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Abstract� The purpose of the paper is to present some simple examples that are
hyperbolic everywhere except at one point� but which do not admit SBR measures� Each
example has a �xed point at which the larger eigenvalue is equal to one and the smaller
eigenvalue is less than one�

x� Introduction

Let f �M �M be a C� Anosov di�eomorphism of a compact connected Riemannian
manifold� and let m denote the Riemannian measure on M � A result of Sinai �see e�g�
�S�� says that f admits a unique invariant Borel probability measure � with the property
that � has absolutely continuous conditional measures on unstable manifolds� This is the
invariant measure that is observed physically� for if � � M � IR is a continuous function�
then for m 	a�e�x �M �
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as n � �� The dynamical system �f� �� is �chaotic� in the following sense� it has posi	
tive Lyapunov exponents its metric entropy is equal to the sum of its positive Lyapunov
exponents �f� �� is measure	theoretically isomorphic to a Bernoulli shift and it has expo	
nential decay of correlations for H�older continuous test functions� These results have been
extended to Axiom A attractors by Bowen� Ruelle� etc� �See e�g� �B���

In this article we will refer to an invariant measure having absolutely continuous
conditional measures on unstable manifolds as a Sinai�Bowen�Ruelle measure or an SBR

measure� The work of Oseledec� Pesin and others allows us to extend this notion to
a nonuniform setting� �See �P� and �LS��� While some of the properties of SBR measures
carry over �see e�g� �LY�� Part I�� the question of existence of SBR measures in this broader
context remains poorly understood� We formulate this question more precisely� given a
di�eomorphism which appears to be hyperbolic in a large part of phase space� can one
decide whether or not it admits an SBR measure� So far there are very few results outside
of Axiom A� and these results involve delicate estimates� See e�g� �BC�� �BY� for results
on the H�enon attractors�

The purpose of the paper is to present some very simple examples that are hyper	
bolic everywhere except at one point� but which do not admit SBR measures� Precise
statements of our results are given in x
� For now imagine slowly deforming a hyperbolic
toral automorphism near the origin O until its derivative has one eigenvalue equal to 
 and
the other eigenvalue less than 
� Our theorem says that for the resulting di�eomorphism�

� This research is partially supported by the National Science Foundation�
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�f ix � �O for almost every x with respect to Lebesgue measure� ��x denotes Dirac

measure at x�� This example can be made to be topologically conjugate to the original
toral automorphism� and so it is topologically �chaotic�� From the statistical point of view�
however� it is totally deterministic in the sense that for almost every initial condition� the
trajectory spends nearly one hundred percent of its time arbitrarily near the origin O�

Our result can be thought of as a two dimensional version of the following result� Let
f � ��� 
� � ��� 
� be a piecewise C�� piecewise expanding map of the unit interval with
f � � 
 at a �xed point� Then f cannot admit a �nite absolutely continuous invariant
measure� �See �PI��� The two dimensional situation is� however� not entirely identical to
that in one dimension� for clearly there exist area preserving di�eomorphisms with positive
Lyapunov exponents and nonhyperbolic �xed points� A more detailed analysis of whether
or not systems that are �almost Anosov� can admit SBR measures will be given in a
forthcoming paper by the �rst named author�

x� Assumptions and Statements of Results

Let M be a C� two dimensional compact manifold without boundary� let m denote
the Riemannian measure on M � and let f � Di���M�� We assume throughout this paper
that f satis�es the following two conditions�

Assumption I�


� f has a �xed point p� i�e� fp � p�
�� There exist a constant �s � 
� a continuous function �u with

�u�x�

�
� 
� at x � p �
� 
� elsewhere�

and a decomposition of the tangent space TxM at every x �M into

TxM � Eu
x �Es

x

such that

kDfxvk � �skvk� �v � Es
x�

kDfxvk � �u�x�kvk� �v � Eu
x �

and

kDfpvk � kvk� �v � Eu
p �

Assumption II� f is topologically transitive on M �

De�nition ���� An f�invariant Borel probability measure � on M is called an SBR

measure for f �M �M if
i� �f� �� has positive Lyapunov exponents almost everywhere	
ii� � has absolutely continuous conditional measures on unstable manifolds


�



We give the precise meaning of the second condition above�
Let � be a measurable partition of a measure space X� and let 	 be a probability

measure onX� Then there is a family of probability measures f	�x � x � Xg with 	�x
�
��x�

�
�


 such that for every measurable set B � X� x� 	�x�B� is measurable and

	B �

Z
X

	�x�B�d	�x�� �
�
�

The family f	�xg is called a canonical system of conditional measures for 	 and �� �For a
reference� see e�g� �R���

Suppose now that f � �M��� � �M��� has positive Lyapunov exponents almost
everywhere� Then for a�e� x� the unstable manifold Wu�x� exists and is an immersed
submanifold of M �see �P��� A measurable partition � of M is said to be subordinate to

unstable manifolds if for � 	a�e�x� ��x� � Wu�x� and contains an open neighborhood of x
inWu�x�� Let mu

x denote the Riemannian measure induced onW
u�x�� We say that � has

absolutely continuous conditional measures on unstable manifolds if for every measurable
partition � that is subordinate to unstable manifolds� ��x is absolutely continuous with
respect to mu

x �written ��x �� mu
x� for � 	a�e�x �M � �For more details� see e�g� �LS���

It is easy to verify that if ��x �� mu
x for one measurable partition � subordinate

to unstable manifolds� then the same property holds for all other measurable partitions
subordinate to unstable manifolds�

We now state our results� Let f and M be as in the beginning of this section�

Theorem A� f does not admit SBR measures


Theorem B� For m 	a�e�x �M �

lim
n��




n
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i��

�f ix � �p

where �z is the Dirac measure at z� and the above convergence is in the weak � topology


As a by	product of our proofs for Theorem A and Theorem B� we obtain the following�
Theorem C� f has an in�nite invariant measure �� with the following properties�
i� if U is any open neighborhood of p in M � then ���MnU� ��	
ii� �� has absolutely continuous conditional measures on weak unstable manifolds


Remark ����Weak unstable manifolds are de�ned in Proposition ��� ���� Note that
the de�nition of absolutely continuous conditional measures on unstable manifolds makes
sense even though �� is a 
��nite measure�

One could think of �� as an in�nite SBR measure� In this paper� however� the term
�SBRmeasure� without any quali�cations will always be reserved for probability measures�

x�� Preliminaries

Lemma ���� The maps x � fEu
xg and x� fEs

xg are continuous


�



This is an easy consequence of the �gap� between �s and 
 � inff�u�x� � x � Mg�
The proof is left to the reader�

We will use the following notation� for � � �� Eu
x��� � fv � Eu

x � jvj � �g�
Es
x��� � fv � Es

x � jvj � �g� and Ex��� � Eu
x ��� 	Es

x����

Proposition ���� There exist two continuous foliations Fu and Fs on M tangent to
Eu and Es respectively for which the following hold


�� The leaf of Fs through x� denoted by Fs�x�� is the stable manifold at x� i
e


Fs�x� �W s�x� � fy �M � 
C � Cy� s
t
 d�f
nx� fny� � C��s�n �n � �g�

�� The leaf of Fu through x� denoted by Fu�x�� is the unstable or �weak unstable�
manifold at x� i
e


Fu�x� � fy �M � lim
n��

d�f�nx� f�ny� � �g�

�� There exist constants � � � and D � � such that for all x � M � if Fu
� �x� is

the component of Fu�x� � expxEx��� containing x� then exp��x Fu
� �x� is the graph of a

function �ux � E
u
x��� � Es

x��� with �ux��� � � and k�uxkC� � D
 The analogous statement
holds for Fs

��x�

Proof� These results follow from Theorem ��� and Theorem �A�
 in �HPS�� We

indicate how Fu is obtained�
Let x �M be �xed� If � � Eu

x ���� Es
x��� is a function with ���� � � and Lip��� � 
�

we let Gx� � Eu
fx���� Es

fx��� be the function de�ned by

graph�Gx�� �
�
exp��fx �f � expx�graph��

�
�Efx����

Note that Gx� is always well de�ned� even though f is not uniformly hyperbolic� The
function �ux in assertion ��� is then obtained as the pointwise limit as n�� of

Gf��x �    � Gf�n��x � Gf�nx����

where � represents the � function from Eu
f�nx

��� to Es
f�nx

���� and Fu�x� is de�ned to be

�
n��

fn
�
Fu
� �f

�nx�
�
�

Remark ���� For convenience we will write Wu�x� � Fu�x�� Wu
� �x� � Fu

� �x� etc�
and refer to Wu�x� and Wu

� �x� as the �unstable manifold� and �local unstable manifold�
respectively at x� even though points on these manifolds may not be contracted exponen	
tially in backwards time�

The Lipschitzness of theW s�foliation will be very important for us later on� We give
the form of the de�nition that will be used�

De�nition ��	� Let �� and �� be two Wu�leaves� and let � � �� � �� be a
continuous map de�ned by sliding along theW s�leaves� i
e
 for x � ��� ��x� � ���W

s�x�

We say W s is Lipschitz if � is Lipschitz for every ������ ��


�



For y � W s�x�� let ds�x� y� denote the distance between x and y measured along
W s�x�� and for z �Wu�x�� let du�x� z� be de�ned similarly�

Proposition ��
� The W s�foliation is Lipschitz
 In fact� given D� � �� there exists
L� � � such that for every ������ �� with ds�x� ��x�� � D� �x � ��� the Lipschitz
constant of � is less than or equal to L�


Proof� This result follows from the stronger statement that the map x� Es
x is C

��
which can be obtained using the same ideas in the proof of Theorem ��� in �HP�� We sketch
a more direct proof here for the convenience of the reader�

Let x� � ��� and let  be an arbitrarily short segment in �� containing x�� We will
argue that l�� � l���� where l denotes length and ��� means �up to a constant��

By taking a suitably large iterate of f � we may assume that fn and fn��� are
very near each other� and l�fn� � ds�fnx� fn��x�� for x � � Notice that �x � �
ds�fn�x�� fn��x�� � D���s�n �n � �� Also�

��Dfnx jEu
x

�� � 
 �n � �� Observe the following�

�
� l�fn� � l���fn��

���
��Dfnx jEu

x

�� � ��Dfn�xjEu
�x

�� �x � 

��� �y�� y� � �

��Dfny� jEu
y�

����Dfny� jEu
y�

�� �
n��Y
i��

�

� const  d�f iy�� f

iy��
�
�
�

� const  l�fn�

�n

�
�

� const D���

s�n
�n
� const�

�The proof of ��� uses the boundness of the C� norms of �ux� See Proposition ��������

Combining �
�	���� we get l�� � l����

Lemma ��
 and Proposition ��� imply that f has a local product structure� i�e� there
exist constants � � � � � such that �y� z � M with d�y� z� � �� �y� z� �� Wu

� �y� �W s
� �z�

and �z� y� ��Wu
� �z� �W

s
��y� each contains exactly one point�

A rectangle R is a set in M such that y� z � R implies �y� z�� �z� y� � R� If u� s are
segments of Wu� and W s�leaves respectively� then �u� s� denotes the rectangle f�y� z� �
y � u� z � sg provided that everything makes sense� If R is a rectangle and x � R� we
let Wu�x�R� � Wu

� �x� � R and W s�x�R� � W s
� �x� � R� If Q and R are two rectangles�

we say that fnQ u�crosses R if �x � Q with fnx � R� fnWu�x�Q� � R �Wu�fnx�R��

We record a simple fact that will be used in x��

Proposition ���� Wu�p� and W s�p� are both dense in M 


Proof� We only prove the proposition for W s�p��

Let P be a rectangle containing p and let R be any other rectangle� both with
nonempty interiors� Let �R be a strictly smaller rectangle lying in the interior of R� By the
topological transitivity of f � 
n � � such that fn �R � P �� �� For n su�ciently large� fnR
is considerably longer than fn �R in the u�direction� We may therefore assume that fnR
u�crosses P � This implies that f�nW s�p� P � � R �� ��

�



x�� Distortion Estimates

The goal of this section is to prove the following�
Proposition ���� Given any small rectangle P containing p in its interior� there exist

constants � � � and J � 
 such that if  is a Wu�segment with l�� � � and  � P � ��
then �y� z �  and n � ��

J�� �

��Df�nz jEu
z

����Df�ny jEu
y

�� � J�

We write yi � f�iy� zi � f�iz and i � f�i� If � is a Wu�segment in P � let
�� � f�p� x� � x � �g� In what follows� the letter C will be used to denote a generic
constant� which is allowed to depend only on f �

Lemma ���� Let P� be one of the components of fPnP � and let  �Wu�x� P�� for
some x � P�
 Assume that i � P for i � 
�   n� 

 Then for any y� z � �

log

��Df�nz jEu
z

����Df�ny jEu
y

�� � C
du�y� z�

l��
�

Proof� First� we have for j � n�

log

��Df�jz jEu
z

����Df�jy jEu
y

�� � log

j��Y
i��

�

 �

��Df��zi
jEu

zi
�Df��yi

jEu
yi

����Df��yi jEu
yi

��
�
� C

j��X
i��

��Df��zi
jEu

zi
�Df��yi

jEu
yi

���

Using Proposition ��� ��� and the Lipschitzness of W s �Proposition ����� we see that

��Df��zi
jEu

zi
�Df��yi

jEu
yi

�� � Cdu�zi� yi� � Cl�i� � Cl��i��

Since the �i are pairwise disjoint� we have

j��X
i��

l��i� � l�Wu�p� P ���

The arguments above tell us that �j � n�

du�zj � yj�

l�j�
� C

du�z� y�

l��
�

We conclude that

log

��Df�nz jEu
z

����Df�ny jEu
y

�� � C

n��X
j��

du�zj � yj � � C
du�z� y�

l��
�

�



Proof of Proposition ����

Let � � n� � n� � k� � n� � n� � k� �    � nt � nt � kt � nt�� � n be such that

j � P �� � �ni � j � ni � ki 
 � i � t�

and
j � P � �� otherwise�

Then

log

��Df�nz jEu
z

����Df�ny jEu
y

�� �
tX

i��

log

��Df�kizni
jEu

zni

��
��Df�kiyni

jEu
yni

�� �
tX

i��

ni����X
j�ni�ki

log

��Df��zj
jEu

zj

����Df��yj jEu
yj

�� �
Lemma ��� applied to the terms in the �rst series gives each a contribution of C �du�yni � zni ��
where C � is a constant depending on P � This is summable since du�yni � zni� decreases
exponentially in i� Each term in the second series is less than or equal to Cdu�yj � zj�� so

we again have a geometric series�

x	 Proof of Theorem A

The following one	dimensional fact plays a key role�
Lemma 	��� Let h � ��
� 
�� IR be a C� map with h��� � �� h���� � 
 and h��x� � 


�x � ��
� 
�
 Let a� � ��� 
�� and let ai � h�ia� for i � 

 Then
�P
i��

ai ��


Proof� From the Taylor expansion of h� we know that for x � ��

hx � x � Lx� ���

for some L� Increasing L if necessary� we may assume that a� �
�
L
� We will show that

ai �
�
Li
implies that ai�� �

�
L�i��� � Suppose this is not true� Then

ai�� � La�i�� �



L�i � 
�

�

 �




i � 


�
�




Li

�

�




i� 


��

 �




i� 


�
�




Li
� ai�

contradicting ��� with x � ai���

With ai �
�
Li
�i � 
� the desired conclusion follows�

Before giving the proof of Theorem A� we recall some facts from general nonuniform
hyperbolic theory� Let f be an arbitrary C��� di�eomorphism �not having anything to do
with the situation in this paper�� and suppose that f preserves an SBR measure �� Let �
be a partition subordinate to Wu� Then it is proved in �L� that for � 	a�e�x� the density
�x of ��x with respect to mx satis�es

�x�z�

�x�y�
�

�Q
i��

��Df��zi
jEu

zi

��
�Q
i��

��Df��yi jEu
yi

��

�



for all y� z � ��x�� �In particular the quotient on the right makes sense�� The following is
also known to be true� Let f lg be the �Pesin sets�� i�e� sets on which fn has uniform
estimates� Then for every l� 
�l � � such that Wu

�l
�x� exists for every x �  l� Also�


Cl � � such that �x �  l�

C��l �
�x�z�

�x�y�
� Cl �y� z �Wu

�l
�x��

�See e�g� �P���

We now return to the situation considered in this paper� i�e� f is again assumed to
satisfy Assumptions I and II�

Proof of Theorem A�

Suppose� to derive a contradiction� that f admits an SBR measure �� Then there is a
rectangle R �M such that ��R� l� � � for some l� andWu�x�R� �Wu

�l
�x� �x � R� l�

We �x a rectangle of the form P � �Wu
� �p��W

s
� �p�� and let Q � f��PnP � Let � be

the partition of Q given by ��x� �Wu�x�Q�� An argument similar to that in Proposition
��� shows that fnR u�crosses Q for some n � �� It follows from our discussion above that
there is a set �Q � Q � fnR with � �Q � � such that

�i� x � �Q �� ��x� � �Q and
�ii� 
C� � � such that �x � �Q�

C��� �
�x�z�

�x�y�
� C� �y� z �Wu�x�Q��

Let
Q�i� � fy � �Q � f jy � P for j � 
�    � ig�

and let ��i� be the projection of Q�i� ontoWu�p� P � by sliding alongW s� Then the density
estimate above together with the Lipschitzness of the W s�foliation gives

�Q�i� � Cl���i���

Using the facts that f iQ�i�� i � 
� ��   � are pairwise disjoint subsets of P � and � is an
invariant measure� we have

�P �
�X
i��

��f iQ�i�� �
�X
i��

�Q�i� � C

�X
i��

l���i���

Lemma ��
 applied to f jWu
�
�p� tells us that this sum diverges� contradicting ��M� � 
�

x
 Proofs of Theorems B and C

We �rst construct some neighborhoods of p that are convenient to work with� For a
closed rectangle R� let �sR � fx � R � x �� int Wu�x�R�g�

!



Lemma 
��� There exist rectangles P of the form P � �u� s� satisfying the follows�
�� u and s are segments of Wu�p� and W s�p� respectively such that p lies in the

interiors of u and s	
�� there is a compact segment �W s � W s�p� with f �W s � �W s such that �sP � �W s

and
�
�W snW s�p� P �

�T
intP � �	

�� there is a compact segment �Wu �Wu�p� with analogous properties

Moreover� the diameter of P can be chosen arbitrarily small


Proof� Use the fact that Wu�p� and W s�p� are dense in M � See Lemma ����

We �x P as above� and consider the �rst return map g � MnP � MnP � That is� for
x � MnP � if � �x� is the smallest positive integer with f��x�x � MnP � then gx � f��x�x�
Note that g is not de�ned on a set of Lebesgue measure � on MnP � but this will not
concern us�

Lemma 
��� There exists a g�invariant Borel probability measure � with the prop�
erty that � has absolutely continuous conditional measures on the unstable manifolds of
f 


Proof� Let L � Wu�x� P��� where P� is one of the components of fPnP and
x � P�� Let mL be the Lebesgue measure on L and let gn�mL be the push	forward of mL�
i�e�� �gn�mL��E� �mL�g�nE�� We may take � to be any accumulation point in the weak �

topology of �
n

n��P
i��

gi�mL�

The g�invariance of � is clear� To show that it has absolutely continuous conditional
measures� it su�ces to consider rectangles R in MnP with small diameters� We assume
also that intR � �W s � �� where �W s is as in Lemma ��
� The signi�cance of the second
condition is as follows� giL is the disjoint union ofWu�segments� each one of which begins
and ends at some point in gj �W s for some j � �� Since f �W s � �W s� each component of
giL that intersects R u�crosses R� Let �i denote the density of gi�mL with respect to
Lebesgue measure on giL� Then by Proposition ��
� 
J � � �independent of i� such that
for all x� y in the same component of giL � R�

J�� �
�i�x�

�i�y�
� J�

This bound on densities is passed on to the limit measure ��

Proof of Theorem C�

Let Qi � fx � MnP � � �x� � ig� where � is the return time to MnP � De�ne

�� �

�X
i��

i��X
j��

f j� ��jQi
��

Then �� is clearly f�invariant�

Let U be a neighborhood of p� Then MnU is contained in Mn
� nT
i��n

f iP
�
for some

large n� and this latter set clearly has �nite ���measure� This proves that �� is at most

"




��nite� It cannot be �nite because it has absolutely continuous conditional measures on
unstable manifolds� and Theorem A says that f does not admit SBR measures�

Recall that m denotes the Lebesgue measure on M � We now study the asymptotic
behavior of trajectories starting at x for m 	a�e�x�

Lemma 
��� Let g and � be as in Lemma �
�
 Then �g� �� is ergodic

Proof� We will follow the two standard steps in the proof of ergodicity of SBR

measures for hyperbolic systems without discontinuities� The �rst step is to use Hopf#s
argument to show that given a rectangle R�m 	a�e�x � R is �future	generic� with respect to
some ergodic measure �R� with �R possibly depending on R� ��Future	genericity� means

that �
n

n��P
i��

� � gi�x� �
R
�d�R as n � �� for every continuous function � � M � R�

�Past	genericity� is de�ned similarly�� The second step is to show that �R � � for all R�
Let R � MnP be a rectangle� Note that when we use the word �rectangle� or

the symbol �Wu�x�R�� in this paper� we are always referring to the stable and unstable
manifolds of f $ which are not necessarily stable and unstable manifolds of g% First we
need to argue that for suitable R�Wu�x�R� is indeed a local unstable manifold of g� in the
sense that �y � Wu�x�R�� d�g�nx� g�ny� � � as n��� This is true if intR � �W s � ��
for this condition will guarantee that �n � �� f�nWu�x�R� is either entirely in P or it
does not intersect P � Similarly�W s�x�R� is a local stable manifold of g if R � �Wu � ��

We recall Hopf#s argument �see� e�g� �A�� for a rectangle R with the properties in the
last paragraph� Since the conditional measures of � are absolutely continuous on unstable
manifolds �Lemma ����� there exists L � Wu�x�R� such that mu

x 	a�e� y � L is generic
�both future and past� with respect to some ergodic measure 	y� All the 	y#s are in fact
identical because as n � ��� d�g�ny� g�nz� � � �y� z � L� We call this common
measure �R� Now if y is future generic with respect to �R� then z is future generic with
respect to �R �z � W s�y�R�� It then follows from the Lipschitzness of the W s�foliation
�Proposition ���� that m 	a�e� z � R is future generic with respect to �R�

To carry out the second step� it su�ces to observe that if R� and R� are rectangles
with the properties above� then 
n � � such that gnR� �R� �� ��

Proof of Theorem B�

We will show that given arbitrarily small numbers � � � and � � �� there exist
neighborhoods P� � P� of p with diamP� � � such that for m 	a�e�x �MnP��

&f� � k � n � fnx �MnP�g

&f� � k � n � fnx � P�nP�g
� �

for all su�cient large n�
To see this� let P� be a rectangle of the type in Lemma ��
� Let g� �MnP� �MnP�

and �� be as in Lemma ���� and let �� be the in�nite measure in the proof of Theorem
C� Let P� be chosen small enough that ���MnP�� � ����P�nP��� Then �� �� ��jMnP� is
invariant under the �rst return map g� � MnP� � MnP�� and �g�� ��� is ergodic� The

Birkho� Ergodic Theorem applied to �g�� ��� completes the proof�


�
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