

1. $\vec{F}(x, y, z) = (x, y, z)$. Prove there doesn't exist a vector field \vec{G} such that $\vec{F} = \vec{\nabla} \times \vec{G}$.

Solution: Observe that $\vec{\nabla} \cdot \vec{F} = 3$, and we know $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{G}) = 0$ for any \vec{G} , so \vec{F} is not the curl of any vector field.

2. Compute the volume of the solid $E = \{(x, y, z) \in \mathbb{R}^3 : x^2 + z^2 \leq 1, y^2 + z^2 \leq 1\}$

Solution: The xy -plane projection of E is the square $[-1, 1] \times [-1, 1]$. Let $1 - x^2 \leq 1 - y^2$, we get $|x^2| \geq |y^2|$. So E is bounded above and below by $z = \pm\sqrt{1 - x^2}$ on the region $\{(x, y) \in \mathbb{R}^2 | 0 \leq x \leq 1, -x \leq y \leq x\}$. So the volume can be computed by symmetry:

$$V(E) = 4 \int_0^1 \int_{-x}^x \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dz dy dx = \frac{16}{3}$$

3. $f(x, y, z)$ is a scalar function and $\vec{F}(x, y, z)$ is a vector field. Prove

$$\vec{\nabla} \cdot (f \vec{F}) = f(\vec{\nabla} \cdot \vec{F}) + (\vec{\nabla} f) \cdot \vec{F}$$

Solution: Let $\vec{F}(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z))$.

$$\begin{aligned} & \vec{\nabla} \cdot (f \vec{F}) \\ &= \vec{\nabla} \cdot (fP, fQ, fR) \\ &= (fP)_x + (fQ)_y + (fR)_z \\ &= fP_x + f_x P + fQ_y + f_y Q + fR_z + f_z R \\ &= f(P_x + Q_y + R_z) + (f_x P + f_y Q + f_z R) \\ &= f(\vec{\nabla} \cdot \vec{F}) + (\vec{\nabla} f) \cdot \vec{F} \end{aligned}$$

4. Let E be the unit cube $E = \{(x, y, z) \in \mathbb{R}^3 : 0 \leq x \leq 1, 0 \leq y \leq 1, 0 \leq z \leq 1\}$. Let S be the boundary of E with outward orientation. If $\vec{F}(x, y, z) = (2xy, 3ye^z, x \sin z)$, compute $\iint_S \vec{F} \cdot d\vec{S}$

Solution: By divergence theorem,

$$\begin{aligned}
 \iint_S \vec{F} \cdot d\vec{S} &= \iiint_E \vec{\nabla} \cdot \vec{F} dV \\
 &= \int_0^1 \int_0^1 \int_0^1 2y + 3e^z + x \cos z dx dy dz \\
 &= 3e + \frac{1}{2} \sin z - 2
 \end{aligned}$$

5. $\vec{F}(x, y, z)$ is a vector field defined on \mathbb{R}^3 . $0 < r < R$ are constants. Let S_R (S_r) denote the sphere of radius R (r) centered at origin. E is the region bounded by these two spheres. Prove

$$\iiint_E \operatorname{div} \vec{F} dV = \iint_{S_R} \vec{F} \cdot d\vec{S} - \iint_{S_r} \vec{F} \cdot d\vec{S}$$

Solution: Let $B(R)(B(r))$ be the ball enclosed by the sphere $S_R(S_r)$. By the Divergence Theorem,

$$\begin{aligned}
 &\iint_{S_R} \vec{F} \cdot d\vec{S} - \iint_{S_r} \vec{F} \cdot d\vec{S} \\
 &= \iiint_{B(R)} \operatorname{div} \vec{F} dV - \iiint_{B(r)} \operatorname{div} \vec{F} dV \\
 &= \iiint_E \operatorname{div} \vec{F} dV
 \end{aligned}$$