Homework III Second-Half

Due in class June 13 2017

0. Read the following sections:
 Chapter 7 Derivatives in Use: Section 7.7 Why Economists Use Elasticities, 7.12 L’Hospital’s Rule

1. Use L’Hospital’s Rule to find:
 \(\lim_{x \to 0} \frac{e^{-3x} - e^{-2x} + x}{x^2} \)
 \(\lim_{x \to +\infty} \frac{x^4 - 4x^3 + 6x^2 - 8x + 8}{x^3 - 3x^2 + 4} \)
 \(\lim_{x \to +\infty} x^{-\frac{1}{2}} \ln x \)

2. Find the elasticities of the following functions:
 (a). \(f(x) = \frac{2}{x^{\sqrt{2}}} \)
 (b). \(f(x) = -100x^{100} \)

3. Show that \(El_x(fg) = El_x f + El_x g \)

4. A study of Norway’s State Railway revealed that, for rides up to 60 km, the price elasticity of the volume of passenger demand was approximately \(-0.4\). According to this study, what is the consequence of a 10% increase in fares?

5. The demand \(D \) for apples in the US as a function of the income \(r \) for the period 1927 to 1941 was estimated as \(D = Ar^{1.23} \), where \(A \) is constant. Find and interpret the elasticity of \(D \) with respect to \(r \). (This elasticity is called the income elasticity of demand, or the Engel elasticity)