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Abstract. — Hénon maps for which the analysis in [BC2] applies are considered.
Sets with good hyperbolic properties and nice return structures are constructed and
their return time functions are shown to have exponentially decaying tails. This sets
the stage for applying the results in [Y]. Statistical properties such as exponential
decay of correlations and central limit theorem are proved.

Résumé. — Dans cet article, on consider les applications de Hénon pour lesquelles
l’analyse de [BC2] est valable. On construit des ensembles munis de bonnes propriétés
hyperboliques et de bonnes structures de retour, et on montre que leurs fonctions de
temps de retour ont des restes à décroissance exponentielle. Ceci permet d’appliquer
les résultats de [Y]. Des propriétés statistiques tels que décroissance exponentielle des
corrélations et le théorème central limite sont établies.

0. Introduction and statements of results

Let Ta,b : R2 → R2 be defined by

Ta,b(x, y) = (1 − ax2 + y, bx).

In [BC2], Carleson and the first named author developed a machinery for analyzing
the dynamics of Ta,b for a positive measure set of parameters (a, b) with a < 2 and
b small. For lack of a better word let us call these the “good” parameters. The
machinery of [BC2] is used in [BY] to prove that for every “good” pair (a, b), T = Ta,b

admits a Sinai-Ruelle-Bowen measure ν. The significance of ν is that it describes the
asymptotic orbit distribution for a positive Lebesgue measure set of points in the
phase space, including most of the points in the vicinity of the attractor. The aim
of the present paper is to show that (T, ν) has a natural “Markov extension” with
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Council and the Göran Gustafsson Foundation.

The research of the second author is partially supported by the NSF.



2 englishMICHAEL BENEDICKS and LAI-SANG YOUNG

an exponentially decaying “tail”, and to obtain via this extension some results on
stochastic processes of the form {ϕ ◦ T n}n=0,1,2,..., where ϕ : R2 7→ R is a Hölder
continuous random variable on the probability space (R2, ν).

Consider in general a map f : M 	 preserving a probability measure ν. By
a Markov extension of (f, ν) we refer to a dynamical system F : (∆, ν̃) 	 and a
projection map π : ∆ 7→M ; F is assumed to have a Markov partition (with possibly
infinitely many states), F and π satisfy π◦F = f ◦π, and π∗ν̃ = ν. We do not require
that π be 1-1 or onto.

Let (f, ν) be as in the last paragraph, and let X be a class of functions on M . We
say that (f, ν) has exponential decay of correlations for functions in X if there is a
number τ < 1 such that for every pair ϕ, ψ ∈ X, there is a constant C = C(ϕ, ψ)
such that ∣∣∣∣

∫
ϕ(ψ ◦ fn)dν −

∫
ϕdν

∫
ψdν

∣∣∣∣ ≤ Cτn ∀n ≥ 0.

Also, we say that (f, ν) has a central limit theorem for ϕ with
∫
ϕdν = 0 if the

stochastic process ϕ, ϕ ◦ f, ϕ ◦ f 2, . . . satisfies the central limit theorem, i.e. if

1√
n

n−1∑

i=0

ϕ ◦ f i dist→ N(0, σ)

for some σ ≥ 0. For σ > 0 this means that ∀t ∈ R,

ν

{
1√
n

n−1∑

0

ϕ ◦ f i < t

}
→ 1√

2πσ

∫ t

−∞

e−u2/2σ2

du

as n→ ∞.
For f = Ta,b, (a, b) “good” parameters, we have the following results:

Theorem 1 ([BY]). — f admits an SRB measure ν. (See Section 1.7 for the precise
definition.)

Theorem 2 ([BY]). — ν is the unique SRB measure for fn for every n ≥ 1. This
implies in particular that (fn, ν) is ergodic ∀n ≥ 1.

By the general theory of SRB measures, the ergodicity of (fn, ν) for all n ≥ 1 is
equivalent to (f, ν) having the mixing property, or that it is measure-theoretically
isomorphic to a Bernoulli shift, see [L].

For γ > 0, let Hγ be the space of Hölder continuous functions on R2 with Hölder
exponent γ.

Theorem 3. — (f, ν) has exponential decay of correlations for functions in Hγ. The
rate of decay, τ , may depend on γ.
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Theorem 4. — (f, ν) has a central limit theorem for all ϕ ∈ Hγ with
∫
ϕdν = 0;

the standard deviation σ > 0 iff ϕno = ψ ◦ f − ψ for some ψ ∈ L2(ν).

Theorems 1 and 2 are proved in [BY], while theorems 3 and 4 are new and are
proved in this paper. But since an SRB measure is constructed in the process of
proving Theorem 3, this paper also contains an independent proof of Theorem 1.
Questions of ergodicity or uniqueness of SRB measures, however, are of a different
nature. We will assume Theorem 2 for purposes of the present paper.

As mentioned earlier on, our proof of theorems 3 and 4 are carried out using a
Markov extension with certain special properties. The second named author has
since extended this scheme of proof to a wider setting. We will refer to [Y] for certain
facts not specific to the Hénon maps, but will otherwise keep the discussion here as
self-contained as possible.

The following is a comprehensive summary of what is in this paper, section by
section.

In Section 1 we recall from [BC2] and [BY] some pertinent facts about f .

The aim of Section 2 is to clean up the notion of distance to the “critical set”
previously used in [BC2] and [BY]. We prove that the various distances used before
are equivalent.

Section 3 is devoted to organizing the dynamics of f in a coherent fashion. We
focus on a naturally defined Cantor set Λ with a product structure defined by local
stable and unstable curves and with Λ intersecting each local unstable curve in a
positive Lebesgue measure set. The dynamics on Λ is analogous to that of Smale’s
horseshoe, except that there are infinitely many branches with variable return times.
A precise description of Λ is given in Propostion 3.1 in Section 3.1.

In Section 4 we study the return time function R : Λ → Z+, i.e. z ∈ Λ returns to
Λ after R(z) iterates in the representation above. (Note that R(z) is not necessarily
the first return time.) We prove that the measure of {R > n} decays exponentially
fast as n → ∞. This estimate is stated in Lemma 5 in Section 4.1; it plays a crucial
role in the subsequent analysis.

In Section 5 we consider the quotient space Λ̄ obtained by collapsing Λ along
W s

loc-curves. We prove, modifying standard arguments for Axiom A systems where
necessary, that Λ̄ has a well defined metric structure and that the Jacobians of the
induced quotient maps have a “Hölder”-type property. This step paves the way for the
introduction of a Perron-Frobenius operator. The results are stated in Proposition 5.1
in Section 5.1.

Let fR : Λ̄ 	 denote the return map to Λ. In Section 6 we construct a tower map
F : ∆ 	 over fR : Λ 	 with height R (see Section 6.1). F is clearly an extension
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of f . A Perron-Frobenius operator is introduced for F : ∆ 	, the object obtained
by collapsing W s

loc-curves in ∆. At this point we appeal to a theorem in [Y] on
the spectral properties of certain abstractly defined Perron-Frobenius operators. We
explain briefly how a gap in the spectrum of this operator implies exponential decay
of correlation for f , referring again to [Y] for the formal manipulations, and finish
with a proof of the Central Limit Theorem.

The authors are grateful to IHES, the University of Warwick and particularly MSRI,
where part of this work was done. Benedicks wishes also to acknowledge the hospi-
tality of UCLA.

1. Dynamics of certain Hénon maps

The purpose of this section is to review some of the basic ideas in [BC2] and [BY],
and to set some notations at the same time. We would like to make the main ideas
of this paper accessible to readers without a thorough knowledge of [BC2] and [BY],
but will refer to these papers for technical information as needed. The summary in
Section 1 of [BY] may be helpful.

1.1. General description of attractors. — In this paper we are interested in
the parameter range a < 2 and near 2, b > 0 and small. The facts in Section 1.1 are
elementary and hold for f = Ta,b for an open set of parameters (a, b).

There is a fixed point located at approximately
(

1
2
, 1

2
b
)
; it is hyperbolic and its

unstable manifold, which we will call W , lies in a bounded region of R2. Let Ω be the
closure of W . Then Ω is an attractor in the sense that there is an open neighborhood
U of Ω with the property that ∀z ∈ U , fnz → Ω as n→ ∞.

Away from the y-axis, f has some hyperbolic properties. For example, let δ ≫ b
and let s(v) denote the slope of a vector v. Then

(i) on {|x| ≥ δ}, Df preserves the cones {|s(v)| ≤ δ};
(ii) ∃M0 ∈ Z+ and c0 > 0 such that if z, fz, . . . , fM−1z ∈ {|x| ≥ δ} and M ≥M0,

then ∣∣DfM
z v
∣∣ ≥ ec0M |v| ∀v with |s(v)| ≤ δ.

It is easy to show, however, that Ω is not an Axiom A attractor.

In contrast to Section 1.1, the statements in Section 1.2 – 1.6 hold only for a
positive measure set of parameters. For the rest of this paper we fix a pair of “good”
parameters (a, b) and write f = Ta,b.
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1.2. The critical set. — A subset C ⊂W , called the critical set, is designated to
play the role of critical points for 1-dimensional maps. Points in C have x-coordinates
≈ 0; they lie on C2(b) segments of W (a curve is called C2(b) if it is the graph of
a function y = ϕ(x) with |ϕ′|, |ϕ′′| ≤ 10b); and they have “homoclinic” behaviour
in the sense that if τ denotes a unit tangent vector to W , then for z ∈ C, |Df j

z τ | ≤
(5b)j ∀j ≥ 0.

Other important properties of z ∈ C are that ∀n ≥ 1:

(i)
∣∣Dfn

z

(
0
1

)∣∣ ≥ ec(n−1) for some c ≈ log 2;
(ii) “dist” (fnz,C) > e−αn for some small α > 0. (The precise meaning of “dist”

will be given shortly.)

The idea in [BC2], roughly speaking, is that when an orbit of z0 ∈ C comes near
C, there is a near-interchange of stable and unstable directions (hence a setback in
hyperbolicity); but then the orbit of z0 follows that of some z̃ ∈ C for some time,
regaining some hyperbolicity on account of (i). To arrange for (i), it is necessary to
keep the orbits of C from switching stable and unstable directions too drastically too
soon; hence (ii).

We now give the precise meaning of “dist” (·,C). Consider z ∈ C and let n1 > 0 be
the first time its orbit returns to (−δ, δ) × R. It is arranged that there is z̃1 ∈ C of
an earlier generation (see below) with respect to which fn1z is in tangential position,
i.e. z̃ lies in a C2(b) segment of W extending > 4 |fn1z − z̃1| to each side of z̃1, and
the vertical distance between fn1z and this segment is < |fn1z − z̃1|4; see e.g. [BY],
Subsection 1.4.1. Here “dist”(fn1,C) means |fn1z − z̃1|.

We say that fn1z is “bound” to z̃1 ∈ C for the next p1 iterates, where p1 is the
smallest j s.t. |fn1+jz − f j z̃1| > e−βj for some fixed β > α. At time n1 + p1, we say
that the orbit of z is “free”, and it remains free until the first n2 ≥ n1 + p1 when
it returns again to (−δ, δ) × R. The binding procedure above is then repeated, with
bound period p2 etc.

It is convenient to modify slightly the above definitions of pi so that the bound
periods become “nested”, i.e. if a bound period is initiated in the middle of another
one, it also expires before the first one does. (See Section 6.2 of [BC2].)

We return to the notion of “generations” to which we referred a few paragraphs
back. There is a unique z0 ∈ C lying in the roughly horizontal segment of W con-
taining our fixed point. The part of W between f 2z0 and fz0 is denoted by W1 and
called the leaf of generation 1. Leaves of higher generations are defined inductively
by Wn ≡ fn−1W1 −Wn−1, and a critical point is of generation n if it is in Wn.

1.3. Dynamics on W . — In Proposition 1 of [BY], it is shown that the orbit
of every z ∈ W can be controlled using those of C. More precisely, consider z in a
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local unstable manifold of our fixed point, and let n1 > 0 be the first time its orbit
goes into (−δ, δ) × R. It is shown that there is a “suitable” z̃1 ∈ C to which we will
regard fn1z as bound for some period of time. “Suitable” here means that (1) fn1z
is in generalized tangential position wrt z̃1 (generalized tangential positions are slight
generalizations of tangential positions; see Section 1.6 of [BY]); and (2) the angle
between τ(fn1z), the tangent vector to W at fn1z and a certain vector field about z̃1
is “correct”; this will be explained in Section 1.5. After a bound period as defined in
Section 1.2, the orbit of z then becomes free until it gets into (−δ, δ)×R again, finds
another suitable point z̃2 ∈ C to bind with, and the story repeats itself.

Not only do suitable binding points always exist ([BC2], Section 7.2), it is shown
in [BY], Lemma 7, that one could systematically assign to each maximal free segment
γ intesecting (−δ, δ)×R a critical point z̃(γ) that is suitable for binding for all z ∈ γ.
The picture is as follows:

(i) If γ contains a critical point z̃, then z̃(γ) = z̃; this is always the case if neither
end point of γ lies in (−δ, δ) × R.

(ii) If only one end point of γ lies in (−δ, δ) × R, say the left end point γ−, and
γ does not contain a critical point, then z̃(γ) is taken to be the binding point
of γ− (note that γ− is also in bound state); z̃(γ) always lies to the left of γ−,
away from γ.

(iii) If both end points γ± of γ are in (−δ, δ) × R and γ does not contain a critical
point then the binding point of at least one of γ± lies on the opposite side of
γ± as γ and can be taken to be z̃(γ).

We state some estimates for |Dfn
z τ |, z ∈W , that are consequences of the behaviour

of the critical set and the binding process above. Unless otherwise referenced, these
estimates are proved in Corollary 1 of [BY]:

(I) Free period estimates.

(i) Every free segment γ has slope < 2b/δ, and γ ∩ (−δ, δ) × R is a C2(b)
curve (Lemmas 1 and 2, [BY]).

(ii) There is M0 ∈ Z+ and c0 > 0 s.t. if z is free and z, fz, . . . , fM−1z 6∈
(−δ, δ) × R for M ≥M0, then

∣∣DfM
z τ
∣∣ ≥ ec0M .

(II) Bound period estimates.

The following hold for some c ≈ log 2: if z ∈ (−δ, δ) × R is free and is bound
at this time to z̃ ∈ C with bound period p, then

(i) if e−ν−1 ≤ |z − z̃| ≤ e−ν , then 1
2
ν ≤ p ≤ 5ν;

(ii) |Df j
z τ | ≥ |z − z̃| ecj for 0 < j < p;

(iii) |Df p
z τ | ≥ ec p

3 .
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(III) Orbits ending in free states.

There exists c1 >
1
3
log 2 s.t. if z ∈W ∩ (−δ, δ) × R is in a free state, then
∣∣Df−j

z τ
∣∣ ≤ e−c1j ∀j ≥ 0

(Lemma 3, [BY]).

1.4. Bookkeeping, derivative and distortion estimates. — Let P be the fol-
lowing partition of the interval (−δ, δ): first we write (−δ, δ) as the disjoint union⋃{Iν : |ν| ≥ some ν0} where Iν = (e−(ν+1), e−ν) for ν > 0 and Iν = −Iν for ν < 0;
then each Iν is further subdivided into ν2 intervals {Iν,j} of equal length.

For x0 ∈ R, we let P[x0] denote a copy of P with 0 “moved” to x0. Similarly, if γ is
a roughly horizontal curve in R2 and z0 ∈ γ, we let P[z0] denote the obvious partition
on γ. Once γ and z0 are specified, we will use Iν,j to denote the corresponding
subsegment of γ. Also, if J ∈ P[·], we let nJ denote the segment n times the length
of J centered at J .

The following derivative estimate is very similar to the derivative estimates in the
proof of Lemma 7.2 in [BC2].

Derivative estimate. — Suppose that the point z belongs to a free segment of W
and satisfies dist(f jz,C) ≥ δe−αj ∀j < n for some integer n. Then there is a constant
c2 > 0 such that

(1.1) |Dfn
z τ | ≥ δec2n.

Since the proof follows step by step the proof of Lemma 7.2 in [BC2], it is omitted.
The only difference is that in the present situation the allowed approach rate to the
critical set is much slower than that in Lemma 7.2 of [BC2]: dist(fnz,C) ≥ δe−αn

∀n ≥ 0, versus dist(fnz,C) ≥ e−36n ∀n ≥ 0. This leads to the the expansion estimate
of (1.1).

The following is proved in Proposition 2 of [BY]:

Distortion estimate. — Let γ ⊂ (−δ, δ) × R be a segment of W . We assume that
the entire segment has the same itinerary up to time N in the sense that

(i) all z ∈ γ are bound or free simultaneously at any one moment in time;
(ii) if 0 = t0 < t1 < · · · < tq are the consecutive free return times before N , then

∀k ≤ q the entire segment f tkγ has a common binding point z(k) ∈ C and
f tkγ ⊂ 5Jk for some Jk ∈ P[z(k)].
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Then ∃C1 independent of γ or N s.t. ∀z1, z2 ∈ γ,∣∣DfN
z1
τ
∣∣

∣∣DfN
z2
τ
∣∣ ≤ C1.

1.5. Fields of contracted directions. — First we state a general perturbation
lemma for matrices. Given A1, A2, . . . , we write An := An . . . A1. The following is a
slight paraphrasing of Lemma 5.5 and Corollary 5.7 in [BC2]. All the matrices below
are assumed to have |det| = b.

Matrix perturbation lemma. — Given κ ≫ b, ∃λ with b ≪ λ < min(1, κ) s.t. if
A1, . . .An, A

′
1, . . . A

′
n ∈ GL(2,R) and v ∈ R

2 satisfy

∣∣Aiv
∣∣ ≥ 1

2
κi and ‖Ai −A′

i‖ < λi ∀i ≤ n,

then we have, for all i ≤ n:

(i)
∣∣A′iv

∣∣ ≥ 1
2
κi;

(ii) ∢(Aiv, A
′iv) ≤ λ

i
4 .

If A ∈ G(2,R) is s.t. |Av| /|v| 6= const, let e(A) denote one of the two unit vectors
most contracted by A. We will write en(z) := e (Dfn

z ) wherever it makes sense. From
the perturbation lemma above, it follows that if

∣∣Df j
z0
v
∣∣ ≥ κj , 0 ≤ j ≤ n, for some κ

and some v, then there is a ball Bn of radius (λ/5)n about z0 on which en is defined
and has the property that |Dfnen| ≤ 2(b/κ)n.

Assuming that κ is fixed and en is defined in a neighborhood of z0 as above, the
following hold (Section 5, [BC2]):

(i) e1 is defined everywhere and has slope = 2ax+ O(b);
(ii) |en − em| ≤ O(bm) for m < n;
(iii) for (x1, y1), (x2, y2) ∈ some Bn with |y1 − y2| ≤ |x1 − x2|,

|en(x1, y1) − en(x2, y2)| = (2a+ O(b)) |x1 − x2| .
The perturbation lemma above applies in particular to critical points; see Sec-

tion 1.2. Indeed, every z0 ∈ C is constructed as the limit of a sequence {zn} where
zn is the unique point in the C2(b) segment of W containing z0 with τ(zn) = en(zn).
Going back to the notion of “suitability” of binding points at the beginning of Sec-
tion 1.3, a formulation of requirement (2) could be that

3 |z̃1 − fn1z| ≤ ∢ (τ (fn1z) , eℓ1 (fn1z)) ≤ 5 |z̃1 − fn1z|
where ℓ1 ≈ −ε · log |fn1z − z̃1| is small enough that eℓ1 is defined on a neighborhood
of z̃1 containing fn1z.
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1.6. More on the geometry of the critical set. — The following facts about
the relative locations of critical points are used in sections 2 and 3 of this paper.

Fact 1. — (Lemma 5, [BY]). Let z̃ ∈ C be contained in a C2(b) curve γ ⊂ W .
Assume that γ extends to > 2d on each side of z̃, and let ζ ∈ γ be s.t. |z̃ − ζ | = d.
Then there are no critical points z with |z − ζ | < d2.

Fact 2. — (Existence of critical points, [BC2] Section 6.2, [BY] Subsection 1.3.1 ).
There is a number ρ, b≪ ρ≪ 1, s.t. the following holds: if z = (x, y) lies in a C2(b)
segment γ ⊂ W of generation n with γ extending > 2ρn to each side of z, and there
is a critical point z̃ = (x̃, ỹ) ∈ C s.t.

(i) x = x̃,
(ii) z̃ is of generation < n,
(iii) |z − z̃| < bn/540,

then there is a unique critical point ẑ = (x̂, ŷ) ∈ γ with |x− x̂| < |y − ỹ| 12 .

One way to get a sense of the relative location of a point to the critical set is to do
the “capture” procedure introduced in [BC2], sections 6.4 and 7.2. This procedure
guarantees that near every free z ∈ W there are many long C2(b) segments of W
some of which will contain critical points. The picture is as follows (for a precise
statement see [BY] Subsection 2.2.2):

If z ∈ W is free, then there is a family of C2(b) subsegments of W labeled
{γi}i=1,2,...,i(z), where i(z) is the last integer i with 3i+1 < gen(z), s.t.

(i) m ≤ generation of γi ≤ 3m, m = 3i,
(ii) γi is centered at ≈ z, and has length ≈ 10ρm,
(iii) dist(z, γi) < (Cb)m.
(iv) if z(i) is the point on γi with the same x-coordinate as z then |τ(z)− τ(z(i))| ≤

(Cb)m/6.

There are, in fact, two such families, one above and one below z.
One may assume that γ1 contains a critical point. If this critical point is sufficiently

near the middle of γ1, then by Fact 2, γ2 would also contain a critical point. This
may continue all the way down the stack, or there may exist an i s.t. z̃i ∈ C ∩ γi is
so far to one side that no critical point lies in γi+1. If this happens z is in tangential
position with respect to z̃i.

1.7. SRB measures. — In this article (and also in [BY]), an f -invariant Borel
probability measure ν is called an SRB measure if f has a positive Lyapunov expo-
nent ν-a.e. and the conditional measures of ν on unstable manifolds are absolutely
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continuous with respect to the Riemannian measures on these leaves. The following
are proved in [BY]:

(i) f admits an SRB measure ν;
(ii) ν is unique (i.e. f admits no other SRB measure); hence (f, ν) is ergodic;
(iii) (ii) is in fact true for fn for all n ≥ 1.

It follows from general nonuniform hyperbolic theory that (iii) is equivalent to (f, ν)
having the mixing property, the K-property, and in fact to its being isomorphic to a
Bernoulli shift (see e.g. [L]).

2. Preliminaries: cleaning up the notion of dist(·,C) in [BC2] and [BY]

In this section as in the rest of the paper, it is assumed that f = Ta,b where (a, b)
are “good parameters” as discussed in Section 1.

Two notions of the distance to the critical set for a point z on a free segment of
W have been used in [BC2] and [BY]. The first is a pointwise definition, in which
we think of dist(z,C) as |z − z̃(z)|, where z̃ is a certain critical point captured by z.
We will call this distance dcap(z,C). The second notion is more globally defined. It
is shown in [BY] that one could systematically assign a critical point z̃(γ̃) to every
maximal free segment γ̃. Let us define dγ(z,C) to be |z̃(γ̃)−z|, where γ̃ is the maximal
free segment containing γ. Precise definitions of dcap(·,C) and dγ(·,C) are given below.
The main purpose of this section is to prove

Lemma 1. — For each point belonging to a free segment of W , we have

dcap(z,C)

dγ(z,C)
= 1 + O(max(b, d2)),

where d = min(dcap(z,C), dγ(z,C)).

We state also a related fact which is, in some ways, more basic:

Lemma 1′. — Suppose that z is a point that is in tangential position to two different
critical points z1 and z2. Let d1 = |z − z1|, d2 = |z − z2| and d = min(d1, d2). Then

d1

d2
= 1 + O(max(b, d2)).

We now begin to justify these claims. The following technical sublemma along
with Lemma 5 in [BY] (see Fact 1 Section 1.6) will be used repeatedly to rule out
the presence of critical points in certain regions. Part (b) has independent interest;
it plays an important role, for instance, in the proof of Lemma 1.
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Sublemma 1. — Let γ0 and γ be two free C2(b) segments of W . Suppose that γ0

contains a critical point z0, and that there exist two points ζ0 ∈ γ0 and ζ ∈ γ with the
same x-coordinate. Let d0 = |ζ0 − z0|.

(a) If |ζ−ζ0| < d4
0 and |τ(ζ)−τ(ζ0)| < d2

0, then for all z ∈ γ with |z−z0| = d ≥ d0,
there can be no critical point at a distance < d2 from z.

(b) The assumptions in part (a) are satisfied if ζ is (say) the left end point of γ, it
is in a bound state, and its binding point z0 lies to the left of γ.

In the situation of part (b), Sublemma 1 allows us to essentially regard γ as a
continuation of γ0 (which may not be very long compared to γ).

Proof. — The proof of (a) is a slight modification of that of Lemma 5 in [BY] and
will be omitted.

To prove (b) let us first briefly review the binding procedure. For a detailed account
see [BC2], sections 6 and 7 and [BY], subsections 1.6.2 and 2.2.2. Let n be the
generation of γ, and assume that attached to the left endpoint ζ of γ is a bound
segment B. Recall that there is a hierarchy of bindings associated with B. We let z̃0
be the critical point with the property that at this time, i.e. at time n, B is bound
to z̃m = fmz̃0 and z̃m is free. Let z̃∗ denote the new binding point acquired by z̃m

at this time. Then z̃∗ is located on a segment of generation m1 < m. The capture
procedure resulting in z̃∗ calls for z̃m−m1 to be in a favorable position (in particular
out of all fold periods); z̃m−m1 then draws in a segment γ′ of W1 and z̃∗ lies on fm1γ′.

We claim that f−m1ζ is outside of all fold periods. First, it cannot be in a fold
period initiated in the time interval [n−m,n], since bindings and the corresponding
fold periods initiated in this time interval are the same as those of z̃0. Suppose then
f−m1ζ is in a fold period initiated before time n − m. The corresponding bound
period in this case would have to last > (C log(1/b))m iterates beyond time n−m1,
contradicting our assumption that ζ is free.

Having established that f−m1ζ lies in a segment of W sufficiently parallell to W1,
the estimates in (a) follow immediately from capture arguments and the Matrix Per-
turbation Lemma in Section 1.5.

Definition of dcap(z,C). Let {γi}i=1,...,k be a stack of leaves captured by z. We let
i∗ be the largest integer i such that γi contains a critical point.

Case 1. i∗ < k. Let z̃(z) be the critical point on γi∗ .

Case 2. i∗ = k. We will show in this case that there is a critical point on γ̃, the
maximal free segment containing γ. This critical point is unique (this follows e.g.
from Lemma 5 in [BY]); it will be our z̃(z). The existence of z̃(z) follows readily
from Fact 2, Section 1.6, once we verify that γ extends ≥ 2ρg on both sides of z and
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z̃(γ−)
z̃(γ+)

(a)

z̃(γ−) z̃(γ+)

(b)

z̃(γ−) z̃(γ+)

(c)

Figure 1

z∗, g being the generation of z and z∗ the critical point on γi∗ . We leave this as an
exercise.

Definition of dγ(z,C). Let γ be a maximal free segment. In Lemma 7 of [BY], we
established a rule for assigning a critical point z̃(γ) to each γ. See Section 1.3 for
what is proved. Given that the binding points of all critical orbits are selected and
fixed, the only situation for which there might be some ambiguity in the choice of
z̃(γ) is when both end points of γ are in (−δ, δ) × R, i.e. case (iii) in Section 1.3.
Figure 1 shows all possible configurations of the locations of the binding points z̃+
(resp. z̃−) relative to γ+ (resp. γ−).

In [BY] we ruled out (a); (b) will be eliminated in Sublemma 2 below. What is
left is (c) (and its mirror image). If (c) occurs , z̃(γ) = z̃−.

Proof of Lemma 1. — Let z ∈ γ, where γ is a maximal free segment of W . The
idea of our proof is as follows. Look at the contractive fields centered at z̃(γ) and
z̃(z). We will show that for a suitable choice of m, z lies in the domains of the
em-fields induced by both points. Since the angle between em(z) and τ(z) is supposed
to reflect the distance between z and the respective critical points, we must have
|z̃(γ) − z| ≈ |z̃(z) − z|.

We consider the case where z̃(γ) 6∈ γ. (The proof is slightly simpler when γ contains
a critical point.) Let dγ = |z̃−z|, dc = |z̃(z)−z|. First we observe the weaker estimate

d2
γ ≤ dc ≤ d

1
2
γ ; to see that dc ≥ d2

γ, use Sublemma 1 (both (a) and (b)); to see that

dγ ≥ d2
c , use Lemma 5 in [BY]. Let mγ and mc be defined by





(
λ

5

)2mc

≤ dc ≤
(
λ

5

)2mc−1

,
(
λ

5

)2mγ

≤ dγ ≤
(
λ

5

)2mγ−1

,

and let m = min(mγ, mc). Then the above relation between dγ and dc implies that
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1

2
≤ m

mγ
,
m

mc
≤ 1.

Thus z lies well inside the balls B(λ/5)m(z̃(z)) and B(λ/5)m(z̃(γ)), the domains of em

around these points.
Let ẑ be the point on γ̃, the C2(b)-segment containing z̃(z), having the same x-

coordinate as z. Since |τ(z̃(z)) − em(z̃(z))| = O(bm) and γ̃ is C2(b), it follows that

(2.1) |τ(ẑ) − em(ẑ)| = (2a+ O(b))dc.

We would like to duplicate the estimate in the last paragraph with z playing the
role of ẑ and z̃(γ) instead of z̃(z), except that z does not lie on γ0, the C2(b) segment
containing z̃(γ), and in any case we do not know how long γ0 is. To get around this,
note that

∢(τ(z̃(γ)), τ(z)) ≤ ∢(τ(z̃(γ)), τ(ζ0)) + ∢(τ(ζ0), τ(ζ)) + ∢(τ(ζ), τ(z)),

where ζ is the end point of γ closer to z̃(γ) and ζ0 is the point on γ0 with the same
x-coordinate as ζ . Part (b) of Sublemma 1 then gives

(2.2) |τ(z) − em(z)| =
(
2a + max

(
O(b),O

(
|ζ − z̃(γ)|2

)))
· dγ.

Finally, since γ̃ is obtained by capturing we have |τ(ẑ) − τ(z)| ≪ d8
c , say. Also,

|em(ẑ) − em(z)| ≤ 10d4
c (apply Property (iii) of Section 1.5 twice). These together

with (2.1) and (2.2) give the desired result.

We omit the proof of Lemma 1’, which is very similar to that of Lemma 1.

Remark 1. — This proof shows that the intuitive definition of the distance to the
critical set for a point z ∈ W really ought to be the angle between τ(z) and em(z),
where em is the contractive field of a “suitable” order.

In order to make the definition of dγ(z,C) unambiguous it remains to prove

Sublemma 2. — The configuration in Figure1 (b) does not occur.

Proof of Sublemma 2.. — The proof is based on the same ideas as that of Lemma 1.
Fix an arbitrary z ∈ γ. Then Sublemma 1 applied to z̃± tells us that

|z − z̃+|2 ≤ |z − z̃−| ≤ |z − z̃+|
1
2 .

Let d = max(|z − z̃+|, |z − z̃−|) and m an integer defined by (λ/5)2m ≈ d as in the
proof of Lemma 1. Then z lies well inside the balls B(λ/5)m(z̃−) and B(λ/5)m(z̃−),
the domains of em around these points, and we obtain a contradiction since the field
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arround z̃− says em(z) must have positive slope and the one around z̃+ says that the
slope is negative.

3. Construction of a “horseshoe” with positive measure

3.1. Goal of this section. — “Horseshoes” are well known to be building blocks
of uniformly hyperbolic systems. We will show in this section that f can be viewed
as the discrete time version of a special flow built over a “horseshoe”. In order to
have positive SRB measure, the “horseshoe” here must necessarily have infinitely
many branches with unbounded return times. This picture will be made precise in
the statement of Propostion 3.1.

We begin with some formal definitions.

Definition 1. —

(a) Let Γu and Γs be two families of C1 curves in R2 such that
(i) the curves in Γu, respectively Γs, are pairwise disjoint;
(ii) every γu ∈ Γu meets every γs ∈ Γs in exactly one point; and
(iii) there is a minimum angle between γu and γs at the point of intersection.

Then the set

Λ: = {γu ∩ γs : γu ∈ Γu, γs ∈ Γs}
is called the lattice defined by Γu and Γs.

(b) Let Λ and Λ′ be lattices. We say that Λ′ is a u-sublattice of Λ if Λ′ and Λ have
a common defining family Γs and the defining family Γu of Λ contains that of
Λ′; s-sublattices are defined similarly.

(c) Given a lattice Λ, Q ⊂ R2 is called the rectangle spanned by Λ if Λ ⊂ Q and
∂Q is made up of two curves from Γu and two from Γs.

In Propostion 3.1 we will assert the existence of two lattices Λ+ and Λ− with
essentially identical properties. For notational simplicity let us agree to the following
convention: statements about “Λ” will apply to both Λ+ and Λ−. For example, “let
Γu and Γs be the defining families of Λ” means there are four families of curves; the
families (Γu)+ and (Γs)+ define Λ+ while (Γu)− and (Γs)− define Λ−.

There are two lattices Λ+ and Λ− in R2 with the following properties. Let Γu and Γs

be the defining families of Λ; for z ∈ Λ, let γu(z) denote the γu-curve in Γu containing
z. Then:

(1) (Topological structure) Λ is the disjoint union of s-sublattices Λi, i = 1, 2, . . . ,
where for each i, ∃Ri ∈ Z+ s.t. fRiΛi is a u-sublattice of Λ+ or Λ−.

(2) (Hyperbolic estimates)



englishDECAY OF CORRELATIONS FOR CERTAIN HÉNON MAPS 15

(i) Every γu ∈ Γu is a C2(b) curve; and ∃λ1 > 1 s.t.
∣∣DfRi

z τ
∣∣ ≥ λRi

1

∀z ∈ γu ∩Qi, τ being a unit tangent vector to γu at z and Qi being the
rectangle spanned by Λi.

(ii) ∀z ∈ Λ and ∀ζ ∈ γs(z) we have

d
(
f jz, f jζ

)
< Cbj ∀j ≥ 1.

(3) Leb(Λ ∩ γu) > 0 ∀γu ∈ Γu.
(4) (Return time estimates) Let R : Λ → Z+ be defined by R(z) = Ri for z ∈ Λi.

Then ∃C0 > 0 and θ0 < 1 s.t. on every γu,

Leb {z ∈ γu : R(z) ≥ n} ≤ C0θ
n
0 ∀n ≥ 1.

The rest of this section is devoted to proofs of Assertions (1) and (2) in Propos-
tion 3.1; Assertions (3) and (4) are proved in Section 4. There are slight (and totally
harmless) inaccuracies in the above formulation of Propostion 3.1. They are noted in
Remarks 2 and 4 in Section 3.4.

3.2. Some preliminary constructions. — First we assume f is a 1-dimensional
map and construct for f a Cantor set that would play the role of Λ in Propostion 3.1.
Then we carry this construction over to W1, the top leaf of W (see Section 1.2). We
will address certain technical problems in 2-d that are not present in 1-d, and conclude
that the two Cantor sets we have constructed have identical geometric estimates.

Temporarily then, we think of f as a map of [−1, 1] given by f(x) = 1 − ax2 for
some a . 2, and let Ω0 be one of the two outermost intervals in the partition P defined
in Section 1.4. We define inductively Ω0 ⊃ Ω1 ⊃ Ω2 ⊃ . . . as follows. Let ω be a con-
nected component of Ωn−1. First we delete from ω the interval f−n (−δe−αn, δe−αn);
and if the fn-image of a component of what is left of ω does not contain some Iνj ,
then we delete that also. What remains goes into Ωn. Our desired Cantor set is
Ω∞ ≡ ⋂n Ωn.

We assume the following is true: if M1 is the minimum time it takes for x ∈ (−δ, δ)
to return to (−δ, δ), then eαM1 ≥ 10. We assume also the corresponding fact for our
2-d map. This is easily arranged since α is fixed before we choose a or δ.

Returning to 2-d, we let Ω0 be the corresponding segment inW1 and try to construct
Ωn using the same rules and same notations as in 1-d. Let ω be a connected component
of Ωn−1. We assume for the moment the following geometric fact:

(∗) if part of fnω is bound and part is free, then the bound part lies at one or both
ends of fnω.
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If all of fnω is in the bound state, or if fnω ∩ (−δ, δ) × R = ∅, do nothing; i.e. put
ω ⊂ Ωn. If not, let γ be the free part of fnω, and let γ̃ be the maximal free segment
containing γ. We will use as binding point z̃(γ̃), where z̃(·) is as defined in Section 2.
Deletions are then made with respect to this binding point, and Ω∞ =

⋂
Ωn as before.

To justify (∗), consider the function t defined on fnω where t(z) is the time to
expiration of all bound periods at z (counting only the ones initiated before this step).
We take as our induction hypotheses not only (∗) but that t|fnω has the following
profile: it is either decreasing (by which we mean non-increasing) or it decreases from
one end to its minimum and increases from there to the other end. It is easy to check
that this type of profile is maintained on each component of Ωn even if new bindings
are imposed.

We note also that the bound part at each end of fnω (if it exists) is small relative
to |Iνj |, where Iνj is the element of the partition determined by z̃(γ̃) that meets it.
We know from 1-d or [BC2] that this is true wrt the partition determined by some
binding point and Lemma 1 assures us that all binding points are essentially the same.
This reasoning also gives us that no bound part is ever deleted.

3.3. Stable curves. — The purpose of this subsection is to construct Γs, which will
consist of a family of local stable manifolds through Ω0 ⊂W1. We noted in Section 1.4
that ∃c2 > 0 s.t. |Dfn

z τ | ≥ δec2n ∀z ∈ Ωn. From Section 1.5 then it follows that en,
the field of most contracted directions of Dfn, is defined in a neighborhood of every
z ∈ Ωn. To construct Γs, however, we need to know that the domain of en is larger
than this.

As noted in Section 1.5, e1 is defined everywhere. We integrate e1, and let Q0 =⋃
z∈eΩ0

γ1(z) where γ1(z) is the integral curve segment of length 10b centered at z, and

Ω̃0 is the (Cb)-neighborhood of Ω0 in W1. We will not need this for some time, but
the γ1-curve in Q0 have slopes ≈ ±2aδ depending on whether we are working with
Ω+

0 or Ω−
0 .

Suppose that at step n, corresponding to every connected component ω of Ωn−1 we
have a strip Qω foliated by integral curves of en. More precisely, Qω =

⋃
z∈ω̃ γn(z)

where γn(z) is the integral curve segment of length 10b centered at z and ω̃ is the
(Cb)n-neighborhood of ω in W1. We think of γn as temporary stable manifolds of
order n.

Let ω′ ⊂ ω be a component of Ωn. We want to show that Qω′ is well defined and
is contained in Qω. For z ∈ ω′, let Un(z) be the (Cb)n-neighborhood of γn(z) in R2.
First we claim that en+1 is defined on all of Un(z). Since |Df j

z τ | ≥ κj , ∀j ≤ n+ 1, it
suffices, by Section 1.5, to check that d(f jζ, f jz) < λj, ∀j ≤ n+ 1, ∀ζ ∈ Un(z). Let
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ζ ′ be the point in γn(z) nearest to ζ . Then

d(f jζ, f jz) ≤ d(f jζ, f jζ ′) + d(f jζ ′, f jz)

< (Cb)n · 5j + Cbj < λj.

Next we claim that γn+1(z) is well defined and lies inside Un(z). We see this in two
steps: first we use the Lipschitzness of en (Property (iii), Section 1.5) and a Gronwall
type inequality to see that en|Un(z) can be mapped diffeomorphically onto ∂/∂y on
R2 via a diffeomorphism Φn with ||DΦn|| ≤ e5·10b; then use |en+1−en| < (Cb)n and the
“straightened out” coordinates of en to conclude that the Hausdorff distance between
γn+1(z) and γn(z) is . 10b · (Cb)n < 1

2
(Cb)n. Finally, observe that these arguments

are easily extended to γn+1-curves through points in (Cb)n+1-neighborhoods of ω′,
proving Qω′ ⊂ Qω.

Taking limits of these “temporary stable manifolds”, we obtain genuine stable
manifolds for points in Ω∞.

Lemma 2. —

(1) ∀z ∈ Ω∞, there is a C1 curve γ∞(z) of length 10b and centered at z s.t. ∀ζ ∈
γ∞(z),

d(f jζ, f jz) < Cbj ∀j ≥ 1;

(2) ∀z, z′ ∈ Ω∞, zno = z′ =⇒ γ∞(z) ∩ γ∞(z′) = ∅;
(3) if fnγ∞(z) ∩ γ∞(z′)no = ∅, then fnγ∞(z) ⊂ γ∞(z′).

Proof of (1). — Let zn be the right end point of ωn−1, the component of Ωn−1 con-
taining z. Since

⋂
n ωn = {z} (reason: |Dfnτ | ≥ δec2n on ωn−1 and fnωn−1 has length

< 2), it follows from the estimates above that as n→ ∞, γn(zn) converges uniformly
to a curve which we will call γ∞(z). Because the en’s have a uniform Lipschitz con-
stant (Section 1.5, property (iii)), γn(zn) in fact converges in the C1 sense to γ∞(z).
Thus the contractive estimates for f j | γn(zn) carry over to f j | γ∞(z).

Before proving (2) and (3) we need to do some preparatory work. Consider a C2(b)
curve γ lying in Q0 and joining ∂sQ0, the two boundary components of Q0 that are
not part of W . For each connected component ω of Ωn−1, we let γω denote γ ∩ Qω.
Note that every point in γω is connected to some point in ω̃ by an integral curve γn,
and also that if ω′ ⊂ Ωn is contained in ω, then γω′ ⊂ γω. For z ∈ γ we will use
τ(f jz) to denote the unit tangent vector to f jγ at f jz.

Sublemma 3. — Let γ be as above. Then if ω ⊂ Ωn−1 is s.t. part of fnω is
free and intersects (−δ, δ) × R, then the binding point ẑ for fnω selected earlier is
also suitable for fnγω′ where ω′ = ω ∩ Ωn (see Section 1.3 and Section 1.5 for the
meaning of “suitable”). It follows from this that for all ω ∈ Ωn−1, f

j | γω, j ≤ n,
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has the bound/free estimates expressed in Section 1.3 and the distortion estimate in
Section 1.4.

Proof of Sublemma 3. — We fix ζ ∈ γω and investigate the suitability of ẑ as a bind-
ing point for (fnζ,Dfn

ζ τ(ζ)). Let z ∈ ω̃ be s.t. ζ ∈ γn(z). Then d(fnz, fnζ) < Cbn.
This cannot jeopardize the generalized tangential position part of the requirement
since Cbn is totally insignificant compared to d(fnz, ẑ), which is > e−αn. As to the
angle part of the requirement, write

∢(Dfn
z τ(z), Df

n
ζ τ(ζ)) ≤ ∢(Dfn

z τ(z), Df
n
z τ(ζ)) + ∢(Dfn

z τ(ζ), Df
n
ζ τ(ζ)).

The first term is < 20b·Cbn because both τ(z) and τ(ζ) have slopes < 10b, ‖Dfn
z ‖ > 1,

and both τ(z) and τ(ζ) make angles ≈ 2aδ with en(z). The second term is < Cb
n
4

by the matrix perturbation lemma in Section 1.5. The difference between τ(fnz) and
τ(fnζ), therefore, are insignificant relative to (2a±1) · d(fnz, ẑ), the size of the angle
they are supposed to make with the relevant contracting field about ẑ.

The estimates in Section 1.3 depend on the pair (ζ, τ), ζ ∈ γω being “controlled”.
(For the precise definition see 1.4.2 and 1.5.1 of [BY].) The distortion estimate in
Section 1.4 holds for C2(b) segments all of whose points and tangent vectors are
controlled.

Proof of Lemma 2 (continued). — We prove (3); the proof of (2) is similar. We will
try to derive a contradiction assuming fnγ∞(z) 6⊂ γ∞(z′). Let N be a sufficiently large
number to be specified. Let η and η′ be points in fnγ∞(z) and γ∞(z′) respectively
s.t.

(i) η and η′ are joined by a horizontal line segment γ ⊂ Q0 and
(ii) η ∈ ∂Qω where ω is the component of ΩN−1 containing z′. Since η and η′ lie in

some γω, Sublemma 3 tells us that if fNω is free (our 1st requirement on N),
then

∣∣fNη − fNη′
∣∣ ≥ ecN |η − η′| & ecN · 1

2
(Cb)N .

On the other hand, if q ∈ fnγ∞(z) ∩ γ∞(z′), then
∣∣fNη − fNη′

∣∣ ≤
∣∣fNη − fNq

∣∣ +
∣∣fNq − fNη′

∣∣

<
CbN+n

(
b
5

n) + CbN = (5n + 1)CbN .

These two estimates of
∣∣fNη − fNη′

∣∣ are clearly incompatible for N ≫ n.
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3.4. Definition of Λ and return times. — We now specify the two families Γu

and Γs that define Λ.

Definition of Γs: we let Γs = {γ∞(z) : z ∈ Ω∞} where γ∞(·) is as in Lemma 2.

Definition of Γu: we let Γ̃u = {γ ⊂W : γ is a C2(b) segment connecting the two

components of ∂sQ0}, and let Γu = {γ : γ is the pointwise limit of a sequence in Γ̃u}.

Remark 2. — (1) We have not proved that the curves in Γu are pairwise disjoint.

However, since every γ ∈ Γu is the monotone limit of curves in Γ̃u, there are at most
countably many pairs that intersect. It is easy to see that they play no role.

(2) Without further analysis, we also cannot conclude that γ ∈ Γu is better than
C1+1(b), since they are uniform limits of C2(b) curves. This also is inconsequential.

Having completed the definition of Λ, we now proceed to define the s-sublattices
that make up Λ and their return times R. Let us remind ourselves again that in
actuality we are interested in the set Λ+ ∪ Λ−, where Λ± correspond to the lattices
we have constructed near Ω±

0 × [−b, b], Ω+
0 and Ω−

0 being the two outermost intervals
in the partition P introduced in Section 1.4. When we speak about return times, we
are referring to return times from the set Λ+ ∪ Λ− to itself, i.e. a point in Λ+ may
return to Λ+ or Λ−. To keep the notations simple we will continue to write just “Λ”.

We stipulate ahead of time that ∀z ∈ Λ, R(z) = R(z′) ∀z′ ∈ γs(z), so R need
only be defined on Λ ∩ Ω0. We will construct partitions on subsets of Ω0 and use 1-
dimensional language. For example, fnx = y for x, y ∈ Λ∩Ω0 means that fnx ∈ γs(y).
Similarly, for subsegments ω, ω′ ⊂ Ω0, f

nω = ω′ means that fnω∩Λ, when slid along
γs-curves to Ω0, gives exactly ω′ ∩ Λ. (We caution that “fnω = ω′” does not imply
fn(ω ∩ Λ) = ω′ ∩ Λ!) For ω ⊂ Ωn−1, P | fnω refers to P[z̃] where z̃ is the binding
point for fnω selected earlier.

We will construct below sets Ω̃n ⊂ Ωn and partitions P̃n on Ω̃n so that Ω̃0 ⊃ Ω̃1 ⊃
Ω̃2 ⊃ . . . and z ∈ Ω̃n−1 − Ω̃n iff R(z) = n. As usual, we think of points belonging

to the same element of P̃n as having indistinguishable trajectories up to time n. We
augment P defined in Section 1.4 to P = {ω ∈ original P} ∪ {[−1,−δ), (δ, 1]}, and

let P̂ be the partition on Ω0 − Ω∞ dividing this set into connected components. The
symbol “∨” refers to the join of two partitions, i.e. A∨B ≡ {A∩B : A ∈ A, B ∈ B}.

An interval ω ⊂ Ωn is said to make a regular return to Ω0 at time n if

(i) all of fnω is free;
(ii) fnω ⊃ 3Ω0.

Rules for defining Ω̃n, P̃n and R:

(0) Ω̃0 = Ω0, P̃0 = {Ω̃0}.
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Consider ω ∈ P̃n−1.

(1) If ω does not make a regular return to Ω0 at time n, put ω ∩ Ωn into Ω̃n, and
let

P̃n

∣∣(ω ∩ Ωn) = (f−nP)
∣∣ (ω ∩ Ωn)

with the usual adjoining of end intervals (this is always done with or without
our saying so explicitly).

(2) If ω makes a regular return at time n, we put ω′ ≡ (ω−f−nΩ∞)∩Ωn in Ω̃n, and

let P̃n

∣∣∣ω̃ = (f−nP ∨ f−nP̂)
∣∣∣ω′. For z ∈ ω s.t. fnz ∈ Ω∞, we define R(z) = n.

(3) We require that R ≥ n0 for some n0 to be specified in Section 6.1. To comply

with this, if ω ∈ P̃n−1 makes a regular return at time n with n < n0, then we
treat ω according to Rule (1) and not Rule (2).

(4) For z ∈ ⋂n Ω̃n, set R(z) = ∞.

Remark 3. — We digress to make the following adjustments in our definitions of
P̃n; they will simplify the proofs in Section 4. Let us say that a C2(b) segment
γ ⊂ (−δ, δ) is of “full length” if ∃ν, j s.t. γ∩Iνjn

o = ∅ and ℓ(γ) ≈ ℓ(Iνj). Recall that
in Section 3.2 we made sure that when something is deleted from fnω, ω ∈ Ωn−1, no
“short” segment is left behind. We wish to do the same for fnω for every ω ∈ P̃n−1.
For definiteness suppose that ω ∈ P̃n−1 was created at step k ≤ n − 1, and that not
all of ω will remain in Ωn. We distinguish between the cases where fkω ≈ some Iνj

and where fkω is a gap of Λ.
If fkω is a gap of Λ, then dist(fn(∂ω),C) ≥ δe−α(n−k) ≥ 10δe−αn, so the end

points of fnω straddle the forbidden interval (−δe−αn, δe−αn) by wide margins and
no problem will arise.

Suppose fkω ≈ some Iνj . Since deletions occur only at free returns, we have
ℓ(fnω) ≫ δe−αn. The only problematic scenario is when a tiny part of fnω sticks
out, say, to the left of (−δe−αn, δe−αn). If this awkward bit remains in Ωn, then there
must be something in Ωn−1 that is mapped by fn to the left of it. The reasoning
of the last paragraph rules out the possibility that the left end point of fnω is a
limit of infinitely many small segments coming from the gaps of Λ. Thus ∃ω′ ∈ P̃n−1

that shares this relevant end point with ω. Hence ∃ω′′ ∈ P̃k with this property and
fkω′′ ≈ some Iν′j′. We now retroactively move the boundary between ω and ω′′ so
that the awkward bit in question belongs to the image of ω′ or ω′′. It is easy to see
that no boundary is moved more than once, for a gap beween the adjacent elements
appear immediately thereafter.

It is now clear what the sublattices in Propostion 3.1 (1) are: each Λi is an s-

sublattice corresponding to a subset of Ω0 ∩ Λ of the form f−nΩ∞ ∩ Λ ∩ ω, ω ∈ P̃n−1
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making a regular return at time n. Note that if Λi is one of the s-sublattices, and
γ = Qi ∩ γu, γu ∈ Γu, Qi = the rectangle spanned by Λi, then fnγ ∈ Γu. To see

this, first assume γ ⊂ W . Then fnγ is C2(b) because it is free; hence it is in Γ̃u.
This property clearly passes on to curves in Γu, proving fnΛi ⊂ Λ. Note also that
the hyperbolic estimates in Propostion 3.1 are simply Estimate III in Section 1.3 and
Lemma 2 (1).

To complete our objective of proving Assertions (1) and (2) in Propostion 3.1 then,
it remains only to show that fRiΛi is a u-sublattice. This requires proving that the
Cantor set fRiΛi somehow matches completely with Λ in the horizontal direction. We
claim that this is a consequence of our construction but defer the proof to Section 3.5.

Remark 4. — We have not proved that R(z) < ∞ for every z ∈ Λ. Indeed, the
assertion in Propostion 3.1 (1) that Λ =

⋃
Λi is inaccurate and should be ammended

to read “for every γu ∈ Γu,Leb ((Λ −⋃Λi) ∩ γu) = 0”. That R <∞ a.e. on Λ ∩ γu

will follow from the Main Lemma in Section 4.

3.5. Matching of Cantor sets. — To complete the proof of Propostion 3.1 (1),
we need to show that whenever Rule (2) in the previous subsection is applied,

fn(ω ∩ Ω∞) ⊃ Ω∞.

We formulate this as

Lemma 3. — Let ω ∈ Ωn−1 be s.t. fnω crosses Q0 completely. Then ∀z ∈ Λ,
∃z′ ∈ ω ∩ Λ s.t. fnz′ ∈ γs(z).

Let us first explain the central idea of the proof assuming that f is a 1-dimensional
map. Given z ∈ Ω∞, there is (by hypothesis) z′ ∈ ω with fnz′ = z; what is at
issue is whether z′ ∈ Ω∞. First, z′ ∈ Ωn because ω ⊂ Ωn−1 and fnz′ ∈ Ω0. It
suffices therefore to show that |f j+nz′| > 2δe−(j+n)α ∀j > 0. This is true because
|f j+nz′| = |f jz| > δe−αj , which is > 10δe−α(j+n) since eαn ≥ 10.

For the 2-dimensional situation at hand, what complicates matters is that different
layers of W require different binding points, and that the binding point at step n+ j
for fn+jz′ may not be vertically aligned with the binding point at step j for f jz. Our
aim in this subsection is to dispel with these technicalities so that the 1-d argument
prevails.

Lemma 3′. — Let ω be a connected component of Ωn−1, and suppose that fnQω

crosses Q0 completely in the horizontal direction. Then ∀j ≥ 1, if ωj is a component
of Ωj, then there is a component ωn+j of Ωn+j s.t. Qωj

∩ fnQω ⊂ fnQωn+j
.
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z

z′

fn+jQωn+j−1

f jQωj−1

Figure 2

In this subsection we will regard Qω as foliated by temporary stable curves through
ω, ignoring the slight discrepancies between the temporary curves of various gener-
ations or their slightly different domains of definition. Those matters were dealt
with in Section 3.3. We remark that if Lemma 3′ holds, then it will follow that
(
⋃

ωj
Qωj

)∩ fnQω ⊂ ⋃ωn+j
fnQωn+j

for all j ≥ 1. Taking the limit as j → ∞, we will

obtain (
⋃

z∈Ω∞

γs(z)) ∩ fnQω ⊂ ⋃z∈Ω∞

fnγs(z), which gives Lemma 3.

Proof of Lemma 3 ′. — Let n and ω be fixed, and assume the conclusion of Lemma 3′

for all components of Ωj−1. We pick one ωj−1, and let ωn+j−1 be as in the lemma,
see Figure 2. We will examine what is deleted from f jQωj−1

at step j versus what is
deleted from fn+jQωn+j−1

at step n+ j.

Let z ∈ fn+jωn+j−1 ∩ f jQωj−1
be such that z is deleted at step n + j, and let

z′ ∈ γs
j (z) ∩ f jωj−1. We will show that z′ is deleted at step j. The notations and

results of Section 2 will be used heavily in the next few lines. First if dγ(z
′,C) < δe−αj ,

we are done. Suppose not. Then since |z − z′| < (Cb)j ,

|z − z̃(z′)| ≥ |z′ − z̃(z′)| − |z − z′|≥ 9
10
δe−αj ,

and z is in tangential position wrt z̃(z′). But we also have

|z − z̃(z)| ≤ 2δe−(n+j)α < 2
10
δe−αj,

and this is incompatible with our estimate on |z − z̃(z′)|.

4. Return time estimates

The goal of this section is to prove Assertions (3) and (4) in Propostion 3.1.
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4.1. Statement of lemmas and ideas of proofs. — Let Ω0 ⊂ W1 be as in

Section 3, and recall that there are sets Ω0 = Ω̃0 ⊃ Ω̃1 ⊃ Ω̃2 ⊃ . . . and partitions P̃n

on Ω̃n so that for all z ∈ Ω∞, z ∈ Ω̃n iff R(z) > n, and points in the same element

of P̃n are viewed as having the same itinerary up to time n. (See Section 3.2 and
Section 3.4.) Let | · | denote the Lebesgue measure on γu-curves.

Lemma 4. — |Ω∞| > 0.

Proof. — This is a 1-d argument using estimates in [BC1]. In the construction of
{Ωn}, let ω ⊂ Ωk be a component that is formed at step k, and suppose that some
part of it will be deleted at step n. Since fkω ⊃ some Iνj, we are guaranteed that
|fnω| ≥ δ3βe−3αβk ≥ δ3βe−3αβn. But the subsegment of fnω to be deleted has length
≤ 4δe−αn. Taking distorsion into consideration when pulling back to Ω0, we have
that

|Ωn−1 − Ωn|
|Ωn−1|

≤ C1δ
(1−3β)e−α(1−3β)n

and the statement of the lemma follows since
∞∏

n=M1

(
1 − C1δ

(1−3β)e−α(1−3β)n
)
> 0,

where M1 is the minimum time for a point in (−δ, δ) to return to (−δ, δ); see Sec-
tion 3.2.

Lemma 5. — (Main Lemma) ∃C0 > 0 and θ0 < 1 s.t.
∣∣∣Ω̃n

∣∣∣ < C0θ
n
0 ∀n ≥ 1.

Remark 5. — We have stated lemmas 4 and 5 for Ωn on W1, but the corresponding
statements are true for every γu ∈ Γu with uniform estimates (independent of γu).
The proofs are in fact identical through the use of Lemma 2. A related fact that will
not be needed till later is in fact the absolute continuity of {γs} as a “foliation”; see
Sublemma 10 in Section 5. It says in particular that ∃ C > 0 s.t. for all γ, γ′ ∈ Γu,
if Ψ : γ ∩ Λ 7→ γ′ is defined by Ψ(z) = γ(z) ∩ γ′, then |Ψ(A)| ≤ C|A| for every Borel
subset A of Λ ∩ γ.

We postpone the proof of Lemma 5 for later, but use instead the remainder of
this subsection to discuss the main ideas behind this tail estimate for R. Consider a
segment ω ⊂ Ωk.

(1) It is easy to see that once fnω becomes sufficiently long, then it will make a
regular return to Ω0 within a finite number of iterates. Our situation is as follows:



24 englishMICHAEL BENEDICKS and LAI-SANG YOUNG

as we iterate f , ω grows in length — except when it comes near C, at which time
it may lose a piece in the middle and it may get subdivided into Iνj ’s for distortion
control; these components are then iterated individually. An unfortunate component
of ω may get cut faster than it has the chance to grow, but our contention is that
because of the estimates in Section 1.3 the general tendency is for a component to
grow long.

(2) When a regular return occurs, small pieces corresponding to the gaps of Λ are
created, and these small pieces are handled individually as they move on. We must
therefore carry out the large deviation estimate in (1) simultaneously for the entire
collection of gaps; such an estimate will involve the distribution of gap sizes.

(3) As has already been suggested in (2), it is not quite the end of the story when
a component of ω grows long, for at regular returns only a (fixed) percentage of the
long segment gets absorbed into the Cantor set Λ. To estimate distribution of return
times we must estimate the frequencies with which the components containing typical
points makes regular returns.

These ideas are made rigorous in Sections 4.2, 4.3 and 4.4. We remark also that
(1) is essentially dealt with in [BC2] in the slightly different context of parameter
exclusions, and that we learned some of the estimates for (2) and (3) from [C].

4.2. Growth of components of a segment to a fixed size: a large deviation
estimate. — In this and the next subsections we will be studying the time evolution

of a curve γ which is contained in f jΩ̃j for some j ≥ 0. It is convenient to think of

points as being in γ at time 0, so let us introduce the following notations: Ω
(j)
k ≡

{z ∈ γ : f−jz ∈ Ωj+k}, similarly for Ω̃
(j)
k , and P̃

(j)
k (z) ≡ {η ∈ γ : f−jη ∈ P̃j+k(f

−jz)}.
We will also use the following language. For z ∈ γ, we say that z makes an essential

free return (≡ e.f.r.) to (−δ, δ) × R at time k if z ∈ Ω̃
(j)
k−1 and fkP̃

(j)
k−1(z) is free and

contains some Iνj. We say z makes a regular return to Ω0 at time k if z ∈ Ω̃
(j)
k−1 and

fkP̃
(j)
k−1(z) makes a regular return. We define the stopping time

E(z) ≡the smallest k ∈ Z
+ s.t. either z 6∈ Ω

(j)
k or z makes

a regular return at time k

and let

γn = {z ∈ γ : E(z) > n}.

Sublemma 4. — (c.f. Section 2, [BC2]) There exist D′
1 > 0 and θ′1 < 1 for which

the following holds. Let γ = f jω for some ω ∈ P̃j, and let n ∈ Z+. We assume that
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γ is free and is ≈ some Ir,ℓ with |r| ≤ n
6
. Then

|γn| ≤ D′
1θ

′n
1 |γ|.

Proof. — We will prove that

(∗) |γn| ≤ D′
1e

− 1
6
n+ 9

10
|r||γ|

for some D′
1 independent of γ or n. This implies the Sublemma immediately: for

|r| ≤ n
6
, D′

1e
− 1

6
n+ 9

10
|r| ≤ D′

1e
− 1

6
n+ 9

10
n
6 = D′

1e
− 1

60
n, so it suffices to take θ′1 = e−

1
60 .

Consider z ∈ γ with E(z) > n, and suppose that z makes exactly s e.f.r.’s in the
first n iterates, at times 0 = t0 < t1 < · · · < ts ≤ n. It follows from Remark 2 in

Section 3.4 that f tiP̃
(j)
ti (z) ≈ some Iriℓi

for each i. A slightly extended version of our
estimates in Section 1.3 gives for all i < s:

ti+1 − ti ≤ 4 |ri|

and

∣∣f ti+1−tiIriℓi

∣∣ ≥ e−3β|ri|.

This second inequality can be used to estimate the fraction

ϕ(r1, . . . , rs) ≡
1

|γ| · |{z ∈ γ : F(z) = (r1, . . . , rs)}|

where F(z) denotes the ri-locations of the e.f.r.’s of z. Letting C1 be the distortion
constant in Section 1.4 and writing r0 = r, we have

ϕ(r1, . . . , rs) < Cs
1

s∏

i=1

exp
{
− |ri| + 3β |ri−1|

}

< Cs
1 exp

{
− 7

8

s∑

i=1

|ri| + 3β|r|
}
.

Next we make, for fixed s and R, the purely combinatorial estimate on the number
of all possible s-tuples (r1, . . . , rs), ri ∈ Z, with

∑s
i=1 |ri| = R. This is clearly <

2s
(

R+s−1
s−1

)
. For us, since the time between consecutive e.f.r.’s is > ∆ ≡ log 1

δ
, the

number of feasible (r1, . . . , rs) as locations of e.f.r.’s is in fact ≤ 2
R
∆ ·
(R+ R

∆
−1

R
∆

)
, which

by Sterling’s formula is < 2
R
∆ (1 + σ(δ))R with σ(δ) → 0 as δ → 0.
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Let

An
s,R ≡

{
z ∈ γn : z makes exactly s e.f.r.’s up to

time n and
s∑

i=1

|ri| = R
}
.

We may then estimate |γn| by

|γn| =
∑

all relevant
s,R

∣∣An
s,R

∣∣ ≤
∞∑

R= n
4
−|r|

R
∆∑

s=1

(
#(r1, . . . , rs)

with
∑s

1 |ri| = R

)
· ϕ(r1, . . . , rs) · |γ|.

The lower limit of summation for R comes from the fact that |r| + 4R must be > n,
otherwise the (s+ 1)st e.f.r. or a regular return, whichever happens first, would have
taken place by time n. We do not need to concern ourselves with s = 0 because γ must
make an e.f.r. by time n/2 (because e−

n
6 ec1

n
2 ≫ 1). Note that this is an overestimate

also in the sense that some of the (r1, . . . , rs)-configurations are forbidden due to the
Iriℓi

’s being too close to C.
Plugging our earlier estimates into this last inequality, we obtain

|γn| ≤ C
∞∑

R= n
4
−|r|

2
R
∆ (1 + σ(δ))R · C

R
∆
1 e

− 7
8
R+3β|r| · |γ|,

which is less than the right side of (∗) provided δ is sufficiently small.

We now re-state Sublemma 4 in anticipation of how it will be used.

Corollary to Sublemma 4. — There exist D1 > 0 and θ1 < 1 for which the
following holds. Let γ be contained in a free (C2(b)) segment of W . We assume that
either

(i) γ = f jω for some ω ∈ P̃j, γ need not be of “full length”; or

(ii) γ =
⋃
i

f jωi where for each i, ωi ∈ P̃j and f jωi ≈ some Iriℓi
.

Then
|γn| ≤ D1θ

n
1 ∀n ≥ 1.

Proof. — First we prove (ii). For fixed n, we have by Sublemma 4 that
∣∣{z ∈ γ −

(
−e−n

6 , e−
n
6

)
: E(z) > n}

∣∣ ≤ D′
1θ

′n
1 |γ| ≤ D′

1θ
′n
1 ,

and also that ∣∣γ ∩
(
−e−n

6 , e−
n
6

)∣∣ ≤ 2e−
n
6 .
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To prove (i), fix n and observe as above that we may assume |γ| ≥ e−n/6, and that
γ makes an e.f.r. at time j0 <

n
2
. Suppose that this is not a regular return, and let

γ′ = f j0γ. Then |γn| ≤ |f j0γn| ≤ |{z ∈ γ′ : E(z) > n/2}|, and this last quantity is
estimated as in the proof of (ii).

4.3. Growth of “gaps” to a fixed size. — First we prove a sublemma about the
distribution of gap sizes.

Sublemma 5. — There exist C > 0 and σ > 0 s.t. for all γu ∈ Γu, if G =
{components of γu − Λ}, then

∑

γ∈G: |γ|≤ℓ

|γ| ≤ Cℓσ.

Proof. — In view of Sublemma 3, it suffices to consider γu = Ω0.
Observe first that all the gaps of Ω∞ created at step n have length

> C1
−14δe−αne−c1n.

(If fnω partially crosses (−δe−αn, δe−αn), then the part deleted is attached to an
earlier gap, making it even bigger.) Given ℓ, let N0 be s.t. ℓ ≈ e−(α+c1)N0 . Then

∑

γ∈G

|γ|≤ℓ

|γ| ≤
∑

n≥N0

∑

ω=comp.
of Ωn−1

C14e
−(1−3β)αn|ω|

(cf. Lemma 4). Thus ∑

γ∈G

|γ|≤ℓ

|γ| ≤ Ce−αN0(1−3β) ≤ Cℓσ,

some σ > 0.

Sublemma 6. — Let Λc ≡ Ω0 − Λ, and for z ∈ Λc, define E(z) as in Section 4.2
with γ = the component of Λc containing z. Let Λc

n ≡ {z ∈ Λc : E(z) > n}. Then
∃D2 > 0 and θ2 < 1 s.t.

|Λc
n| ≤ D2θ

n
2 ∀n ≥ 1.

Proof. — Let G be the set of all components of Λc. For each n ∈ Z
+, let G′

n ≡ {ω ∈
G : |ω| ≤ D1θ

n
1} where D1 and θ1 are as in the Corollary to Sublemma 4, and let

G′′
n = G − G′

n.
By Sublemma 5, ∑

ω∈G′

n

|ω| ≤ C(D1θ
n
1 )σ ≡ D′

2θ
σn
1 .
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For ω ∈ G′′
n, we know from the Corollary to Sublemma 4 that ωn := {z ∈ ω : E(z) >

n} has length |ωn| ≤ D1θ
n
1 , and from Sublemma 5 that if Nk = #{ω : D1θ

k
1 ≤ |ω| <

D1θ
k−1
1 }, then

Nk ≤ C(D1θ
k−1
1 )σ

D1θ
k
1

≡ C ′θ
(k−1)σ−k
1 .

Thus ∑

ω∈G′′

n

|ωn| ≤ D1θ
n
1 ·
∑

k≤n

Nk ≤ D′′
2θ

σn
1 .

4.4. Frequencies of regular returns and Proof of Lemma 5. — We define a
sequence of stopping times T0 < T1 < · · · on subsets of Ω as follows. Let T0 ≡ 0,
and assuming that Tk−1(z) is defined, let Tk(z) be the smallest j > Tk−1 s.t. P̃j−1(z)
makes a regular return to Ω0 at time j. Let Θk = {z ∈ Ω0 : Tk(z) is defined}. It
follows from the Corollary to Sublemma 4 that Θk ⊃ Ω∞ a.e. for each k. Observe
that Θk is the disjoint union of a countable number of segments {ω} with the property

that each ω is an element of some P̃j−1, Tk|ω ≡ j, and a certain proportion of ω is
absorbed back into Λ at time j. This is to say, ∃ε0 > 0 such that for all ω ⊂ Θk as
above,

|ω ∩ {R = Tk}|
|ω| ≥ ε0.

This implies inductively that for every k,

|{z ∈ Θk : R(z) > Tk}| ≤ (1 − ε0)
k.

Let ε1 > 0 be a small number to be determined. Then for all n,

Ω̃n ⊂ {z ∈ Ω̃n : T[ε1n](z) > n} ∪ {z ∈ Θ[ε1n] : R(z) > T[ε1n](z)}.
The measure of the second set on the right has already been estimated. It remains
therefore to prove

Sublemma 7. — ∃D3 > 0, θ3 < 1, and ε1 > 0 such that

|{z ∈ Ω̃n : T[ε1n](z) > n}| < D3θ
n
3 ∀n ≥ 1.

Proof. — Let 1 ≤ n1 < n2 < · · · < nℓ ≤ n be fixed for the time being. For k ≤ n, we
define Ak ≡ Ak(n1, . . . , nℓ) to be

Ak ≡ {z ∈ Ω̃k : the regular return times of z up to time k are

exactly those ni’s with ni ≤ k},
and we estimate |An| following these steps:
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(i) |An1−1| ≤ D1θ
n1−1
1 by Sublemma 4 applied to γ = Ω0.

(ii) Note that An1−1 is a union of elements of P̃n1−1, and that An1−1 could be seen
as

An1 = {ω = ω′ ∪ ω′′ : ω ∈ P̃n1−1 | An1−1, ω making a regular return at time n1},

where ω′ = ω ∩ f−n1Λc and ω′′ = (ω − f−n1Ω0) ∩ Ωn1 .

(iii) Using Sublemma 4 to deal with ω′ and Sublemma 6 to deal with ω′′ we obtain

|An2−1|
|An1−1|

≤ D′
3θ

′n2−n1−1
3

|Ω0|
for some D′

3 and θ′3 independent of the ni’s.

(iv) Proceeding inductively, we obtain

|An| =
|An|

|Anℓ−1|
· |Anℓ−1|
|Anℓ−1−1|

· · · |An2−1|
|An1−1|

· |An1−1|

≤
(

D′
3

|Ω0|θ′3

)ℓ

θ
′n
3 .

We may now choose ε1 > 0 small enough that

(
D′

3

|Ω0|θ′3

)ε1

· θ′3 ≡ θ′′3 < 1,

and conclude that

∣∣∣{z ∈ Ω̃n : T[ε1n] > n}
∣∣∣ =

ε1n∑

ℓ=0

∑

(n1,...,nℓ):
1≤n1<···<nℓ≤n

|An(n1, . . . , nℓ)|

<

ε1n∑

ℓ=0

(
n

ℓ

)
(θ′′3)

n

< D3θ
n
3

provided ε1 is sufficiently small.
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5. Reduction to expanding maps

5.1. Purpose of this section. — From Assertion (1) in Propostion 3.1, we know
that fR : Λ 	 sends γs-fibers to γs-fibers, so that topologically a quotient map is well
defined. More precisely, let Λ̄ = Λ/ ≈ where ≈ is the equivalence relation defined by

z ≈ z′ iff z′ ∈ γs(z). Then fR : Λ̄ 	 makes sense, and with Λ̄i having the obvious

meaning, fR maps each one of the Cantor sets Λ̄i homeomorphically onto Λ̄.
The aim of this section is to study the differential properties of fR : Λ̄ 	 in the sense

of the Jacobian of fR with respect to a certain reference measure. Let T : (X1, m1) →
(X2, m2) be a measureable bijection between two measure spaces. We say that T is
nonsingular if T maps sets ofm1-measure 0 to sets of m2-measure 0. For a nonsingular
transformation T , we define the Jacobian of T with respect to m1 and m2, written
Jm1,m2(T ) or simply JT , to be the Radon-Nikodym derivative d(m2 ◦ T )/dm1.

There is a measureable family of reference measures {mγ, γ ∈ Γu} with the following
properties:

(1) Each mγ is supported on γ∩Λ; it is a finite measure equivalent to the restriction
of 1-dimensional Lebesgue measure on γ to γ ∩ Λ.

(2) mγ is invariant under sliding along γs, i.e. if θ : γ ∩ Λ → γ′ ∩ Λ is defined by
{θ(z)} = γ′ ∩ γs(z), then for E ⊂ γ ∩ Λ, mγ′(θE) = mγ(E).

(3) For z ∈ γ ∩ Λi, let JfR(z) denote the Jacobian of fR | (γ ∩ Λi) at z with
respect to our reference measures on the respective γu-curves (we know that
fR | (γ ∩ Λi) is nonsingular on account of (1)). Then

JfR(z) = JfR(z′)

for all z′ ∈ γs(z).
(4) ∃λ > 1 s.t. JfR(z) ≥ λR a.e.
(5) Restricted to each γ ∩ Λi, (log JfR) ◦ (fR)−1 is “Hölder” in the sense to be

made precise in Section 5.4, with uniform estimates independent of γ or i.

Property (2) above tells us that {mγ} defines a reference measure m̄ on our quotient

space Λ̄. Property (3) says that fR : Λ̄ 	 is nonsingular w.r.t. m̄; we will call its

Jacobian JfR. Properties (4) and (5) allow us to view fR : (Λ̄, m̄) 	 as a piecewise
uniformly expanding map whose derivative has a certain “Hölder” property. We use
“ ” for “Hölder” because it is not the usual Hölder condition; the relevant condition
here is dynamically defined and will be explained in Section 5.4.

Our proof of Proposition 5.1 is essentially an adaption of some ideas used in the
construction of Gibbs states. See e.g. [B] for an exposition.
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5.2. The reference measures. — In this subsection we define {mγ, γ ∈ Γu} and
prove Properties (1) and (2) in Proposition 5.1. For simplicity of notation we will
write m instead ofmγ when there is no ambiguity about γ. The Jacobian w.r.t. m will
be denoted J(·), while the one w.r.t. 1-dimensional Lebesgue measure on γu-curves
will be denoted (·)′, i.e. f ′(z) = |Dfzτ(z)| for z ∈ γu.

We pick and fix an arbitrary γu-curve in the definition of Λ and call it γ̂. For z ∈ Λ,
let ẑ denote the point in γ̂∩γs(z), and let ϕ(z) = log f ′(z). We define for n = 1, 2, . . .

un(z) ≡
n−1∑

i=0

(
ϕ(f iz) − ϕ(f iẑ)

)
.

Sublemma 8. — ∃C ′ > 0 and b′ with b < b′ ≪ 1 s.t. ∀n > k ≥ 0,
n∑

i=k

(
ϕ(f iz) − ϕ(f iẑ)

)
≤ C ′(b′)k

Proof. — First we write

ϕ(f iz) − ϕ(f iẑ) = log
f ′(f ′z)

f ′(f iẑ)
≤ |f ′(f iz) − f ′(f iẑ)|

f ′(f iẑ)
.

Then letting τi = τ(f iz) and τ̂i = τ(f iẑ), we have
∣∣f ′(f iz) − f ′(f iẑ)

∣∣ ≤
∣∣Dff izτi −Dff iẑτi

∣∣+
∣∣Dff iẑτi −Dff iẑ τ̂i

∣∣ .
The first term above is clearly ≤ C ′bi since d(f iz, f iẑ) ≤ Cbi (Lemma 2 (1)). The
second term is ≤ 5|τi − τ̂i|, which we estimate by

∢(τi, τ̂i) ≤ ∢(Df i
zτ0, Df

i
ẑτ0) + ∢(Df i

ẑτ0, Df
i
ẑτ̂0)

≤ Cb
i
4 + Cbi,(5.1)

the first because of the Matrix Pertubation Lemma in Section 1.5 and the second
because Df i

ẑ is hyperbolic and τ0 and τ̂0 are bounded away from their most contracted
direction.

To complete the proof, observe that f ′(f j ẑ) ≥ b
5
∀j, and that f ′(f j ẑ) ≥ δ for the

first few j’s. The desired conclusion follows easily with, say, b′ > b
1
8 .

It follows from Sublemma 8 that u = limn un exists for all z ∈ Λ. We know in
fact that |u| can be made arbitrarily small for b small. On each γ, let m be the
measure whose density w.r.t. Lebesgue measure on γ is χΛ∩γ · eu, χ(·) being the
characteristic function. Property (1) of Proposition 5.1 is immediate. Next follows a
lemma, which gives a Lipschitz estimate for the tangential derivative at free return
times: (fn)′z. This estimate is used in several places: in the proofs of the Hölder
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regularity of the Jacobians (Section 5.4), and the invariance of the reference measures
mγ (Assertion (2) of Proposition 5.1).

For z1, z2 ∈ γ, let [z1, z2] denote the segment of γ between z1 and z2.

Sublemma 9. — ∃C ′
2 depending on δ s.t. the following holds for each γu and every

n ≥ 0. Let ω ⊂ γu be a segment in Ωn, and suppose that

(i) for each i ∈ n, f iω ⊂ 3Iµj for some µ, j;
and

(ii) fnω is free.

Then ∀z1, z2 ∈ ω we have

(1) log
(fn)′z1
(fn)′z2

≤ C ′
2e

αn |fn[z1, z2]|;

(2) log
(fn)′z1
(fn)′z2

≤ C ′
2 |fn[z1, z2]| if fnω ⊃ Ω0.

Proof. — We follow the proof of Proposition 2 in [BY] p. 562–564, but make an
improvement in the estimates. As in this proof we obtain

T
def
= log

(fn)′z1
(fn)′z2

≤ C

q∑

k=0

|f tk [z1, z2]|
e−νk

where {tk}q
k=0 are the free return times, tq = n, and f tkω

⊂≈ Iνk
. We then define

m(ν) = max{tk : νk = ν},
and using the fact that |f tk+1[z1, z2]| ≥ 2|f tk [z1, z2]| we have

T ≤ C ′
∑

ν∈S

|fm(ν)[z1, z2]|
e−ν

where S is the set of νk’s not counted with multiplicity. Since f iω lies > δe−αi from
the critical set for each i, and the m(ν)’s are distinct for different ν’s, we obtain

∑

ν∈S

|fm(ν)[z1, z2]|
e−ν

≤ eαn

(
q∑

k=0

2−k

)
|fn[z1, z2]|

proving (1). To prove (2) we have as in the proof of Proposition 2 in [BY]

T ≤ C ′
∑

ν∈S

|fm(ν)[z1, z2]|
e−ν

≤ C ′
∑

ν

1

ν2
= C1,
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where C1 is the usual distortion constant (see Section 1.4). Now for each ν apply this
to points in fm(ν)ω for the time interval [m(ν), n] to obtain

|fm(ν)[z1, z2]|
|fm(ν)ω| ≤ C1

|fn[z1, z2]|
|fnω| ,

and conclude that

T ≤ C ′
∑

ν∈S

|fm(ν)ω|
e−ν

· |fm(ν)[z1, z2]|
|fm(ν)ω|

≤ C ′ ·
(∑

ν∈S

|fm(ν)ω|
e−ν

)
· C1

|fn[z1, z2]|
|fnω|

≤ C2
1

|Ω0|
|fn[z1, z2]|. �

Let γ and γ′ be arbitrary curves in Γn, and let θ : γ ∩ Λ → γ′ be defined by
θ(z) ∈ γs(z)∩γ′. Property (2) of Proposition 5.1 follows from the following sublemma:

Sublemma 10. — Temporarily let µγ and µγ′ denote the Lebesgue measures on γ
and γ′ respectively. Then θ−1

∗ µγ′ is absolutely continuous wrt µγ, written θ−1
∗ µγ′ ≺≺

µγ, and
dθ−1

∗ µγ′

dµγ
(z) = eu(z)−u(θz) for µγ a.e. z ∈ γ ∩ Λ.

Absolutely continuity arguments are well known in dynamical systems (see e.g.
[PS]), but since our setting is a little nonstandard let us include a proof. Observe
that them-measures are designed precisely so that θ takesm-measures tom-measures.

Proof. — Let ω ⊂ ω̂ be subsegments of γ with the property that ω̂ makes a regular
return to Ω0 at time k̂, ω is free at time k > k̂, and all points in ω have the same
itinerary up to time k in the usual sense. We require that 0 ≪ k̂ ≪ k and that

|f k̂ω| ≫ (Cb)
k̂
4 . (The second condition requires that k not be too much larger than

k̂; it is not a serious imposition.) Let ω′ ⊂ ω̂′ be the corresponding subsegments of
γ′. In what follows “a ≈ b” means that a/b is very near 1 and tends to 1 as all the
“≫” tend to ∞.

Let z be an arbitrary point in ω ∩ Λ, and let z′ = θz. We claim that

|ω′| ≈ |f k̂ω′|
(f k̂)′z′

=
|f k̂ω′|
|f k̂ω|

· |f k̂ω|
(f k̂)′z

· (f k̂)′z

(f k̂)′z′
≈ |ω| · eu(z)−u(z′).
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For the first “≈” use the fact that (f k̂)′ is roughly identical at all points in ω′. This

is true by Sublemma 9 provided that k − k̂ is sufficiently large. The same argument

is used for ω in the second “≈”. Additionally we need the fact that |f k̂ω′| ≈ |f k̂ω|,
which is true because the two curves are so short they can be regarded as straight

lines, and their lengths are ≫ (Cb)
k̂
4 while their slopes are < (Cb)

k̂
4 apart (by the

Matrix Perturbation Lemma in Section 1.5) In the third “≈” we use Sublemma 8 and

the fact that k̂ is large.
Let Λ̃ = {z ∈ Λ : z makes infinitely returns toΛ}. We leave it as an excercise

for the reader to verify that there is a cover U of Λ̃ by pairwise disjoint sets of the
type ω above with M arbitrarily large. To prove θ−1

∗ µγ′ ≺≺ µγ, let A be a closed

subset of γ ∩ Λ̃. Choosing a subcover {wi} of U s.t. µγ(
⋃
ωi) < µγ(A) + ε, we have

that µγ′(θA) . e2max |u|
∑

i µγ′(ωi) < e2max |u|(µγ(A) + ε). To prove the statement on

Radon-Nikodym derivatives, consider a Lebesgue density point z of γ ∩ Λ̃ and choose
ω containing z with |ω ∩ Λ| ≈ |ω|, |ω′ ∩ Λ| ≈ |ω′|.

5.3. The Jacobians. — For a.e. z ∈ Λ ∩ γ, γ ∈ Γu, we have

J(fR)(z) = (fR)′z · e
u(fRz)

eu(z)
.

Proof of Property (3) in Proposition 5.1. We will verify that J(fR)(z) depends only
on ẑ and not on z:

log J(fR)z =
R−1∑

i=0

ϕ(f iz) +
∞∑

i=0

(
ϕ
(
f i
(
fRz

)
− ϕ

(
f i
(
f̂Rz

))))

−
∞∑

i=0

(
ϕ
(
f iz
)
− ϕ

(
f iẑ
))

=

R−1∑

i=0

ϕ
(
f iẑ
)

+

∞∑

i=0

(
ϕ
(
f i
(
fRẑ

))
− ϕ

(
f i
(
f̂Rz

)))
. �

Proof of Property (4) in Proposition 5.1. — As observed earlier on, |u| can be made
arbitrarily small; it is in fact of order b. Our Jacobian J(fR)z is therefore a small
pertubation of (fR)′, z, which is ≥ ec1R for some c1 >

1
3
log 2 (see Section 1.3).
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5.4. Regularity of the Jacobian. — Having established that m̄ and J(fR) make
sense on Λ̄, we now introduce a dynamically defined notion of “Hölderness” satisfied
by J(fR) ◦ (fR)−1.

For z1, z2 ∈ Λ̄, define their separation time s(z1, z2) to be the smallest n s.t. fnz1,
fnz2 do not lie in three continuous Iνj’s. Here we have taken the liberty to confuse
z ∈ Λ̄ with the representative on some γ ∈ Γu, and to include [−1,−δ) and (δ, 1]
when we speak about Iνj ’s.

Definition 2. — A function ψ : Λ̄ → R is said to be Hölder with respect to the
separation time s( · , ·) if ∃C > 0 and β < 1 s.t. for m-a.e. z1, z2 ∈ Λ̄, |ψz1 − ψz2| ≤
Cβs(z1,z2).

The following lemma gives the precise statement of Property (5) in Proposition 5.1.

Lemma 6. — ∃C2 > 0 and β < 1 s.t. for every i and ∀z1, z2 ∈ Λ̄i,
∣∣∣∣
J(fR)(z1)

J(fR)(z2)
− 1

∣∣∣∣ ≤ C2β
s(fRz1,fRz2).

This can be rephrased as follows. For each i let (fR)−1
i : Λ̄ → Λ̄i be the inverse of

fR | Λ̄i. Then z → J(fR) ◦ (fR)−1
i (z) is Hölder w.r.t. s(· , ·) above with uniform C2

and β independent of i.

Remark 6. — Some explanations are probably in order here.

(1) Why would the regularity of the Jacobian involve separation times? If we were
working with a 1-d map f : [−1, 1] 	, then x 7→ log f ′(x) is Hölder in the usual sense
— provided that near the critical point 0, we compare two points only if they are
much closer to each other than to 0, e.g. if they lie in 3 contiguous Iνj’s. In particular,
two points on opposite sides of 0 cannot be compared. In the present situation Λ̄ is
obtained by collapsing W s

loc-curves, so that points in Λ̄ represent not points in R2 but

futures of orbits, and J(fR)(z) has incorporated into it information on the entire orbit
of the point z ∈ Λ. Now two points z1, z2 ∈ γu could be arbitrarily near each other,
and be mapped at some future time to opposite sides of the critical set. The sooner
this takes place, the less one could expect J(fR)(z1) and J(fR)(z2) to be comparable.
Hence separation time enters.

(2) Why Cβs(fRz1,fRz2)? Built into this formulation is the assumption that the map
f is expanding on average. Consider for simplicity a C2 uniformly expanding map
g with g′ ≈ λ > 1. Fix δ > 0 small enough that d(gx, gy) ≈ λ d(x, y) whenever
d(gx, gy) < δ. Consider x, y and n s.t. d(gix, giy) < δ ∀i ≤ n. The following estimate
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is standard:

|log(gn)′x− log(gn)′y| ≤
n−1∑

i=0

∣∣log g′(gix) − log g′(giy)
∣∣

≤ C

n−1∑

0

d(gix, giy) ≤ C ′d(gnx, gny).

Now if s(x′, y′) is the first time d(gsx′, gsy′) > δ, then d(gnx, gny) ≈ Cλ−s(gnx,gny), so
that

|log(gn)′x− log(gn)′y| ≤ C ′(λ−1)s(gnx,gny).

Here β plays the rôle of λ−1, and separation may occur long before two orbits move
> δ apart.

We now proceed with the proof of Lemma 6.

Sublemma 11. — ∃C ′′
2 > 0 and β < 1 s.t. ∀z1, z2 ∈ γu ∩ Λ, |u(z1) − u(z2)| ≤

C ′′
2β

s(z1,z2).

Proof. Let n = s(z1, z2), and pick k ∈ [n
3
, n

2
] s.t. fk[z1, z2] is free. We know that

k exists because if f
n
3 [z1, z2] is in bound state, then it was > e−

n
3
α from the critical

set when the last (total) bound period was initiated, which means that this bound
period must expire before time 1

3
n + 4α 1

3
n < 1

2
n (see Section 1.2). Write

u(z1) − u(z2) =

∞∑

i=0

{(
ϕ(f iz1) − ϕ(f iẑ1)

)
−
(
ϕ(f iz2) − ϕ(f iẑ2)

)}
.

The part
k−1∑
i=0

{·} is estimated by

∣∣∣
k−1∑

i=0

{·}
∣∣∣ ≤

∣∣∣ log
(fk)′z1
(fk)′z2

∣∣∣+
∣∣∣ log

(fk)′ẑ1
(fk)′ẑ2

∣∣∣.

The first term on the right is ≤ C ′
2e

αk|fk[z1, z2]| by Sublemma 9 (1). Observing that
separation can occur only when fn[z1, z2] is free and using the estimates for orbits
ending in free states in Section 1.3, we have that |fk[z1, z2]| ≤ e−c1(n−k)|fn[z1, z2]| for
some c1 & 1

3
log 2. Altogether this first term contributes ≤ C ′

2e
α n

2
−c1

n
2 ≤ C ′

2β
n for

some β < 1. The corresponding term for ẑi, i = 1, 2, is handled similarly.
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For
∑

i≥k{·} we have, by Sublemma 8,

∣∣∣
∞∑

k

{·}
∣∣∣ ≤

∣∣∣
∞∑

k

(
ϕ(f iz1) − ϕ(f iẑ1)

) ∣∣∣ +
∣∣∣

∞∑

k

(
ϕ(f iz2) − ϕ(f iẑ2)

) ∣∣∣

≤ 2C ′(b′)k ≤ 2C ′bn/8. �

Proof of Lemma 6. — It suffices to work with one γu-curve. We consider z1, z2 ∈
γu ∩ Λi and let n = s(fRz1, f

Rz2). We noted in Section 5.3 that

log
J(fR)z1
J(fR)z2

= log
(fR)′z1
(fR)′z2

+
(
u(fRz1) − u(fRz2)

)
− (u(z1) − u(z2))

def
= (I) + (II) + (III).

Since z1 and z2 lie in a segment that makes a regular return to Ω0 at time R, we
have by Sublemma 9 (2) that (I) ≤ C ′

2|fR[z1, z2]|. Using Section 1.3 again we see that
|fR[z1, z2]| ≤ e−c1n|fn[fRz1, f

Rz2]| ≤ e−c1n. Also, (II) ≤ C ′′
2β

n by Sublemma 11, and
(III) ≤ C ′′

2β
s(z1,z2) where s(z1, z2) is obviously > n.

6. Proofs of Theorems

To study the rate of mixing of f it is not sufficient to consider fR : Λ 	 alone: the
return time function R also plays an important role. In this section we construct a
tower ∆ =

⋃∞
ℓ=0 ∆ℓ the bottom level of which is Λ and construct a map F : ∆ 	 in a

way analogous to that of building a special flow over fR : Λ 	 under the function R.
This allows us to consider the Perron-Frobenius operator or transfer operator associ-
ated with F : ∆ 	, the quotient map of F : ∆ 	 obtained by collapsing along local
stable leaves. Spectral properties of this operator are summed up in Proposition 6.3
in Section 6.3. We refer the reader to [Y] for a proof of this Proposition, and derive
from it the results of this paper.

6.1. Construction of a tower. — Let

∆
def
= {(z, ℓ) : z ∈ Λ, ℓ = 0, 1, 2, . . . , R(z) − 1}.

We introduce F : ∆ 	 defined by

F (z, ℓ) =

{
(z, ℓ+ 1) if ℓ+ 1 < R(z)(
fRz, 0

)
if ℓ+ 1 = R(z).
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It is clear that there is a projection π : ∆ → R2 s.t. π|∆0 is the identity map on Λ
and f ◦ π = π ◦ F .

An equivalent but less formal way of looking at ∆ is to view it as the disjoint union⋃∞
ℓ=0 ∆ℓ where ∆ℓ

def
= {z ∈ Λ : R(z) > ℓ} denotes the ℓth level of the tower. Next

we subdivide each level into components ∆ℓ =
⋃

i ∆ℓ,i in such a way that F has a
Markov type property with respect to the partition {∆ℓ,i}. Again using 1-d language,

a natural subdivision of ∆ℓ might be the restriction of the partition P̃ℓ constructed
in Section 3.4; but this partition is too “big”. We introduce instead a sequence of

partitions Pn on Ω̃n so that Pn is coarser than P̃n and each element of Pn contains
no more than finitely many elements of Pn+1. This is easily done by following the

algorithm in the construction of P̃n, except that when fnω is a regular return, no
subdivisions are made on that part of ω that gets mapped onto Ω0 −Ω∞. (Elements
of Pn are not necessarily intervals; they may have “holes” due to absorption into Ω∞.)
We say that z1, z2 ∈ ∆ℓ are in the same component ∆ℓ,i if they both lie in the same
element of Pℓ.

We summarize the topological properties of F : ∆ 	:

(I) ∆ is the disjoint union
⋃∞

ℓ=0 ∆ℓ where the ℓth level ∆ℓ is a copy of {z ∈ Λ :
R(z) > ℓ}; each ∆ℓ is further subdivided into a finite number of “components”
∆ℓ,i each one of which is a copy of an s-subrectangle of Λ.

(II) Under F , each ∆ℓ,i is mapped onto the union of finitely many components of
∆ℓ+1 and possibly a u-subrectangle of ∆±

0 . Let ∆∗
ℓ,i = ∆ℓ,i ∩ F−1∆0. We think

of points in
⋃

∆∗
ℓ,i as “returning to the bottom level” under F , while other

points “move upward” to the next level.

From the description above it is clear that the quotient map F : ∆ 	 obtained by
collapsing γs-curves as in Section 5 is well defined. Let m̄ be the reference measure
on Λ or ∆0. Since each ∆ℓ,i is a copy of a subset of ∆0, m̄ is defined on ∆ℓ,i via
the natural identification. Let J(F ) denote the Jacobian of F with respect to m̄;
more precisely, if z ∈ ∆ℓ,i and Fz ∈ ∆ℓ+1,i′, then JF (z) is the Jacobian of the map

F |
(
∆ℓ,i ∩ F−1 (

∆ℓ+1,i′
))

. Also, given the present setting it is natural to define the

separation time of z1, z2 ∈ ∆ to be

s(z1, z2) ≡ the smallest n ≥ 0 s.t. fnz1 and fnz2 lie in different ∆ℓ,i’s.

This definition of s(·, ·) will permanently replace the one in Section 5.4. Observe
that under the present definition, z1, z2 ∈ ∆0 separate faster than under the old one.
Hence the distortion estimate in Lemma 4 is all the more valid. Again we summarize:
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(III) There is a reference measure m̄ on ∆̄ uniformly equivalent to the restriction
of Lebesgue measure on γu ∩ Λ for every γu such that with respect to m̄, the
Jacobian JF of F satisfies:

(i) JF (z) = 1 ∀z 6∈ ⋃ ∆̄∗
ℓ,i;

(ii) ∃C2 > 0 and β < 1 s.t. ∀z1, z2 ∈ F
−1 (

∆̄±
0

)
,

∣∣∣∣
JF (z1)

JF (z2)
− 1

∣∣∣∣ ≤ C2β
s(Fz1,Fz2).

Here ∆̄+
0 and ∆̄−

0 are the two components of ∆̄0. Let

C3 =
m̄
(
∆̄0

)

min
(
m̄
(
∆̄+

0

)
, m̄
(
∆̄−

0

)) .

We state for the record the following very important tail estimate on the height of
the tower ∆̄ (or equivalently the return times to ∆̄0).

(IV) The height function R : ∆̄0 → Z+ has the following properties:
(i) R ≥ N where N is chosen so that C2e

C2C3β
N ≤ 1

100
;

(ii) ∃C0 > 0 and θ0 < 1 s.t.

m̄{R > n} ≤ C0θ
n
0 ∀n ≥ 0.

The lower bound for R in (i) is for purposes of guaranteeing a definite amount of
contraction for the Perron-Frobenius operator between consecutive returns of an orbit
to the base. The feasibility of such a bound was arranged in Section 3.4. Note the
order in which the constants in (III) and (IV) are chosen: C2, C3 and β, and hence
N can be chosen to depend only on the derivatives of f and not on the construction
of the tower; whereas C0 and θ0 depend on f as well as on N . The tail estimate in
(ii) is a slight reformulation of Propostion 3.1 (IV)(ii).

6.2. SRB measures: Proof of Theorem 1. — We construct in this subsection
an SRB measure ν for f with ν(Λ) > 0. This gives an alternate proof of Theorem 1
to that in [BY].

Let fR : Λ 	 be the mapping with fR | Λi = fRi | Λi for each i, and let µ0 denote
the restriction of 1-dimensional Lebesgue measure on Ω0 to Λ∩Ω0. For n = 1, 2, . . . ,
let

µn =
1

n

n−1∑

i=0

(
fR
)i
∗
µ0.

Then µn is supported on a countable number of γu-curves on each one of which it has
a density ρn. Clearly, ρn = 0 on γu −Λ. The distortion estimate in Sublemma 9 tells
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us that
ρn(x)

ρn(y)
≤ C1 for a.e. x, y ∈ Λ ∩ γu.

From this and from the absolute continuity of the curves in Γs and the boundedness
of the Radon-Nikodym derivatives (see Sublemma 10), it follows that if ρ̃n | γu :=
ρn/µn (γu), then M−1 ≤ ρ̃n ≤M a.e. on γu∩Λ for some M independent of n and γu.

Letting n→ ∞, a subsequence µnk
converges weakly to µ∞. We have immediately

that µ∞ is fR-invariant and that it is supported on Λ.
Let {µγ

∞} be the conditional measures of µ∞ on γu-curves, and let Qω be an s-
subrectangle of Q corresponding to an arbitrary subsegment ω of some γu. Then for
a.e. γ ∈ Γu, we have

M−1 min
γu∈Γu

|Qω ∩ γu| ≤ µγ
∞(Qω ∩ γ) ≤M max

γu∈Γu
|Qω ∩ γu| ,

proving (again using the absolute continuity of Γs) that µγ
∞ is uniformly equivalent

to the arclength measure s | (γ ∩ Λ).
To extract from µ∞ an f -invariant measure, simply let

ν =
∞∑

i=0

f i
∗ (µ∞ | {R > i}) .

That ν is a finite measure follows from Propostion 3.1 (4) (ii); we may therefore
normalize and assume ν (R2) = 1. It is clear that ν satisfies the definition of an SRB
measure as defined in Section 1.7.

By the same token, we could view µ∞ as a measure on ∆0, and construct as above
an F -invariant measure ν̃ on ∆ with π∗ν̃ = ν. It is also clear from the discussion
above that ν̄, the measure on ∆̄ that is the quotient of ν̃, is uniformly equivalent to
our reference measure m̄.

6.3. Definition and properties of the Perron-Frobenius operator associated
with F : ∆̄ 	. — First we introduce the function space on which our operator acts.
Fix ε > 0 with the following two properties:

(i) e2εθ0 < 1 where θ0 is as in Section 6.1 (IV) (ii);
(ii) 1

m̄∆̄0

∑
ℓ,i m̄∆̄∗

ℓ,ie
ℓε ≤ 2.

Note that property (ii) is consistent with

1

m̄∆̄0

∑

ℓ,i

m̄∆̄∗
ℓ,i = 1.
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We remark for future reference the relative sizes of β and e−ε: from Section 6.1
(IV)(i) we have that βN times various constants is ≤ 1

100
, while (ii) above implies that

eεN ≤ 2. Thus β should be thought of as < e−ε.
Our function space X will consist of those ϕ : ∆̄ → C with ‖ϕ‖ < ∞, where ‖ · ‖

is a weighted L∞+ Hölder norm defined as follows: let ϕℓ,i = ϕ | ∆̄ℓ,i, and let | · |p
denote the Lp-norm (1 ≤ p ≤ ∞) wrt the reference measure m̄. We define

∥∥ϕℓ,i

∥∥
∞

=
∣∣ϕℓ,i

∣∣
∞
e−ℓε

and

∥∥ϕℓ,i

∥∥
h

=

(
ess sup
z1,z2∈∆ℓ,i

|ϕz1 − ϕz2|
βs(z1,z2)

)
· e−ℓε

where ε is as above. Finally let

‖ϕ‖ = ‖ϕ‖∞ + ‖ϕ‖h

where

‖ϕ‖∞ = sup
ℓ,i

∥∥ϕℓ,i

∥∥
∞

and ‖ϕ‖h = sup
ℓ,i

∥∥ϕℓ,i

∥∥
h
.

The Perron-Frobenius operator or transfer operator associated with the dynamical
system F : ∆̄ 	 is defined by

P (ϕ) (z) =
∑

w:Fw=z

ϕ(w)

JF (w)
.

Our choice of (X, ‖ · ‖) was to ensure that P has the following spectral properties:

(1) P : X → X is a bounded linear operator; its spectrum σ(P) has the following
properties:

• σ(P) ⊂ {|λ| ≤ 1}
• ∃τ0 < 1 s.t. σ(P) ∩ {|λ| ≥ τ0} consists of a finite number of points the

eigenspaces corresponding to which are all finite dimensional.

(2) 1 ∈ σ(P), and ρ̄ ∈ X is an eigenfunction corresponding to the eigenvalue 1.
Moreover, if the greatest common divisor (gcd) of {R(z) : z ∈ ∆0} = 1, then 1 is the
only element of σ(P) with |λ| = 1 and its eigenspace is 1-dimensional.

See [Y] for a proof of Proposition 6.3.
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6.4. Decay of correlations: Proof of Theorem 3. — Recall that we are con-
cerned with a “good” Hénon map f : R2 	 which we know has an attractor Σ and a
unique SRB measure ν. We assume for the rest of this paper that (fn, ν) is ergodic
for all n ≥ 1. The following conventions will be used: if ϕ is a function on R2 or on
Σ, then the lift of ϕ to ∆ will be called ϕ̃; and if ϕ̃ : ∆ → C is constant on γs-curves
then we will sometimes confuse it with the obvious function on ∆̄ called ϕ.

For γ > 0, let Hγ = Hγ(Σ) denote the class of Hölder continuous functions on Σ
with exponent γ, i.e.

Hγ = {ϕ : Σ → R | ∃C = Cϕ s.t. ∀x, y ∈ Σ, |ϕx− ϕy| ≤ C|x− y|γ}.
We will use as shorthand for the correlation between ϕ and ψ ◦ fn with respect to ν
the notation Dn(ϕ, ψ; ν), i.e.

Dn(ϕ, ψ; ν) =

∣∣∣∣
∫

(ψ ◦ fn)ϕdν −
∫
ϕdν

∫
ψdν

∣∣∣∣ .

We outline below the steps needed to derive from Proposition 6.3 an exponentially
small bound for Dn(ϕ, ψ; ν). Since the derivation is completely formal and (with the
exception of one small geometric fact noted below) has nothing to do with the present
setting, we will refer the reader to [Y] for details of the proofs.

Here are the main steps of the argument:

(1) Observe that Dn(ϕ, ψ; ν) = Dn

(
ϕ̃, ψ̃; ν̃

)
, and that by considering a power of

f if necessary, we may assume gcd {R(z) : z ∈ ∆0} = 1.

(2) In preparation for using the Perron-Frobenius operator, we maneuver Dn(ϕ̃, ψ̃; ν̃)
into an object describable purely in terms of functions on ∆̄. This is done in
two steps:

(i) Fix κ ∈
(
0, 1

2

)
, and let k = κn. Let M be the partition of ∆ into

{∆ℓ,j}, and let ψk : ∆̄ → R be the function constant on elements η of

M2k :=
∨2k−1

i=0 F−iM with ψk | η := ψ̃ ◦ F k (some selected point in η).
Verify that

Dn

(
ϕ̃, ψ̃; ν̃

)
= Dn−k

(
ϕ̃, ψ̃ ◦ F k; ν̃

)
≈ Dn−k

(
ϕ̃, ψ̄k; ν̃

)
.

(ii) Let ϕk be defined as above, and let ϕ̃k := d
(
F k
∗ (ϕkν̃)

)
/dν̃.

Verify that

Dn−k

(
ϕ̃, ψk; ν̃

)
≈ Dn−k

(
ϕ̃k, ψk; ν̃

)

and observe that

Dn−k

(
ϕ̃k, ψk; ν̃

)
=

∣∣∣∣
∫
ψkP

n (ϕkρ̄) dm̄−
∫
ψkρ̄dm̄

∫
ϕkρ̄dm̄

∣∣∣∣ .
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(3) Use Proposition 6.3 to prove that∥∥∥∥Pn (ϕkρ̄) −
(∫

ϕkρ̄dm̄

)
ρ

∥∥∥∥ ≤ const · τn−2k
1

for some τ1 < 1.

In Step (2) above, it is neccessary to translate the Hölder property for ϕ, ψ ∈ Hγ

to a Hölder type condition for ϕ̃ and ψ̃. The following geometric fact is used:

Sublemma 12. — ∀z ∈ ∆, diam
(
πF k (M2k(z))

)
≤ 2Cαk.

We leave the proof as an easy exercise.

6.5. Proof of the Central Limit Theorem. — Theorem 4 (the CLT) is also
proved in [Y] but we prefer to give another proof here. As in [Y] this proof is based
on a theorem of Gordin [G] but we apply Gordin’s theorem to test functions in the
Banach space X and use an L2 approximation argument (which in fact uses the decay
of correlation) to prove the theorem for Hölder test functions on ∆.

The version of Gordin’s theorem we need may be stated as follows:

Theorem 5 ([G]). — Let (Ω,F, ν) be a probability space, let T : Ω 	 be a non-
invertible measure-preserving transformation, and let ϕ ∈ L2(ν) be s.t. Eϕ = 0.
Suppose that

(∗)
∑

j≥0

|E(ϕ|T−jF)|2 <∞

Then
1√
n

n−1∑

i=0

ϕ ◦ T i dist7→ N(0, σ)

where

σ2 = lim
n→∞

1

n

∫ (n−1∑

i=0

ϕ ◦ T i

)2

dν.

Exponential decay of correlations alone is not sufficient to conclude that (∗) holds.
Suppose, however, that there is a reference measure m with respect to which T is
non-singular, and suppose that dν = ρ dm for some ρ ≥ c > 0. Then we have a
well-defined Perron-Frobenius operator given by P(ϕ) = ψ, where ψ is the density of
T∗(ϕm), and a gap in the spectrum of P (with respect to a suitable function space)
is sufficient to conclude that (∗) converges exponentially. In fact, we have

(∗∗)
∫

|E(ϕ|T−jM)|2 dν ≤ |ϕ|∞
∫

|Pj(ϕρ)| dm
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see [K] or [Y]. See also Ruelle’s earlier work [R].
For ϕ ∈ Hγ let ϕ̃(z) = ϕ ◦ π(z) be the lift of ϕ to ∆. For k ∈ Z+, we use ϕ̃(k) to

denote ϕ̃ ◦ F k and define ϕk by

ϕk|A =
1

ν̃(A)

∫

A

ϕ̃ ◦ F k dν̃,

where the A’s are the elements of the partition M2k defined in Section 6.4.
As in Section 6.3, for functions on ∆ we use | · |p to denote the Lp-norm, 1 ≤ p ≤ ∞,

with respect to the reference measure m and || · || to denote the norm on the space
X. Let || · ||Hγ

denote the usual γ-Hölder norm for functions ϕ : R2 → C, i.e.

||ϕ||Hγ
= sup

x∈R2

|ϕ(x)| + sup
x 6=y

|ϕ(x) − ϕ(y)|
|x− y|γ .

The following estimates are used in several places.

Sublemma 13. — There is a constant C = C(f) such that for all functions ϕ ∈ X
we have

|ϕ|1 ≤ C||ϕ||.

This is an easy exercise (see [Y], Section 3.2).

Sublemma 14. — For ϕ ∈ Hγ

sup |ϕk − ϕ̃ ◦ F k| ≤ C(f)||ϕ||Hγ
λk ∀k ≥ 0,

where λ = λ(f, γ) satisfies 0 < λ < 1.

This sublemma is a direct consequence of Sublemma 12.

Let us introduce the notation

Sn(ϕ̃) =
1√
n

n−1∑

j=0

ϕ̃ ◦ F j.

We now fix ψ ∈ Hγ with
∫
ψ dν = 0 and prove the CLT for this function.

Observe first that there is a constant K0 = K0(ψ) such that for all ε > 0, if
N(ε) := [K0 log(1/ε)], then

sup |ψN(ε) − ψ̃ ◦ FN(ε)| ≤ ε.

This follows immediately from Sublemma 14.
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Lemma 7. — There is a function r(ε) with r(ε) → 0 as ε → 0 such that for each
ε > 0, if {

Tn = Sn(ψ̃ ◦ FN(ε))

Un = Sn(ψN(ε))

then
sup
n≥0

‖Tn − Un‖L2(ν̃) ≤ r(ε).

For the proof of this lemma we need the following estimates:

Sublemma 15. — There exist constants C > 0 and 0 < β0, τ < 1, β0 and τ
depending only on f and C = C(f, ψ), such that for all j, N ∈ Z+ the following
hold:

(i)
∣∣∫ ψNψN ◦ F jdν̃

∣∣ ≤ Cβ−2N
0 τ j;

(ii)
∣∣∣
∫
ψN ψ̃

(N) ◦ F jdν̃
∣∣∣ ≤ Cβ−2N

0 τ j;

(iii)
∣∣∣
∫
ψ̃(N)ψN ◦ F jdν̃

∣∣∣ ≤ Cβ−2N
0 τ j;

(iv)
∣∣∣
∫
ψ̃(N)ψ̃(N) ◦ F jdν̃

∣∣∣ ≤ Cβ−2N
0 τ j.

Since ψN can also be viewed as a function on ∆, that the left side of (i)–(iv) above is
≤ Cτ j for some C = C(f, ψ,N) follows from the decay of correlations proof outlined
in Section 6.4. The proof of this sublemma consists of re-doing the estimates there
and making transparent the dependence on N . We carry this out for (i) and (ii) and
leave the rest as exercises.

Proof of Sublemma 15(i) and (ii). — For ϕ, η ∈ X we have

Dj(ϕ, η; ν̃) =

∣∣∣∣
∫
η ◦ F jϕdν̃ − (

∫
ϕdν̃)(

∫
η dν̃)

∣∣∣∣

=

∣∣∣∣
∫
η

[
Pj(ϕρ) −

(∫
ϕ ρdm

)
ρ

]
dm

∣∣∣∣

≤ |η|∞
∣∣∣∣Pj(ϕρ) −

(∫
ϕρ dm

)
ρ

∣∣∣∣
1

.

From the spectral information of the Perron-Frobenius operator and Sublemma 13
we conclude that

Dj(ϕ, η; ν̃) ≤ C|η|∞ ||ϕρ|| τ j
0

≤ C|η|∞ max{||ρ||, |ρ|∞}max{||ϕ||, |ϕ|∞}τ j
0 .



46 englishMICHAEL BENEDICKS and LAI-SANG YOUNG

Now replace both ϕ and η by ψN and note that ||ψN || ≤ C(ψ)β−N . It follows that
(i) holds.

As for the proof of (ii) let η̃ be the lift of a function η ∈ Hγ , let ϕ ∈ X and consider

Dj(ϕ, η̃; ν̃) =

∣∣∣∣
∫

(η̃ ◦ F j)ϕdν̃

∣∣∣∣ =

∣∣∣∣
∫

(η̃ ◦ F k) ◦ F j−kϕdν̃

∣∣∣∣

≤
∣∣∣∣
∫ [

η̃ ◦ F k − ηk

]
◦ F j−kϕdν̃

∣∣∣∣+
∣∣∣∣
∫
ηk ◦ F j−kϕdν̃

∣∣∣∣

≤ |ϕ|∞ ||η̃ ◦ F k − ηk||L1(ν̃) +

∣∣∣∣
∫
ηkP

j−k(ρϕ) dm

∣∣∣∣
≤ C|ϕ|∞ ||η||Hγ

λk + C|ηk|∞ ||ϕ||τ j−k
0 .

We have here used Sublemma 14 to estimate ||η̃ ◦ F k − ηk||L1(ν̃).

Finally we choose k = [κj] for a suitable small κ and substitute ψN for ϕ and ψ̃(N)

for η̃ above. The conclusion of (ii) with suitable choices of β0 and τ then follows from
the estimates ||ψ ◦ fN ||Hγ

≤ KN
1 ||ψ||Hγ

, K1 = K1(f, γ), and ||ψN || ≤ C(ψ)β−N .

Proof of Lemma 7. — We have

‖Tn − Un‖2
2 =

1

n

[
n
∥∥∥ψ̃ ◦ FN − ψN

∥∥∥
2

2

+
n−1∑

j=1

(n− j)

∫ (
ψ̃(N) − ψN

)(
ψ̃(N) − ψN

)
◦ F jdν̃

]
.

We pick j0 = j0(ε). The exact choice of j0 will be made later. For 1 ≤ j ≤ j0 we
estimate the covariances by Cauchy’s inequality∣∣∣∣

∫ (
ψ̃(N) − ψN

)(
ψ̃(N) − ψN

)
◦ F jdν̃

∣∣∣∣

≤
∥∥∥ψ̃(N) − ψN

∥∥∥
2

∥∥∥ψ̃(N) − ψN

∥∥∥
2

≤ ε · ε = ε2.

For j in the range j0 < j ≤ n−1 we use the estimates of Sublemma 15. Combining
these estimates we obtain

‖Un − Tn‖2
2 ≤ ε2(1 + j0) +

4C

β2N
0

n−1∑

j=j0+1

1

n
(n− j) e−θj
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with τ = e−θ.
The last sum is estimated as

1

n

n−1∑

j=j0+1

(n− j)e−θj ≤ e−θj0.

Hence ‖Un − Tn‖2
2 ≤ (1 + j0)ε

2 + (4C/β
2K0 log 1

ε

0 )e−θj0. By choosing

j0(ε) = 4K0
1

θ
log

1

β0
log

1

ε

we obtain the estimate

‖Un − Tn‖2
2 ≤ r(ε) = O

(
ε2 log

1

ε

)
.

Proof of Theorem 4. — We will prove the Central Limit Theorem for ψ ∈ Hγ . More
specifically, we will show that Fn(t) → N(0, σ) in distribution, where

Fn(t) = ν

({
z :

1√
n

n−1∑

j=0

ψ ◦ f j ≤ t

})

σ2 =

∞∑

j=0

∫
ψ ψ ◦ f j dν ≥ 0.

We will in the following assume σ > 0. It is in fact true that σ = 0 iff ψ = ϕ−ϕ◦f
for some function ϕ ∈ L2. (This fact was communicated to us by Bill Parry.) Hence
the CLT is true for σ = 0 with the Normal Distribution Function Φσ(t) interpreted
as the unit step function.

We shall first see how we can use Gordin’s theorem to conclude that the CLT holds
for test functions from the class X.

Let ϕ ∈ X with
∫
ϕ ρdm = 0. The spectral properties of the Perron-Frobenius

operator P guaranties that

||Pj(ϕ ρ)|| ≤ Cτ j ∀j ≥ 0.

Then |Pj(ϕ ρ)|1 ≤ Cτ j ∀j ≥ 0 and from (∗∗) it follows that condition (∗) in
Gordin’s theorem is valid. We conclude that

(∗ ∗ ∗) ν̃

({
z :

1√
n

n−1∑

j=0

ϕ ◦ F j(z) ≤ t

})
dist→ N(0, σ).
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Note that from the invariance of the measure ν̃ under F it follows immediately that

σ2(ψ̃(N)) = Var[Tn] = Var[Sn(ψ̃(N))] = Var[Sn(ψ̃)] = σ2(ψ̃).

We will also use the notation σ2
ε = σ2(ψN) = Var[Un].

From Lemma 7 we conclude that

σ2
(
ψN(ε)

)
→ σ2

(
ψ̃
)

as ε → 0

and hence we can assume that σε > 0 by chosing ε sufficiently small.
By moving up to the tower ∆ and using the invariance of ν̃ under F we can also

write

Fn(t) =ν̃

({
z :

1√
n

n−1∑

j=0

ψ̃(N) ◦ F j(z) ≤ t

})
.

We wish to compare Fn(t) with the distribution function

Gn(t) = ν̃

({
z :

1√
n

n−1∑

j=0

ψN ◦ F j(z) ≤ t

})
.

It follow from (∗ ∗ ∗) with ϕ replaced by ψN that Gn(t) → N(0, σε) in distribution.
Now pick η > 0. By Tjebyshev’s inequality

Fn(t) ≤ Gn(t+ η) + ν̃ {|Tn − Un| ≥ η}

≤ Gn(t+ η) +
1

η2
‖Tn − Un‖2

2

≤ Gn(t+ η) +
1

η2
r(ε).

Letting n→ ∞ we conclude that lim
n→∞

Fn(t) ≤ Φσε
(x+ η) + 1

η2 r(ε). Here

Φσ(x) =
1√
2πσ

∫ x

−∞

e−
u2

2σ2 du.

By letting ε→ 0 we have

lim
n→∞

Fn(t) ≤ Φσ(x+ η).

Now let η → 0. It follows that limn→∞Fn(t) ≤ Φσ(x). The proof that

limn→∞Fn(t) ≥ Φσ(x)

is completely analogous.
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