Decay of Correlations for Certain Quadratic Maps'

L.-S. Young?

Abstract. We prove exponential decay of correlations for (f, p), where f belongs in a positive
measure set of quadratic maps of the interval and p is its absolutely continuous invariant

measure. These results generalize to other interval maps.

Consider a dynamical system generated by a map f : M — M preserving a probability
measure y, and let ¢,¢ : M — R be observables. Mixing properties of the dynamical
system are reflected in the decay of correlations between ¢ and ¥ o f™ as n — oo. More
precisely, we say that (f, u) has ezxponential decay of correlations for functions belonging
in a certain class X if there is a number 7 < 1 s.t. for every ¢, € X, there is a constant

C = C(p, ) s.t.

‘/@-(@bof")dﬂ—/@dﬂ-/;z)dﬂ‘gcr" Yn >o.

The main result of this paper is the following:

Theorem. Consider f, : [—1,1] O defined by f,(x) =1 — ax?, a € [0,2]. Then there is a

positive Lebesque measure set A in parameter space s.t. if f = f fora e a, then

(1) f has an absolutely continwous invariant measure p (this is @ well known theorem
first proved by Yakobson [J]);
(2) (f, ) has exponential decay of correlations for functions of bounded variation;

(3) the central limit theorem holds for {p o f"}n=12,.., ¢ € BV.

I The results in this paper are announced in the Tagungsbericht of Oberwolfach, June 1990.
?The author is partially supported by NSF.



These results generalize to certain open sets of 1-parameter families of unimodal maps.

Exponential decay of correlations has been proved for primarily two types of dynamical
systems: piecewise uniformly expanding maps of the interval with their absolutely contin-

uous invariant measures, and Axiom A diffeomorphisms with their Gibbs states. (See e.g.

[HK], [Ry1], [Rul], [Ru2]). These are by no means the only results. (See e.g. [BS], [Z].)

The main feature that is new here is that the maps we consider have singularities, and
that these singularities return arbitrarily close to themselves. We reduce the problem to
the expanding case by constructing a uniformly expanding map f that factors over f, f
acting on a set J that is the disjoint union of a countable number of intervals. We then
consider a function space on J with a norm that is a weighted combination of the L,
L' and total variation norms, and prove the existence of a gap in the spectrum of the

Perron-Frobenius operator associated with f.

The maps for which our results hold are those studied by Benedicks and Carleson in
[BC2]. They have a very simple description, and are non-uniformly expanding in a con-
trolled way. We will recall in detail all of the relevant material from [BC2] — except the
proof of the theorem which says that these maps form a positive measure set in parameter

space.

This paper is organized as follows. Precise statements of our results are given in Section
1. Section 2 contains some background material for 1-dimensional maps. In Section 3 we
prove the existence of absolutely continuous invariant measures and their mixing properties.

Sections 4 and 5 contain the proof of the decay of correlation result.

The author thanks M. Rychlik for helpful conversations.



§1. Statements of results

We first state our results for the quadratic family z +— 1 — axz? before proceeding to discuss

generalizations to other 1-parameter families of interval maps.

Consider f, : [—1,1] () defined by f, (x) =1 — az?, a € [0,2]. Let a > 0 be a very small

number that remains fixed throughout, say « = 10%. For & > o, let
Ac=fa€p—c2: [ffo]>e™® and |(fM)'(f, 0> @9 ¥Yn>o}.

Benedicks and Carleson proved that Leb(ac) >0 Ve > o [BC2]. These are the parameters

to which our results apply.

Theorem 1 (Existence of invariant measures). 3¢, >o0s.t. Ya € Acs f=1f, has

an invariant probability measure p with o density p that can be written as

P=pPt P

where p, has bounded variation and

00 -
0 < Po (5) < const. Z (1-9)

j=1 V |S _fj0| ‘

The existence of absolutely continuous invariant measures under similar conditions has
been proved many times. See e.g. [J], [BC1], [CE] plus [N], [Ry2], [BY] etc. The nature
of the density can be understood as follows. The dynamics of f consists essentially of an
expanding part and a contraction due to the quadratic singularity. The expanding part
gives rise to p , while the contraction together with its subsequent iterates account for the

inverse square-root singularities in p,,.



Theorem 2 (Properties of the absolutely continuous invariant measure).

deg > 0, possibly < e

s 8-t Vae Acs f=f, has the following properties:

(a) p in Theorem 1 is the only absolutely continuous invariant measure;
(b) (f, ) is ezact;

(C) suppld = [f207 fol and inf p(x) > 0.
z€[£20,f0]

We remark that (f, ) being exact in this setting is equivalent to (f™, u) being ergodic

Vn > o. It is also equivalent to the natural extension of (f, p) being isomorphic to a

Bernoulli shift. (See [L].)

Theorem 3 (Decay of correlations). Let f be as in Theorem 2. Then 37 € (0, 1)
s.t. Yo, ¥ :[—1, 1] — R with bounded variation, there 1s a constant C = C(p, ¥) s.t.

‘/@-(@bof")du—/@du-/;z;du‘ < Cr™ Vn>o.

Exponential decay of correlations has been proved for various classes of interval maps.
The piecewise uniformly expanding case is treated by Hofbauer and Keller [HK] and ex-
tended to allow for infintely many branches by Rychlik [Ry2]. Ziemian [Z] proved the same
result for a class of maps satisfying what is sometimes called “the Misiurewicz condition”
[M]. Our aim is to relax this condition sufficiently so that our results hold for a positive

measure set of parameters in the quadratic and other families.

Our proof of Theorem 3 consists of constructing an extension of f : ([—1, 1], p) O and
analyzing the spectral properties of the Perron-Frobenius operator associated with this

extended map. As noted in [K], this knowledge of the spectrum gives us immediately

Theorem 4 (Central limit theorem). Let f be as in Theorem 2, and let p : [—1, 1] —



R be a function with bounded variation and [ odu=o0. Then

[\l

18 well defined, and if o > o, then Vo € R

n—1 z _
1 ; 1 252
— E ofl <y — e du
a { Vn — pof } oo /_Oo

as n — oQ.

Theorem 4 is proved in a similar setting in an unpublished work of Collet [C] using the

approach of [BS]. [C] also contains a slightly weaker version of Theorem 3.

We now mention some generalizations of our results. Let I be an interval, and let
fx : I O be a unimodal map satisfying the Misiurewicz condition. That is, f, has negative
Schwarzian, it has no sinks, and if ¢ is the critical point, then 7ix;fo|f"c— c¢| > 0. Let End®(])
denote the space of C* endomorphisms of I. Then there exist constants a, > 0 and A\, > 1
(depending only on f) s.t. for “most” smooth 1-parameter families  : (—1, 1) — End®(I),

if

Ao ={a € (—¢, o it f=n(a), then [fTc—c]>e "

and |(f™M (forl > A} Vn >1},

then Leb(a.(m)) >0 Ve > 0. (See [TTY] for details.) Our results carry over directly to 1.
That is, Theorem 1 above holds (with different constants), and if f, satisfies (P3) in §2,

then Theorems 2, 3 and 4 are valid also.

In the rest of this paper we will consider only the quadratic family = + 1 — axz?. This

avoids carrying around constants that depend only on f,.
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§2. Some properties of 1-dimensional maps

In this section we try to isolate those properties of f = f, that are relevant to our discussion.

These are essentially the only properties that will be used.

The specific formula of f is immaterial to us, but we will use the fact that it is a C?
unimodal map with negative Schwarzian and nondegenerate critical point. The fact that
f 1s symmetric about o simplifies our notation a little, but this is a totally unnecessary
assumption. What is important is that f has certain expanding properties, which we

summarize below as properties (P1) and (P2).

Let (=06, 0) be a small neighborhood of the critical point. We distinguish between the
dynamics of f outside of (=6, 6) and that of orbits beginning in (—¢, ¢). (P1) concerns

the former:

(P1) AM € Z* and X\ > 1 s.t.
() if x, fo,..., fM e ¢ (=6, ), then |(fM)z] > A\M ;
(ii) for any k € Z7F, if x,... , f* " e & (=6, &) and fFx € (=6, &), then |(f¥)'z] > .

(P1) holds for f, for all a sufficiently near 2. First notice that it is satisfied by f,. One
way of seeing this is to conjugate f, to its piecewise linear model. (For a more general

approach see [M] and the appendix of [CE].) The rest follows because (P1) is an open

condition.

For x € (—¢, 6), f'x can, of course, be arbitrarily small. (P2) guarantees a period during
which (f7)'x recovers. Suppose § = e~ k0. Let I = (e~ %D ek for k > k
for k£ < —ko.

and —1_;

0

(P2) There is a function p: (=6, &) —{o} — ZT, constant on Ij and increasing with |k,

6



s.1.
(1) %k < p(x) < 4k for x € Iyy;
(ii) () (fo)] & const|(f) (f0)] = const(1 - 9)! Vj < p(a);
(iii) |(f")'x| > AP for some X > 1 (independent of x).

(P2) holds for all f, with a € aA., ¢ sufficiently small. This property is due to Benedicks
and Carleson, and the assertion in the last sentence is proved in [BC1] and [BC2]. Since
the main construction in our paper is based on this property, let us recall the ideas in their

proof:

For o #0 € (=6, 6), let py(x) = max{p € Z: |fiz — flo| < e71997 Vj < p}. First we claim
that 3Cy (independent of 6) s.t. Yy € [fx, fo] and j < p(a),

=~ “0-

I
S S‘ (fN'y
(f'(fo)

Co

This is true because the quotient in question is ~ exp ké O(k) where
=1

Vopk—1,. gt gk —10ak
oy = | = P ‘
fl(fko) e—ak
Using this distortion estimate, we see that
az? =@ -9Pol < |fPoo, 2] <1,
Co

giving p(z) < 4k for @ € I1y provided k is sufficiently large. The lower bound for p, () is

obtained from

2 4po—l > e—lOopo )

ax

Finally, at time p,, we must have

at (o] = 0

7



for some y € [fz, fo]. This gives

—10ap )
1 e 0 2 3

po ! > L L 4
[(ff0)'z] > 2alz] Co a2 ,

—lOapo

which is > AP0 for some A > 1 provided p, 1s reasonably large. For x € I, let

r) = inf .
P() = inf Py(y)

The number p(x) is called the “bound period” of x. In §4 we will use the notion of “total
bound period”, which is defined as follows: For « € (=6, 9), p(x) is the smallest j > o s.t.
Vi with o <4 < j,if fla € (=6, &), then p(fiz) < j. It is easy to see that p(x) < 6k for

x € Iiy, because if fiz € (=6, 6) for some 7 < p(x), then

Fiz] > | o] — |fio — fiaf
> |flo— fiz|d

so p(f'a) < k.

(P1) and (P2) together are sufficient for proving Theorem 1. For Theorems 2-4 we need

an additional topological mixing condition:
(P3) For every interval I C[—1, 1], In =n() s.t. f*I D [f?0, fo].
Lemma 2.1. (P3) holds for all f, with a € A, ¢ sufficiently small.

Proof. Let f = f,, a € A.. First we prove that VI C [—1, 1], In, = n () s.t. f"0I D Iy,
or I_g,. In light of (P1), some 7T must intersect (—é, &). If f/T is completely contained
in two adjacent I;’s, keep iterating, and note using (P2) that |fP(f/ )| >> |f'I|, p = p(x)

8
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for © € f/I. After finitely many returns to (—é, ¢), there must exist J, and k€ 7+
st. fI D I, or Iy, . Consider ijkl, J =1, 2,...,and let j, be the first time (after
the bound period of x € Ikl) s.t. ijkl D some I;. Since |fj2Ik1| >> |Ik1|, fj2Ik1
must contain some Ig, or I, with 0 < ko < k. We then consider fjsz and repeat the

argument until some fjfkn D Ik, or I_j,.

Next we argue that there is an n, € ZT s.t. for all a sufficiently near 2, if @_ is the

1
fixed point of f, in (0, 1), then f"1 Iy > &,. This is obviously true for ¢ = 2 and is an
open condition. Finally, observe that for f = any f, if I is an interval containing #, then

dn, = nz(f) s.t. f721 D f%0, fo. This completes the proof. [ |

63. Existence and properties of absolutely continuous invariant measures:

Proofs of Theorems 1 and 2

Our first goal in this section is to prove Theorem 1 assuming (P1) and (P2). The proof is
straightforward: Extend pto p: [—1, 1] — Z™ by defining p(x) = 1 for x ¢ (=6, é). Consider
the return map R : [—1, 1] (9 given by R(x) = f?*)(z). Then some power of R is piecewise
uniformly expanding. Piecewise uniformly expanding maps have absolutely continuous
invariant measures (acim) because their Perron-Frobenius operators do not increase total

variation by very much. An acim for f is then constructed from that for R.

More formally, let 3 be the coarsest partition of [—1, 1] into intervals on which p is

constant. Define ¢ : [—1, 1] — R by

‘ 1
" (2)
g(x) =

0 otherwise.

if x € interior(B), some B € 3

The Perron-Frobenius operator associated with R, written P, or simply P when there is



10

no ambiguity, is defined to be

Py = > gwew.
yeR-1z

Note that if 3% =3V RV --- VR "3 and ¢g,(2) = g(R" 1x)---g(z), then

PY @)= Y gaey).
yER—"x

Lebesgue measure is denoted by m throughout this paper. L', |- |1 etc. in this section
refer to L'((—1, 1], m). If I is an interval, let V,(p) denote the total variation of ¢ on I.
If I =[—1, 1], then we simply write V(p). Say ¢ € BV if V(p) < co. It is notationally

convenient to assume that each B € # or 8" is closed, for this allows us to write

VIP"e) < Y Viegn) = Viegn.
Bepn

Lemma 3.1. (1) ||gn]lcc — 0 as n — oco.
(2) Vgn < oo Vn.

Proof. (1) follows immediately from (P1) and (P2). We prove (2) with n = 1. Let

B = b1, bs] € 3. Since Sf <o, gls, p,) has exactly one minimum. So

Vag < 2llg1plloc + tim g+ lim_g(a)

x—>b1 Z—>b2

< 4flg1, oo

Recall that on {p =j}, |R'| > M for some A > 1. So

Vg < V[—l, -89 + V[—é, 119 + SZA_j < 00.

J=1

10
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It 1s easy to check inductively that Vg < 0o = Vg, < oo Vn. [ |
The idea that the Perron-Frobenius operator shrinks variation for piecewise uniformly
expanding maps is due to Lasota and Yorke [LY]. Assuming the additional condition that

Vg < oo, Rychlik [Ryl] extended their result to the case where f may have an infinite

number of uniformly expanding pieces.

Lemma 3.2. (following [Ryl]). Let ¢ € BV. Then

sup V(Png@) < 0.

Proof. Choose N s.t. ||gy]loo < %. Since the local oscillation of g, at each point is < %

and Vg, < oo, we can choose a finite partition 3’ s.t.

1
V, < -
pey I S

Then

V(PN < Viegy)

= Z VB (PGn)

Bepg’

< S e lglloe + 191alloe - Vgl
Bep!

Using the fact that

+Vpe,

1
<L d
sl < | [ o

we get

§
VYo < Y [V lloyle + Voo + 22
Bes m(b)

o]

11
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. . . \4 . . .
which 1s < %V(Lp)—i— Clle|l, with C = ggg/#‘g. Since ||Ppl[, < |l¢]l,, it follows from this

that
kN k
VPN < (2) Vigr + constle]s

1

2
for all k. |
Proof of Theorem 1. Let ¢ = % Since V <% E?:_ol P"(c,o)) < some C Vn, a subsequence
of these functions converges in L' to some ¢, € BV. Clearly, ¢, dm is an R-invariant

probability measure. Let Py denote the Perron-Frobenius operator associated with f, and

let
Yo = ZP}C (991 : 1{p>k}> .
k=0

Then ¢ dm is a finite f-invariant measure, finite because POy o, lomip > k} < oo,
(See (P2).) Normalizing ¢ dm, we obtain our desired acim y. To see that the density of
(v has the properties as claimed, let p, = c,ol/fc,oodm. Since

Hoo

const ||y
Py () - 1gp>1)) (9) € — ===

[s =1

(P2) (ii) tells us that for k > 1,

comstHc,o1 I|..a- 9y~ (k=1)

PJI“C <991 ’ 1{P>k}> () < \/m

Next we prove Theorem 2 assuming (P1) - (P3). Note that (P1) and (P2) imply that f

has a positive Lyapunov exponent at y— a.e. x. First we recall a theorem of Ledrappier:

Theorem [L]. Let h:[—1, 1] O be a C1T¢ piecewise monotonic map with nonflat critical
points, and let v be an acim with a positive Lyapunov exponent a.e. Then a.e. ergodic
component of h is an acim. Moreover, if (h™, v) 18 ergodic ¥Yn > o, then the natural

extension of (h, v) 18 1somorphic to a Bernoulli shift.

12
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Our next proposition probably has some independent interest. It is a corollary to the

proofs in [L].

Proposition 3.3. Let h:[—1, 11 O be a C'T¢ piecewise monotonic map with k critical

points, all of which nonflat. Let v be an acim with a positive Lyapunov exponent a.e. Then

(1) v is the sum of at most k ergodic acim’s;

(2) each ergodic component of v is supported on a finite number of intervals, on which
the density 1s > 0 a.e.;

(3) of h 1s topologically mizing, then (h, v) is measure-theoretically mizing, and hence

Bernoulls.

Proof of Proposition 3.5. Let Jy,...,Ji be the intervals of monotonicity of h. It is

shown in [L] that if we view the natural extension (h, ) of (h, v) as living on

o={@ ac—1, 1x{o,... .k} Jag, x1,... € [—1, 1] with 2 = =,

h(zi) = zi—1 and @; € Jg, },

then local unstable manifolds of & are canonically identified with subintervals of [—1, 1]
and acim’s on [—1, 1] with positive Lyapunov exponents correspond to measures on  with

smooth coniditional measures on unstable manifolds.

Let v, be an ergodic component of v. It follows from the discussion above that at v, — a.e.
z, there is an interval J¢ containing x on which the density of v, is > 0 a.e. Let Ji, Ji, ...
be the maximal intervals on which the density of v, is > 0 a.e. By the ergodicity of v,,
there can only be a finite number of these. Moreover, it is not possible for h|J]’ to be1—1
for all j, because h has a positive Lyapunov exponent and the J}’s cannot grow indefinitely
in length. So at least one of them must get “folded”, i.e. 5 = j(2) s.t. J} contains a critical

point in its interior. This puts a bound on the number of ergodic components.

Assertion (3) follows from what we have said and the last statement in the theorem we

13
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quoted from [L]. |

Proof of Theorem 2. Since p, € BV, there is an interval I C [—1, 1] s.t. ian,o(:li) > 0. By
zE

virtue of (P3), we have inf p(x) > 0. The rest follows immediately from Proposition
z€[f20,£0]
3.3 and (P3). [

64. Decay of correlations: Main steps in the Proof of Theorem 3

Let f be as in Theorem 2.

Step I.  Construction of an extension of f: ([—1, 1], p) O.
Recall that there is a function p:[—1, 1] — {0} — ZT with the following properties:
* px)y=1 VYa & (=6 0,

Tk <p@) <4k V€ Iy,

*x Px)Tas|z| o,

* A >1st Vefoe (=6, o, |(fP)z] > AP

1
For reasons to become obvious shortly, we will choose A with Ae™ 1 < 1.

Our new space J is the disjoint union of a countable number of intervals Jy, Ja,...,

where J; = [—1, 1] and for k > 1, J; has length /\%(k_l)m{p > k}. Note immediately that

Zm(Jk) S 1+ ZA%(IC_I) * 2 min {6, e_i} < 0.
1 k>1

14
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We now define a map f : J (9. Let
JT =11, =0, T =(=6, 6, JF=0 1

On J; UJ, let f = f in the sense that f(]li) C Ji. The interval JY is mapped affinely
onto Jo, with a magnification of /\%. Assume now that f has been defined on Jy, ..., Jr_;.
We again write J; = J, U JJ U J,j' where J? = f*='{p > k}. The map f then takes
J) affinely onto Jjy1, magnifying it by /\%, and takes J,it into Jy in such a way that
Ve e {p=Fk} CJY fPx=fPz. Note that on J,it, If'| > ATk,

Clearly, there is a projection 7 : J — [—1, 1] s.t. 7o f = fom.

Next observe that p lifts to an f-invariant probability measure 2 on J with density

p=Y Pilpy - 1psny)
k=1

where p, is as in Theorem 1. We mention a few relevant properties of p. For a function
¢+ J — Ror C, let us use the notation ¢, to denote ¢|, . Then p, € BV Vk and
12l < /\_%(k_l)HﬁlHoo. Since p > 1 on (=6, ¢), the support of p is contained in
[f26, fo1U UJ Ji. Henceforth let us change Jy to [f26, f&]. Moreover, if I C J; is an
interval, thekn>1§|n = n(I) s.t. f"I contains the fixed point of f in J1+- (This follows from

the corresponding statement for f.) So the same argument as in the last section tells us

that inf p .
a xejlpl(x) >0
Lemma 4.1. (f, ) is exact.

Proof. Let /3 be the partition of J into {J,it’o}. We have H,;(B) < oo because const e 72F <
/ZL(J,S) < const e_i‘v’k, and /:L(J,?:) is either o or has similar bounds. Since f is essentially

expanding, (3 is clearly a generator. So if T : (f, Z) — (f, ) is the natural extension

15
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of (f, i), and B is the Borel o-algebra on J, then 7! ( /;Of_"B> is contained in the
Pinsker o-algebra of (}, ﬁ) ([Ro] 12.3). It therefore suffices to prove the triviality of the

Pinsker g-algebra of (}, Z).

We will show that (f, j) is measure-theoretically isomorphic to (f, ), the natural

extension of (f, p). (See Theorem 2.) Let = (%,, ¥ ,...) be a history of f, @ and
define o(#) = » = (z,, x,,...) by letting z, = 7%,. Clearly %(ﬁ) = [i, since %(ﬁ) is

f-invariant and projects onto u. So all we have to do is to verify that & is 1 — 1 a.e.

Let x = (z,, 2,,...) be a typical element of (f, ). We say that z, is a “marker” for z
if 2. € (—¢, &) and fij > i s.t. p(x;) > j —1, p being the total bound period defined in §2.
If z, is a marker, and @(Z) = x, then the only possibility for #, is that &, = «, € J;. Hence

o~} contains at most one point if x has infinitely many markers.

o

Assume for simplicity that z, € (=4, ¢). From Theorem 1 we know that ©; <—6_%, e > <
00, so by the Borel-Cantelli Lemma, Jk(z) € Z™ s.t. x, & <—e_%7 e_%> Vj > k(x). This
guarantees that for j > k(2), p(x;) < j. Suppose that z is not a marker. Let j, > o be s.t.
zj, € (=6, 0) and p(x;,) > j,. Then either x; is a marker, or 35, > j, s.t. x;, € (=6, 0)
and p(zj;,) > j, —j,- If this process continued, there would be a j > k(@) s.t. p(aj,) > j

n?

contradicting our choice of k(z). [ |
Step II.  The Perron-Frobenius operator.

For the rest of this paper let m denote Lebesgue measure on J, and let || - ||, || - ||

denote the L' and L> norms wrt m on J. For ¢ : J — C, we define

Vigy=> Ve,
k

16
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where V(p,) is the total variation of ¢ on Ji. Consider the function space
X={p: J = V) <00, |l < oo, [loll, < oo}

with norm

lell = Ver+ el +ellell.

where ¢ > 0 is a small number to be determined later. (X, || -||) is a Banach space.

As usual, the Perron-Frobenius operator P associated with f is defined to be
Pipy= > ewiw
yef-la

where
1

| F'y]

except possibly at the end points of 3 = {J,it’o}. For purposes of estimating variation it

gy =

is convenient to adopt the following convention. For B € 3" and a € 0B, we consider a
as belonging in B if for some j, 0 < j < n, f/B C some J,it and fla € 8],?[; otherwise
we say a ¢ B. The advantage of this convention is that if we let § = 0 on 8],?[ and

g, (x) = g(f"'a)- - g(x), then we can estimate V(P"p) by

VIP"o) < Y V03,
Begpr

(which is clear), and at the same time have

Y V@, < oo
Bepn

(See Sublemma 5.1 and cf. [Ryl].)
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The next lemma contains the main estimates in this paper. Its proof is postponed to §5.

Lemma 4.2. P . X — X is a bounded linear operator whose spectrum

U(P):O’O UL, -6

where o, C {|z| < 7.} for some 7, <1 and §; € S1 Vi, Moreover, each &, is a smiple pole,

and the corresponding projection has a finite dimensional range.
Step III.  Finishing the proof.

First we use the exactness of (f, fi) to prove that o(P)yN S = {1}. Let ¢ € X be s.t.
P(p) = £p for some ¢ € S'. Since p > o, we can write ¢ = #p for some 6. Note that

6 € L*(ju), for
1
el Azt
<llelle - ——=—
& mlnp1

16, 1l <

™

min

so that
/92d/l < constZ/\ke_ﬁ,
k

which 1s < co by the upper bound we imposed on A.

The rest of this argument is quite standard (see e.g. [HK]). We let U = Uj be the
operator on L%(f1) defind by U)) =t o f. Then U*6 = £6 (in the sense of L?) because

(U6, ) - / (o fBpdm

~ [ P - <P<T‘9p> ¢> _ (€6, o)

for every v € L*(j1). From this and |[£] = 1 we deduce that U8 = £6, which means that

6 = £"U™P is measurable wrt f~"B. Hence # = some constant ¢ a.e. by Lemma 4.1.

Thinking of P as an operator on L'(m), one sees immediately that £ = 1.
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We have shown that ¢ = ¢p a.e. To see that ¢ = ¢p as elements of X, use Lemma
5.1. This together with Lemma 4.2 proves that P = Py + Py, where PoP, = PPy =

0, o(Py) C {|z] < 7, }, and Pi(p) = ¢, p for some ¢ € C. In fact, ¢, = [ pdm, because

large n

[ Prodm = [ Prodm =~ [ Phodm = [ odm.

Finally we return to the original dynamical system f : ((—1, 1], p) . Observe that
v € BV (—1, 1) lifts to ¢ : J — R with gpp € X .

Vier <) [Veolodl. + Veole.ll.]

k
N A _ i -
<37 Vi ATEE D A, )] < o
k

We have thus shown that Ve, ¢ € BV (—1, 1)),

/(@/}Of")@du—/@du-/@/}du‘
- /@of")@dﬂ—/@dﬂ-/i)dﬂ‘
= / i [P"@m — ( / @ﬁdm> ﬁ] dm‘

< m(h- Y], - Cp, )™ for some 7, <71 <1.

This completes the proof. H.

§5. Spectral properties of the Perron-Frobenius operator

The purpose of this section is to prove Lemma 4.2. Recall that our norm consists of a
total variation part, an L'-part, and an L°°-part. Roughly speaking, the variation part is
contracted by P; the L'-part does no harm; and the L>®-part is needed to control what
happens on the J;’s for k large.
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;. From here on we will be working exclusively with f:J (9. So for notational simplicity

let us drop all the ~’sin f, 3, P etc. The following line of argument is also fairly standard:
Lemma 5.1. (1) P is a bounded operator on X;

(2) AN € Z* and R >0 s.t. Vo € X,

1
IPYell < —liell + Bliell,

Using Lemma 5.1, and remembering that ||Pyl|, < ||¢]|,, one deduces immediately that
sup||[P™]| < co. This gives o(P) C {]z] < 1}.

Lemma 5.2. For N sufficiently large, there is a finite rank operator Q with || PN — Q|| <

This second lemma tells us that outside of some disk of radius < 1, o(P) consists of at
most a finite number of points n,,... ,n,, and that the projection corresponding to each
1, has a finite dimensional range ([DS] VIII 8). No 5, € S! can be a pole of order > 1, for

that would violate sup||P"|| < co. This completes the proof.
n

Sublemma 5.1a. sup Vg(g,) < oo VN.
BeghN

Proof. Since |f'x| > 6 Vo and f maps each element of 3 to at most 3 elements of 3, we

have

Z Vy(gy) <3N as™ N,

Bepg™
BCJl

(See the proof of Lemma 3.1.) Next consider B € 3% with B C Jy, k > 1. If f/B C

20
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(Ul,]i) Vj < N, then V,g, =o. If not, then |(fV)'z| > sV AT =Dy, € B, giving
1>

Z Vogy) <3V ao™ A\~ (k=1)

Bep™
BCJ;

< L oand AT

We now choose and fix an N € ZT with ||g, || < 00

1
S 10°

Sublemma 5.1b. For every e >0, dR; = Ri(N, &) sit. Vo € X,

1 1
VP o) < —Vie + Rilell, + —ellll...

Proof.

VIPYo) < Y Vg,
BepgN

<Y Ngalla Ve + > llets e Vi g,
B B
The first term is < ||gy ||.. V (), and the second term is estimated as follows. For K € Z,

Z VB(gN)' HS‘QlBHoo
Begh
BCUkSK L

SZVBWN){WJ—B‘/BW”‘
< <m§X VB<9N>> . (Z VBW)) + <m§X ViigBN)> : (Z ‘ /B9OD
B B

< (llgnlle) - Vor + Rugllell

+ VBM}
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where Ry i is a constant depending on K. Choose K s.t.

1
Vv < —¢.
B%;N 5 (0n) <

BCUk>K' Jk

Sublemma 5.1.c. V sufficiently small ¢ >0, dRy = Ra(N, ¢) s.t.

1 1
e[ PVell.. < V@) + Rollell, + —eliell...

Let us explain the idea of the lemma, assuming N = 1. A formal proof will follow. We

1
wanted to say that | Po|| . <|l¢ll... Clearly, |[(Pe)-1 u j.]l. <A 2¢].., but for (Py),
E>1

all we cam say is that (P, [l < Clig, |l +2 5 A"3* g, || for some €. Choose Ky
k>1

st.2 > /\_%(k_l) is small. For 1 < k < Ko, we can write ||, ||, < Ve +] [ e /mJp.
k>[(0

Together this gives us
1Pl < const- (Vipr+ llellp+ (A2 4 sman) - Jlgll...
which explains the e-weight in the L*°-part of the norm || - ||.
Proof of Sublemma 5.1¢. Since

N 1
swp [PV, )l AT 2 el < el
k>N 10

we only have to consider (PV¢), fork=1,... ,N. Let N, be alarge number to be specified
shortly. Define

_k
Myey=2( > A2 | llell,

k>N0
MQ(S‘Q) = maX{HS‘Ql Hoo7' cr s HS‘QNO Hoo}
and M = max{j\f17 M2}
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One verifies inductively that Vj, k < N, [[(P’¢),||.. < D’M where
1 _k
D= $+2N+22/\ 2,
For instance,

1Pyl < ;—5<DjM> + 2N (D M) + <2ZY%> M

the three terms being contributions from (ch,o)l, %(ch,o)i and E ‘(ch,o)i respectively.
i>]

We have proved that

1
1P ¢l < max{ —lell. DY M.
10

If &|l¢||.. is bigger, we are done. So suppose DY M(p) dominates. We choose N, and e
s.t.

_k 1 1
22/\ 2 | < — and 100e DN < —

10 100
k>N

and consider the following possibilities:

Case 1: M = M,. We have ||PNo| < DN¥M, < Lo

Case 2: M < 100V (p). We have 5HPN‘PHOO > 100V(‘f°)

Case 3: M = M, and M, > 100V (). Let k < N, bes.t. |||, = M. Since

1
M = HS‘QkHoo < m—JkHS‘QkHl +V(S‘9)7

1t follows that

< —H@k

100 Hl
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and

100 . Mo
1PVl < ( . DN) el

99

Proof of Lemma 5.1. We fix ¢ acceptable with regard to 5.1c and take R = Ry + Ry + 1.

(Note that if we had defined || - || = V) + || - ||;, then P could be unbounded. Take

Proof of Lemma 5.2. Let N € ZT be as in Lemma 5.1, and let E = Egn be the

conditional expectation wrt the o-algebra generated by SV on J. Define

Qp) = PN (Ey)

and
Qj(%«o) = PN <E <99 : 1Uk§jjk>> .

We claim that for sufficiently large 7, ) = @); has the desired property.
Sublemma 5.2a. |PY — Q| < 1.
Proof. Let § = ¢ — Ey, so that (PY — Qyp = PN4.

(1) VPYO) < |lgx

Hoo

D Vo )+ mas Vi (g0 DULEE P

Since V,(0) = V, (¢) and ||61 <V, (), we conclude that

BHoo

VPV < —V(p).
100

(i) IPN6]l, < = mB-V,6) < Ve,

Beg
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(iii) The same argument as in 5.1c¢ (case 3 cannot occur) gives

1 1
PV < max { ]l —Via).
10 100

[
To complete the proof of Lemma 5.2, consider an arbitrary ¢ € X. Write
1PYe — Qjel
< H(PN - Q) <991Uk§jjk> H + HPN <991Uk>jjk> H
The first term is < -[|¢|| by 5.2a, and the second term is
1
< Lol Blernn
1
by Lemma 5.1. Since
1
et < (S o) telle < 2 (s -lel,
1 k>j k>j
we have |[PY o — Q|| < 1|l for sufficiently large j. [

Note added after completion of manuscript. The author has heard that G. Keller and

T. Nowicki recently obtained some related results.
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