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Decay of Correlations for Certain Quadratic Maps�

L��S� Young�

Abstract� We prove exponential decay of correlations for �f� ��� where f belongs in a positive

measure set of quadratic maps of the interval and � is its absolutely continuous invariant

measure� These results generalize to other interval maps�

Consider a dynamical system generated by a map f � M � M preserving a probability

measure �� and let ��� � M � R be observables� Mixing properties of the dynamical

system are re�ected in the decay of correlations between � and � � fn as n � �� More

precisely� we say that �f� �� has exponential decay of correlations for functions belonging

in a certain class X if there is a number � � � s�t� for every ��� � X� there is a constant

C � C����� s�t� ����
Z
� � �� � fn�d��

Z
�d� �

Z
�d�

���� � C�n �n � � �

The main result of this paper is the following�

Theorem� Consider f
a
� ���� �� � de�ned by f

a
�x� � � � ax�� a � ��� ��� Then there is a

positive Lebesgue measure set 	 in parameter space s�t� if f � f
a
for a � 	� then

��� f has an absolutely continuous invariant measure � �this is a well known theorem

�rst proved by Yakobson �J��	

�
� �f� �� has exponential decay of correlations for functions of bounded variation	

��� the central limit theorem holds for f� � fngn��������� � � BV �

�The results in this paper are announced in the Tagungsbericht of Oberwolfach� June �����
�The author is partially supported by NSF�
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These results generalize to certain open sets of ��parameter families of unimodal maps�

Exponential decay of correlations has been proved for primarily two types of dynamical

systems� piecewise uniformly expanding maps of the interval with their absolutely contin�

uous invariant measures� and Axiom A di
eomorphisms with their Gibbs states� �See e�g�

�HK�� �Ry��� �Ru��� �Ru
��� These are by no means the only results� �See e�g� �BS�� �Z���

The main feature that is new here is that the maps we consider have singularities� and

that these singularities return arbitrarily close to themselves� We reduce the problem to

the expanding case by constructing a uniformly expanding map 
f that factors over f� 
f

acting on a set J that is the disjoint union of a countable number of intervals� We then

consider a function space on J with a norm that is a weighted combination of the L��

L� and total variation norms� and prove the existence of a gap in the spectrum of the

Perron�Frobenius operator associated with 
f �

The maps for which our results hold are those studied by Benedicks and Carleson in

�BC��� They have a very simple description� and are non�uniformly expanding in a con�

trolled way� We will recall in detail all of the relevant material from �BC�� � except the

proof of the theorem which says that these maps form a positive measure set in parameter

space�

This paper is organized as follows� Precise statements of our results are given in Section

�� Section 
 contains some background material for ��dimensional maps� In Section � we

prove the existence of absolutely continuous invariant measures and their mixing properties�

Sections � and � contain the proof of the decay of correlation result�

The author thanks M� Rychlik for helpful conversations�

�
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x�� Statements of results

We �rst state our results for the quadratic family x 	� ��ax� before proceeding to discuss

generalizations to other ��parameter families of interval maps�

Consider f
a

� ���� �� � de�ned by f
a
�x� � � � ax�� a � ��� ��� Let � � � be a very small

number that remains �xed throughout� say � �
�

���
� For 	 � �� let

	� � fa � ��� 	� �� � jfn
a
�j � e��n and j�fn

a
�
�
�f
a
��j � �����n �n � �g �

Benedicks and Carleson proved that Leb�	�� � � �	 � � �BC
�� These are the parameters

to which our results apply�

Theorem � �Existence of invariant measures�� 
 	
�
� � s�t� � a � 	�

�
� f � f

a
has

an invariant probability measure � with a density 
 that can be written as


 � 

�

 


�

where 

�
has bounded variation and

� � 

�
�s� � const�

�X
j��

������jpjs � f j�j �

The existence of absolutely continuous invariant measures under similar conditions has

been proved many times� See e�g� �J�� �BC��� �CE� plus �N�� �Ry
�� �BY� etc� The nature

of the density can be understood as follows� The dynamics of f consists essentially of an

expanding part and a contraction due to the quadratic singularity� The expanding part

gives rise to 

�
� while the contraction together with its subsequent iterates account for the

inverse square�root singularities in 

�
�

�



	

Theorem � �Properties of the absolutely continuous invariant measure��


	� � �� possibly � 	
�
� s�t� �a � 	�

�
� f � f

a
has the following properties�

�a� � in Theorem � is the only absolutely continuous invariant measure	

�b� �f� �� is exact	

�c� supp� � �f��� f�� and inf
x��f���f��


�x� � ��

We remark that �f� �� being exact in this setting is equivalent to �fn� �� being ergodic

�n � �� It is also equivalent to the natural extension of �f� �� being isomorphic to a

Bernoulli shift� �See �L���

Theorem � �Decay of correlations�� Let f be as in Theorem �� Then 
� � ��� ��

s�t� ��� � � ���� �� � R with bounded variation� there is a constant C � C��� �� s�t�

����
Z
� � �� � fn�d��

Z
�d� �

Z
�d�

���� � C�n �n � ��

Exponential decay of correlations has been proved for various classes of interval maps�

The piecewise uniformly expanding case is treated by Hofbauer and Keller �HK� and ex�

tended to allow for in�ntely many branches by Rychlik �Ry
�� Ziemian �Z� proved the same

result for a class of maps satisfying what is sometimes called �the Misiurewicz condition�

�M�� Our aim is to relax this condition su�ciently so that our results hold for a positive

measure set of parameters in the quadratic and other families�

Our proof of Theorem � consists of constructing an extension of f � ����� ��� �� � and

analyzing the spectral properties of the Perron�Frobenius operator associated with this

extended map� As noted in �K�� this knowledge of the spectrum gives us immediately

Theorem � �Central limit theorem�� Let f be as in Theorem �� and let � � ���� �� �

	






R be a function with bounded variation and
R
�d� � �� Then

� ��
�p
n

�
�Z

�
n��X
i��

� � f i
��

d�

�
�
�
�

is well de�ned� and if � � �� then �x � R

�

�
�p
n

n��X
i��

� � f i � x

�
� �p

���

Z x

��

e
� u�

��� du

as n���

Theorem � is proved in a similar setting in an unpublished work of Collet �C� using the

approach of �BS�� �C� also contains a slightly weaker version of Theorem ��

We now mention some generalizations of our results� Let I be an interval� and let

f� � I � be a unimodal map satisfying the Misiurewicz condition� That is� f� has negative

Schwarzian� it has no sinks� and if c is the critical point� then inf
n��

jfnc�cj � �� Let End��I�

denote the space of C� endomorphisms of I� Then there exist constants �� � � and 
� � �

�depending only on f�� s�t� for �most� smooth ��parameter families � � ���� ��� End��I��

if

	���� � fa � ��	� 	�j if f � ��a�� then jfnc� cj � e���n

and j�fn���fc�j � 
n� �n � �g �

then Leb�	����� � � �	 � �� �See �TTY� for details�� Our results carry over directly to ��

That is� Theorem � above holds �with di
erent constants�� and if f� satis�es �P�� in x
�
then Theorems 
� � and � are valid also�

In the rest of this paper we will consider only the quadratic family x 	� � � ax�� This

avoids carrying around constants that depend only on f��
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x�� Some properties of ��dimensional maps

In this section we try to isolate those properties of f � f
a
that are relevant to our discussion�

These are essentially the only properties that will be used�

The speci�c formula of f is immaterial to us� but we will use the fact that it is a C�

unimodal map with negative Schwarzian and nondegenerate critical point� The fact that

f is symmetric about � simpli�es our notation a little� but this is a totally unnecessary

assumption� What is important is that f has certain expanding properties� which we

summarize below as properties �P�� and �P
��

Let ���� �� be a small neighborhood of the critical point� We distinguish between the

dynamics of f outside of ���� �� and that of orbits beginning in ���� ��� �P�� concerns

the former�

�P�� 
M �Z
 and 
 � � s�t�

�i� if x� fx� � � � � fM��x �� ���� ��� then j�fM �
�xj � 
M 	

�ii� for any k �Z
� if x� � � � � fk��x �� ���� �� and fkx � ���� ��� then j�fk��xj � 
k�

�P�� holds for f
a
for all a su�ciently near 
� First notice that it is satis�ed by f

�
� One

way of seeing this is to conjugate f
�
to its piecewise linear model� �For a more general

approach see �M� and the appendix of �CE��� The rest follows because �P�� is an open

condition�

For x � ���� ��� f �x can� of course� be arbitrarily small� �P
� guarantees a period during

which �f j ��x recovers� Suppose � � e�k� � Let Ik � �e��k
��� e�k� for k � k
�
� and �I�k

for k � �k
�
�

�P
� There is a function p � ���� ��� f�g �Z
� constant on Ik and increasing with jkj�

�



�

s�t�

�i� �
�
k � p�x� � �k for x � I�k	

�ii� j�f j ���fx�j � constj�f j ���f��j � const�� � ��j �j � p�x�	

�iii� j�fp��xj � 
p for some 
 � � �independent of x��

�P
� holds for all f
a
with a � 	�� 	 su�ciently small� This property is due to Benedicks

and Carleson� and the assertion in the last sentence is proved in �BC�� and �BC
�� Since

the main construction in our paper is based on this property� let us recall the ideas in their

proof�

For x �� � � ���� ��� let p��x� � maxfp �Z� jf jx� f j�j � e����j �j � pg� First we claim
that 
C� �independent of �� s�t� �y � �fx� f�� and j � p�x��

�

C�
�
���� �f j ��y

�f j ���f��

���� � C��

This is true because the quotient in question is 
 exp
j
�
k��

��k� where

j��k�j �
����f ��fk��y�� f ��fk��

f ��fk��

���� � e����k

e��k
�

Using this distortion estimate� we see that

ax� � �

C�
�� � ��p��� � jfp� ��� x�j � ��

giving p
�
�x� � �k for x � I�k provided k is su�ciently large� The lower bound for p

�
�x� is

obtained from

ax� � �p��� � e����p� �

Finally� at time p
�
� we must have

ax� � j�fp�����yj � e
����p

�

�






for some y � �fx� f��� This gives

j�fp� ��xj � �ajxj � �

C�

e����p�

ax�
� �

C�
e

p
�
�
����p

�
�

which is � 
p� for some 
 � � provided p
�
is reasonably large� For x � Ik� let

p�x� � inf
y�Ik

p
�
�y��

The number p�x� is called the �bound period� of x� In x� we will use the notion of �total

bound period�� which is de�ned as follows� For x � ���� ��� �p�x� is the smallest j � � s�t�

�i with � � i � j� if f ix � ���� ��� then p�f ix� � j� It is easy to see that �p�x� � �k for

x � I�k� because if f ix � ���� �� for some i � p�x�� then

jf ixj � jf i�j � jf i�� f ixj
� jf i�� f ixj��

�
	
ax� � �

C�
�� � ��i��


 �
�

� x
�
� �

so p�f ix� � k�

�P�� and �P
� together are su�cient for proving Theorem �� For Theorems 
�� we need

an additional topological mixing condition�

�P�� For every interval I � ���� ��� 
n � n�I� s�t� fnI � �f��� f���

Lemma ���� �P�� holds for all f
a
with a � 	�� 	 su�ciently small�

Proof� Let f � f
a
� a � 	�� First we prove that �I � ���� ��� 
n

�
� n

�
�I� s�t� fn�I � Ik�

or I�k� � In light of �P��� some f jI must intersect ���� ��� If f jI is completely contained

in two adjacent Ik�s� keep iterating� and note using �P
� that jfp�f jI�j �� jf jIj� p � p�x�






�

for x � f jI� After �nitely many returns to ���� ��� there must exist j
�
and k

�
� Z


s�t� f j�I � Ik� or I�k� � Consider f jIk� � j � �� �� � � � � and let j
�
be the �rst time �after

the bound period of x � Ik�� s�t� f jIk� � some Ik� Since jf j�Ik�j �� jIk� j� f j�Ik�

must contain some Ik� or I�k� with � � k� � k�� We then consider f jIk� and repeat the

argument until some f jIkn � Ik� or I�k� �

Next we argue that there is an n
�
� Z
 s�t� for all a su�ciently near 
� if �x

a
is the

�xed point of f
a
in ��� ��� then fn�

a
Ik� � �x

a
� This is obviously true for a � � and is an

open condition� Finally� observe that for f � any f
a
if �I is an interval containing �x� then


n
�
� n

�
�
�I� s�t� fn� �I � �f��� f��� This completes the proof� �

x�� Existence and properties of absolutely continuous invariant measures�

Proofs of Theorems � and �

Our �rst goal in this section is to prove Theorem � assuming �P�� and �P
�� The proof is

straightforward� Extend p to p � ���� �� �Z
 by de�ning p�x� � � for x �� ���� ��� Consider
the return map R � ���� �� � given by R�x� � fp�x��x�� Then some power of R is piecewise

uniformly expanding� Piecewise uniformly expanding maps have absolutely continuous

invariant measures �acim� because their Perron�Frobenius operators do not increase total

variation by very much� An acim for f is then constructed from that for R�

More formally� let � be the coarsest partition of ���� �� into intervals on which p is

constant� De�ne g � ���� �� � R by

g�x� �

� ��� �
R��x�

��� if x � interior�B�� some B � �

� otherwise�

The Perron�Frobenius operator associated with R� written P
R
or simply P when there is

�



��

no ambiguity� is de�ned to be

P ����x� ��
X

y�R��x

g�y���y��

Note that if �n �� � � R��� � � � � �R�n
��� and gn�x� �� g�Rn��x� � � � g�x�� then

Pn
����x� �

X
y�R�nx

gn�y���y��

Lebesgue measure is denoted by m throughout this paper� L�� k � k� etc� in this section

refer to L�
����� ��� m�� If I is an interval� let V

I
��� denote the total variation of � on I�

If I � ���� ��� then we simply write V ���� Say � � BV if V ��� � �� It is notationally

convenient to assume that each B � � or �n is closed� for this allows us to write

V �Pn�� �
X
B��n

V ��gn� � V ��gn��

Lemma ���� ��� kgnk� � � as n���

�
� V gn �� �n�

Proof� ��� follows immediately from �P�� and �P
�� We prove �
� with n � �� Let

B � �b�� b�� � �� Since Sf � �� gj�b��b�� has exactly one minimum� So

V
B
g � �kg�

B
k� 
 lim

x�b


�

g�x� 
 lim
x�b

�

�

g�x�

� �kg�
B
k��

Recall that on fp � jg� jR�j � 
j for some 
 � �� So

V g � V���� ���g 
 V���� ��g 
 �

�X
j��


�j ���

��



��

It is easy to check inductively that V g ��� V gn �� �n� �

The idea that the Perron�Frobenius operator shrinks variation for piecewise uniformly

expanding maps is due to Lasota and Yorke �LY�� Assuming the additional condition that

V g � �� Rychlik �Ry�� extended their result to the case where f may have an in�nite

number of uniformly expanding pieces�

Lemma ���� �following �Ry���� Let � � BV � Then

sup
n
V �Pn�� ���

Proof� Choose N s�t� kg
N
k� � �

�� � Since the local oscillation of g
N
at each point is � �

�

and V g
N
��� we can choose a �nite partition �� s�t�

max
B���

V
B
g
N
�

�

�
�

Then

V �PN�� � V ��g
N
�

�

X
B���

V
B
��g

N
�

�
X
B���

�V
B
� � kg

N
k� 
 k��

B
k� � V

B
g
N
��

Using the fact that

k��
B
k� � �

m�B�

����
Z
B

� dm

���� 
 V
B
��

we get

V �PN�� �
X
B���

	
V
B
� � �kg

N
k� 
 V

B
g
N
� 


V
B
g
N

m�B�

����
Z
B

� dm

����


�

��



��

which is � �
�V ��� 
Ck�k

�
with C � max

B���

V
B
g
N

m�B� � Since kP�k� � k�k
�
� it follows from this

that

V �P kN�� �
�
�

�

�k
V ��� 
 constk�k�

for all k� �

Proof of Theorem �� Let � � �
�
� Since V

�
�
n

Pn��
i�� P

n
���

�
� some C �n� a subsequence

of these functions converges in L� to some �
�
� BV � Clearly� �

�
dm is an R�invariant

probability measure� Let Pf denote the Perron�Frobenius operator associated with f � and

let

�
�
��

�X
k��

P k
f



�
�
� �fp�kg

�
�

Then �
�
dm is a �nite f�invariant measure� �nite because

P�
k�� k��

k
�
mfp � kg � ��

�See �P
��� Normalizing �
�
dm� we obtain our desired acim �� To see that the density of

� has the properties as claimed� let 

�
� �

�
�
R
�
�
dm� Since

Pf


�
�
� �fp��g

�
�s� � constk�

�
k�pjs� �j �

�P
� �ii� tells us that for k � ��

P k
f



�
�
� �fp�kg

�
�s� � constk�

�
k
�
�� � ����k���p

js � fk�j �

�

Next we prove Theorem 
 assuming �P�� � �P��� Note that �P�� and �P
� imply that f

has a positive Lyapunov exponent at �� a�e� x� First we recall a theorem of Ledrappier�

Theorem �L�� Let h � ���� �� � be a C�
� piecewise monotonic map with non�at critical

points� and let � be an acim with a positive Lyapunov exponent a�e� Then a�e� ergodic

component of h is an acim� Moreover� if �hn� �� is ergodic �n � �� then the natural

extension of �h� �� is isomorphic to a Bernoulli shift�

��



��

Our next proposition probably has some independent interest� It is a corollary to the

proofs in �L��

Proposition ���� Let h � ���� �� � be a C�
� piecewise monotonic map with k critical

points� all of which non�at� Let � be an acim with a positive Lyapunov exponent a�e� Then

��� � is the sum of at most k ergodic acim�s	

�
� each ergodic component of � is supported on a �nite number of intervals� on which

the density is � � a�e�	

��� if h is topologically mixing� then �h� �� is measure
theoretically mixing� and hence

Bernoulli�

Proof of Proposition ���� Let J�� � � � � Jk be the intervals of monotonicity of h� It is

shown in �L� that if we view the natural extension �
�h� ��� of �h� �� as living on

� � f�x� a� � ���� ��� f�� � � � � kgN j 
x�� x�� � � � � ���� �� with x� � x�

h�xi� � xi�� and xi � Jaig�

then local unstable manifolds of �h are canonically identi�ed with subintervals of ���� ��

and acim�s on ���� �� with positive Lyapunov exponents correspond to measures on � with

smooth coniditional measures on unstable manifolds�

Let �
i
be an ergodic component of �� It follows from the discussion above that at �

i
� a�e�

x� there is an interval J ix containing x on which the density of �
i
is � � a�e� Let J i�� J

i
�� � � �

be the maximal intervals on which the density of �
i
is � � a�e� By the ergodicity of �

i
�

there can only be a �nite number of these� Moreover� it is not possible for hjJ ij to be �� �

for all j� because h has a positive Lyapunov exponent and the J ij �s cannot grow inde�nitely

in length� So at least one of them must get �folded�� i�e� 
j � j�i� s�t� J ij contains a critical

point in its interior� This puts a bound on the number of ergodic components�

Assertion ��� follows from what we have said and the last statement in the theorem we

��



�	

quoted from �L�� �

Proof of Theorem �� Since 

�
� BV � there is an interval I � ���� �� s�t� inf

x�I

�x� � �� By

virtue of �P��� we have inf
x��f���f��


�x� � �� The rest follows immediately from Proposition

��� and �P��� �

x�� Decay of correlations� Main steps in the Proof of Theorem �

Let f be as in Theorem 
�

Step I� Construction of an extension of f � ����� ��� �� ��

Recall that there is a function p � ���� ��� f�g �Z
 with the following properties�

� p�x� � � �x �� ���� ���

� �
�k � p�x� � �k �x � I�k�

� P �x� � as jxj � ��

� 

 � � s�t� �x �� � � ���� ��� j�fp��xj � 
p�

For reasons to become obvious shortly� we will choose 
 with 
e�
�
� � ��

Our new space J is the disjoint union of a countable number of intervals J�� J�� � � � �

where J� � ���� �� and for k � �� Jk has length 

�
� �k���mfp � kg� Note immediately that

�X
�

m�Jk� � � 


X
k��



�
� �k��� � � min

n
�� e�

k

�

o
���

�	



�


We now de�ne a map 
f � J �� Let

J�� � ���� ���� J�
� � ���� ��� J


� � ��� ���

On J�� � J

� � let


f � f in the sense that f �J�� � � J�� The interval J�
� is mapped a�nely

onto J�� with a magni�cation of 

�
� � Assume now that 
f has been de�ned on J�� � � � � Jk���

We again write Jk � J�k � J�
k � J


k where J�
k �


fk��fp � kg� The map 
f then takes

J�
k a�nely onto Jk
�� magnifying it by 


�
� � and takes J�k into J� in such a way that

�x � fp � kg � J�
� �


fpx � fpx� Note that on J�k � j 
f �j � 

�
�k�

Clearly� there is a projection � � J � ���� �� s�t� � � 
f � f � ��

Next observe that � lifts to an 
f �invariant probability measure 
� on J with density



 ��

�X
k��

P k

f





�
� �fp�kg

�
�

where 

�
is as in Theorem �� We mention a few relevant properties of 

� For a function

� � J � R or C � let us use the notation �
k
to denote �j

Jk
� Then 



k
� BV �k and

k 


k
k
�

� 
�
�
� �k���k 



�
k
�
� Since p � � on ���� ��� the support of 

 is contained in

�f��� f�� � S
k��

Jk� Henceforth let us change J� to �f��� f��� Moreover� if I � J� is an

interval� then 
n � n�I� s�t� 
fnI contains the �xed point of 
f in J

� � �This follows from

the corresponding statement for f �� So the same argument as in the last section tells us

that inf
x�J�




�
�x� � ��

Lemma ���� �

f � 
�� is exact�

Proof� Let 
� be the partition of J into fJ���k g� We haveH
��

�� �� because const e��k �


��J�
k � � const e�

k

��k� and 
��J�k � is either � or has similar bounds� Since 
f is essentially

expanding� 
� is clearly a generator� So if 
� � �

�

f�
�
�� � �


f� 
�� is the natural extension

�




��

of �

f � 
��� and B is the Borel ��algebra on J � then 
�

��

�
�

n��


f�nB

�
is contained in the

Pinsker ��algebra of �

�

f�
�
�� ��Ro� �
���� It therefore su�ces to prove the triviality of the

Pinsker ��algebra of �
�

f �
�
���

We will show that �

�

f �
�
�� is measure�theoretically isomorphic to �

�f� ���� the natural

extension of �f� ��� �See Theorem 
�� Let 
x � �
x
�
� 
x

�
� � � � � be a history of �


f � 
�� and

de�ne ��
x� � x � �x
�
� x

�
� � � � � by letting x

i
� � 
x

i
� Clearly ���

�
�� � ��� since ���

�
�� is

�f �invariant and projects onto �� So all we have to do is to verify that � is �� � a�e�

Let x � �x
�
� x

�
� � � � � be a typical element of � �f � ���� We say that x

i
is a �marker� for x

if x
i
� ���� �� and �j � i s�t� �p�x

j
� � j � i� �p being the total bound period de�ned in x
�

If x
i
is a marker� and ��
x� � x� then the only possibility for 
x

i
is that 
x

i
� x

i
� J�� Hence

�
��fxg contains at most one point if x has in�nitely many markers�

Assume for simplicity that x
�
� ���� ��� FromTheorem � we know that �j �

�
�e� j

� � e�
j

�

�
�

�� so by the Borel�Cantelli Lemma� 
k�x� � Z
 s�t� x
j
��
�
�e� j

� � e�
j

�

�
�j � k�x�� This

guarantees that for j � k�x�� �p�x
j
� � j� Suppose that x

�
is not a marker� Let j

�
� � be s�t�

xj� � ���� �� and p�xj�� � j
�
� Then either xj� is a marker� or 
j

�
� j

�
s�t� xj� � ���� ��

and p�xj�� � j
�
� j

�
� If this process continued� there would be a j

n
� k�x� s�t� �p�xjn � � j

n
�

contradicting our choice of k�x�� �

Step II� The Perron�Frobenius operator�

For the rest of this paper let m denote Lebesgue measure on J � and let k � k
�
� k � k

�

denote the L� and L� norms wrt m on J � For � � J � C � we de�ne

V ��� �

X
k

V ��
k
��

��



��

where V ��
k
� is the total variation of � on Jk� Consider the function space

X � f� � J � C jV ��� ��� k�k
�
��� k�k

�
��g

with norm

k�k �� V ��� 
 k�k
�

 	k�k

�
�

where 	 � � is a small number to be determined later� �X� k � k� is a Banach space�

As usual� the Perron�Frobenius operator 
P associated with 
f is de�ned to be


P ��� �

X
y� 
f��x

��y�
g�y�

where


g�y� �
�

j 
f �yj
except possibly at the end points of 
� � fJ���k g� For purposes of estimating variation it

is convenient to adopt the following convention� For B � 
�n and a � �B� we consider a

as belonging in B if for some j� � � j � n� 
f jB � some J�k and 
f ja � �J�k 	 otherwise

we say a �� B� The advantage of this convention is that if we let 
g � � on �J�k and


g
n
�x� � 
g� 
fn��x� � � � 
g�x�� then we can estimate V �


Pn�� by

V �

Pn�� �

X
B�
�n

V
B
��
g

n
�

�which is clear�� and at the same time have

X
B�
�n

V
B
�
g
n
� ���

�See Sublemma ��� and cf� �Ry����

��



�


The next lemma contains the main estimates in this paper� Its proof is postponed to x��

Lemma ���� 
P � X � X is a bounded linear operator whose spectrum

�� 
P � � �
�
� f�

�
� � � � � �

n
g

where �
�
� fjzj � �

�
g for some �

�
� � and �

i
� S� �i� Moreover� each �

i
is a smiple pole�

and the corresponding projection has a �nite dimensional range�

Step III� Finishing the proof�

First we use the exactness of �

f � 
�� to prove that �� 
P � � S�

� f�g� Let � � X be s�t�


P ��� � �� for some � � S�� Since 

 � �� we can write � � � 

 for some �� Note that

� � L�
� 
��� for

k�
k
k� � k�k

�

min 


k

� k�k� � 

�
� �k���

min 


�

�

so that Z
��d
� � const

X
k


ke�
k

� �

which is �� by the upper bound we imposed on 
�

The rest of this argument is quite standard �see e�g� �HK��� We let U � U 
f be the

operator on L�
� 
�� de�nd by U ��� � � � 
f � Then U�� � �� �in the sense of L�� because

hU��� �i �
Z

�
�� � 
f �� 

dm

�

Z
�� � 
P �� 

�dm �

�

P �� 

�




� �

�
� h��� �i

for every � � L�
� 
��� From this and j�j � � we deduce that U� �

���� which means that

� � �nUn� is measurable wrt 
f�nB� Hence � � some constant c a�e� by Lemma ����

Thinking of 
P as an operator on L�
�m�� one sees immediately that � � ��

�




��

We have shown that � � c 

 a�e� To see that � � c 

 as elements of X� use Lemma

���� This together with Lemma ��
 proves that 
P �

P� 



P�� where

P�


P� �

P�


P� �

�� �� 
P�� � fjzj � �
�
g� and 
P���� � c

�


 for some c

�
� C � In fact� c

�
�
R
�dm� becauseR


P��dm �
R


Pn
� �dm

large n� R

Pn�dm �

R
�dm�

Finally we return to the original dynamical system f � ����� ��� �� �� Observe that

� � BV ����� ��� lifts to 
� � J � R with 
� 

 � X �

V � 
� 

� �
X
k

�
V � 
�

k
�k �


k
k
�


 V � 


k
�k 
�

k
k
�

�
�
X
k

h
�V ��� � 
��

� �k���k 


�
k� 
 
�

�
��k���V � 



�
� � k�k�

i
���

We have thus shown that ��� � � BV ����� ����

����
Z

�� � fn��d��
Z

�d� �
Z
�d�

����
�

����
Z

�

� � 
fn� 
�d
��

Z

�d
� �

Z

�d
�

����
�

����
Z


�

	

Pn

� 
�

��
�Z


� 

dm

�






dm

����
� m�J � � k�k

�
� C��� ���n for some �

�
� � � ��

This completes the proof� ��

x	� Spectral properties of the Perron�Frobenius operator

The purpose of this section is to prove Lemma ��
� Recall that our norm consists of a

total variation part� an L��part� and an L��part� Roughly speaking� the variation part is

contracted by 
P 	 the L��part does no harm	 and the L��part is needed to control what

happens on the Jk�s for k large�

��



��

�From here on we will be working exclusively with 
f � J �� So for notational simplicity

let us drop all the ��s in 
f � 
�� 
P etc� The following line of argument is also fairly standard�

Lemma 	��� ��� P is a bounded operator on X	

�
� 
N �Z
 and R � � s�t� �� � X�

kPN�k � �

�
k�k 
Rk�k

�
�

Using Lemma ���� and remembering that kP�k
�
� k�k

�
� one deduces immediately that

sup
n
kPnk ��� This gives ��P � � fjzj � �g�

Lemma 	��� For N su�ciently large� there is a �nite rank operator Q with kPN�Qk �
��

This second lemma tells us that outside of some disk of radius � �� ��P � consists of at

most a �nite number of points �
�
� � � � � �

�
� and that the projection corresponding to each

�
i
has a �nite dimensional range ��DS� VIII ��� No �

i
� S� can be a pole of order � �� for

that would violate sup
n
kPnk ��� This completes the proof�

Sublemma 	��a� sup
B��N

VB�g
N
� �� �N �

Proof� Since jf �xj � � �x and f maps each element of � to at most � elements of �� we

have

X
B��N

B	J�

V
B
�g
N
� � �

N � ���N �

�See the proof of Lemma ����� Next consider B � �N with B � Jk� k � �� If f jB �

��



���
�
i��

Ji

�
�j � N � then V

B
g
N

� �� If not� then j�fN �
�xj � �N


�
� �k����x � B� giving

X
B��n

B	Jk

V
B
�g
N
� � �

N � ���N � 
��
� �k����

�

We now choose and �x an N �Z
 with kg
N
k
�
� �

���
and 
�

N

� � �
��
�

Sublemma 	��b� For every 	 � �� 
R� � R��N� 	� s�t� �� � X�

V �PN�� � �

��
V ��� 
R�k�k� 


�

��
	k�k

�
�

Proof�

V �PN�� �
X
B��N

V
B
��g

N
�

�
X
B

kg
N
k�VB ��� 


X
B

k��
B
k�VB �g

N
��

The �rst term is � kg
N
k�V ���� and the second term is estimated as follows� For K �Z
�

X
B��N

B	
S

k�K
Jk

V
B
�g
N
� � k��

B
k�

�
X

V
B
�g
N
�

�
�

mB

����
Z
B

�dm

���� 
 V
B
���

�

�
�
max
B

V
B
�g
N
�

�
�
�X

B

V
B
���

�



�
max
B

V
B
�g
N
�

mB

�
�
�X

B

����
Z
B

�

����
�

� 

�kg

N
k�
� � V ��� 
R��Kk�k�

��



��

where R��K is a constant depending on K� Choose K s�t�

X
B��N

B	
S

k�K
Jk

V
B
�g
N
� �

�

��
	�

�

Sublemma 	���c� � su�ciently small 	 � �� 
R� � R��N� 	� s�t�

	kPN�k� � �

��
V ��� 
R�k�k� 


�

��
	k�k��

Let us explain the idea of the lemma� assuming N � �� A formal proof will follow� We

wanted to say that kP�k� � k�k�� Clearly� k�P�� � � 

k��

Jkk� � 
�
�
� k�k�� but for �P��

�

all we can say is that k�P��
�
k
�
� Ck�

�
k
�


 �
P
k��


�
�
� �k���k�

k
k
�

for some C� Choose K�

s�t� �
P

k�K�


�
�
� �k��� is small� For � � k � K�� we can write k�

k
k� � V ��

k
�
 j R �

k
j�m�Jk��

Together this gives us

kP�k
�
� const � �V ��� 
 k�k

�
� 


�

�

�
� 
 small

�
� k�k

�
�

which explains the 	�weight in the L��part of the norm k � k�

Proof of Sublemma ���c� Since

sup
k�N

k�PN��
k
k
�
� 
�

N

� k�k
�
� �

��
k�k

�
�

we only have to consider �PN��
k
for k � �� � � � �N � Let N

�
be a large number to be speci�ed

shortly� De�ne

M
�
��� � �

�
�X
k�N�


�
k

�

�
A k�k��

M
�
��� � maxfk�

�
k� � � � � � k�N�k�g

and M � maxfM
�
� M

�
g�

��



��

One veri�es inductively that �j� k � N� k�P j��
k
k� � DjM where

D �
�

a�

 �N 
 �

X

�

k

� �

For instance�

k�P j
���
�
k
�
� �

a�
�DjM � 
 �N �DjM � 


�
�

X

�

k

�

�
M�

the three terms being contributions from �P j��
�
�
j
�
�
�P j��

i
and �

i�j
�P j��

i
respectively�

We have proved that

kPN�k� � max

n
�

��
k�k�� DNM ���

o
�

If �
��
k�k

�
is bigger� we are done� So suppose DNM ��� dominates� We choose N

�
and 	

s�t�

DN

�
��

X
k�N�


�
k

�

�
A � �

��
and ���	DN � �

���

and consider the following possibilities�

Case �� M � M
�
� We have kPN�k

�
� DNM

�
� �

��k�k� �

Case �� M � ���V ���� We have 	kPN�k� � �
���V ����

Case �� M � M
�
and M

�
� ���V ���� Let k � N

�
be s�t� k�

k
k
�

� M � Since

M � k�
k
k
�
� �

mJk
k�

k
k
�

 V ����

it follows that
��

���
M � �

mJk
k�

k
k
�

��



�	

and

kPN�k
�
�
�

���

��


N�
� DN

�
k�k

�
�

�

Proof of Lemma ���� We �x 	 acceptable with regard to ���c and take R � R� 
R� 
 ��

�Note that if we had de�ned k � k � V ��� 
 k � k
�
� then P could be unbounded� Take

��k�
�

�
mJk

�Jk �� �

Proof of Lemma ���� Let N � Z
 be as in Lemma ���� and let E � E�N be the

conditional expectation wrt the ��algebra generated by �N on J � De�ne

�Q��� � PN
�E��

and

Qj ��� � PN


E


� � �
k�jJk

��
�

We claim that for su�ciently large j� Q � Qj has the desired property�

Sublemma 	��a� kPN � �Qk � �
�� �

Proof� Let � � ��E�� so that �PN � �Q�� � PN��

�i� V �PN�� � kg
N
k� �

B��N
V
B
��� 
 max

B��N
V
B
�g
N
� � �

B
k� � �

B
k��

Since V
B
��� � V

B
��� and k��

B
k� � V

B
���� we conclude that

V �PN�� � �

���
V ����

�ii� kPN�k
�
� �

B��N
mB � V

B
��� � �

���
V ����

�	



�


�iii� The same argument as in ���c �case � cannot occur� gives

	kPN�k� � max

n
�

��
	k�k� �

�

���
V ���

o
�

�

To complete the proof of Lemma ��
� consider an arbitrary � � X� Write

kPN��Qj�k

�
�����PN � �Q�



��
k�jJk

� ���� 


����PN


��
k�jJk

� ���� �

The �rst term is � �
��k�k by ��
a� and the second term is

� �

�
k�k 
 R

������
k�jJk

����
�

by Lemma ���� Since

������
k�jJk

����
�

�
�
�X
k�j

mJk

�
A � k�k� � �

	

�
�X
k�j

mJk

�
A � k�k�

we have kPN��Qj�k � �
�k�k for su�ciently large j� �

Note added after completion of manuscript� The author has heard that G� Keller and

T� Nowicki recently obtained some related results�

�
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