–240 (1988)
Lin, K.K., Young, L.-S.: Shear-induced chaos. Nonlinearity 21, 899–922 (2008)
Mainen, Z., Sejnowski, T.: Reliability of spike timing in neocortical neurons. Science 268, 1503–1506

(1995)
Mattila, P.: Geometry of Sets and Measures in Euclidean Space. Cambridge University Press, Cambridge

(1995)
Nakao, H., Arai, K., Nagai, K., Tsubo, Y., Kuramoto, Y.: Synchrony of limit-cycle oscillators induced by

random external impulses. Phys. Rev. E 72, 026220-1–026220-13 (2005)
Nualart, D.: The Malliavin Calculus and Related Topics. Springer, Berlin (2006)
Nunes, A.M., Pereira, J.V.: Phase-locking of two Andronov clocks with a general interaction. Phys. Lett.

A 107, 362–366 (1985)
Pakdaman, K., Mestivier, D.: External noise synchronizes forced oscillators. Phys. Rev. E 64, 030901–

030904 (2001)
Peskin, C.S.: Mathematical Aspects of Heart Physiology. Courant Institute of Mathematical Sciences, New

York (1988)
Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences.

Cambridge University Press, Cambridge (2001)
Popovych, O.V., Maistrenko, Y.L., Tass, P.A.: Phase chaos in coupled oscillators. Phys. Rev. E 71,

065201-1–065201-4 (2005)



J Nonlinear Sci (2009) 19: 497–545 545

Rinzel, J., Ermentrout, G.B.: Analysis of neural excitability and oscillations. In: Koch, C., Segev, I. (eds.)
Methods in Neuronal Modeling, pp. 251–291. MIT Press, Cambridge (1998)

Ritt, J.: Evaluation of entrainment of a nonlinear neural oscillator to white noise. Phys. Rev. E 68, 041915–
041921 (2003)

Strogatz, S.: From Kuramoto to Crawford: Exploring the onset of synchronization in populations of cou-
pled oscillators. Physica D 143, 1–20 (2000)

Strogatz, S., Mirollo, R.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math.
50, 1645–1662 (1990)

Taylor, D., Holmes, P.: Simple models for excitable and oscillatory neural networks. J. Math. Biol. 37,
419–446 (1998)

Teramae, J., Fukai, T.: Reliability of temporal coding on pulse-coupled networks of oscillators (2007).
arXiv:0708.0862v1 [nlin.AO]

Teramae, J., Tanaka, D.: Robustness of the noise-induced phase synchronization in a general class of limit
cycle oscillators. Phys. Rev. Lett. 93, 204103–204106 (2004)

Victor, J.D.: Binless strategies for estimation of information from neural data. Phys. Rev. E 66 (2002)
Wang, Q., Young, L.-S.: Strange attractors with one direction of instability. Commun. Math. Phys. 218,

1–97 (2001)
Wang, Q., Young, L.-S.: From invariant curves to strange attractors. Commun. Math. Phys. 225, 275–304

(2002)
Wang, Q., Young, L.-S.: Strange attractors in periodically-kicked limit cycles and Hopf bifurcations. Com-

mun. Math. Phys. 240, 509–529 (2003)
Wang, Q., Young, L.-S.: Toward a theory of rank one attractors. Ann. Math. (2009, to appear)
Winfree, A.: Patterns of phase compromise in biological cycles. J. Math. Biol. 1, 73–95 (1974)
Winfree, A.: The Geometry of Biological Time. Springer, New York (2001)
Young, L.-S.: Ergodic theory of differentiable dynamical systems. In: Real and Complex Dynamics. NATO

ASI Series, pp. 293–336. Kluwer Academic, Dordrecht (1995)
Young, L.-S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108(5),

733–754 (2002)
Zaslavsky, G.: The simplest case of a strange attractor. Phys. Lett. A 69(3), 145–147 (1978)
Zhou, C., Kurths, J.: Noise-induced synchronization and coherence resonance of a Hodgkin–Huxley model

of thermally sensitive neurons. Chaos 13, 401–409 (2003)

http://arxiv.org/abs/arXiv:0708.0862v1

	Reliability of Coupled Oscillators
	Abstract
	Introduction
	Part I: Model and Preliminaries.
	Part II: Two-Oscillator Systems.
	Part III. Larger Networks.

	Part I. Model and Preliminaries
	Model
	Coupled Phase Oscillator Systems
	Neuroscience Interpretations

	Measuring Reliability
	A Working Definition of Reliability
	Reliability, Lyapunov Exponents, and Random Attractors


	Part II. Two-Oscillator Systems
	Coupling Geometry and Zero-Input Dynamics
	Preliminary Observations
	Phase Locking in Zero-Input Dynamics

	Responses to Weak Stimuli
	A Brief Review of Shear-Induced Chaos

	Discrete-Time Kicks of Limit Cycles
	Generalization to Stochastic Forcing.
	Generalization to Quasi-Periodic Flows.
	Phase-Locking, Shear and Reliability

	Shearing Mechanisms
	From A to B:
	From B to C:

	Reliability-unreliability interpretations
	Dependence of Lyapunov Exponent on Parameters

	Part III Larger Networks
	Intrinsic Network Chaos
	Chaotic Behavior in Undriven Networks
	Suppression of Network Chaos by Inputs: a Case Study

	Acyclic Networks and Modular Decompositions
	Skew-Product Representation of Acyclic Networks
	Lyapunov Exponents of Acyclic Networks
	Remarks on Reliability of Acyclic Networks:

	Modular Decompositions and Quotient Systems
	Important Remarks.


	Propagation of Unreliability
	Measuring Reliability at Individual Network Sites
	A. Site Entropy.
	B. Information Dimension.
	C. Cumulative Distribution Functions (CDFs).

	Sites Downstream from Unreliable Modules
	Propagation versus Production of Unreliability:


	A Question and a Final Illustrative Example
	A Reassembly Problem
	An Illustrative Example


	Summary and Conclusions
	For Two-Cell Systems:
	For Larger Networks:

	Acknowledgements
	Appendix: Proof of Theorem 2
	Step 1:
	Step 2:

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


