The partial derivatives of a multi-variable function, $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$, tell us the rate of change of the function along x-direction and y-direction.

But what about other directions?

On the x-y plane, each direction can be represented by a unit vector \vec{u}. We are going to define the directional derivative of a function $z=f(x,y)$ at (x_0, y_0) in the direction \vec{u}:

On the x-y plane, consider the line l passing through (x_0, y_0) and parallel to the unit vector \vec{u}. Passing through the line l, there is a unique vertical plane α, and α intersects the graph of $z=f(x,y)$ along a curve C, so C projects to l on the x-y plane.

If we start at (x_0, y_0) and travel along \vec{u} direction for a distance h, and arrive at (x, y), then the vector with initial point (x_0, y_0) and terminal point (x, y) is $<x-x_0, y-y_0> = h\vec{u}$.

If we know $\vec{u} = <a, b>$ ($a^2 + b^2 = 1$), then $<x-x_0, y-y_0> = h\vec{u} = <ha, hb>$.

$\Rightarrow \begin{cases} x = x_0 + ha \\ y = y_0 + hb \end{cases} \Rightarrow f(x, y) = f(x_0 + ha, y_0 + hb)$.

So the rate of change of the function along \vec{u} direction at (x_0, y_0) is

$$Daf(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

We call it the directional derivative of f at (x_0, y_0) in the direction \vec{u}.
There is a faster way to compute the directional derivative, if we know the following theorem:

Theorem. If \(f \) is a differentiable function of \(x \) and \(y \), then \(f \) has a directional derivative in the direction of any unit vector \(\vec{u} = \langle a, b \rangle \) and

\[
D_{\vec{u}} f(x, y) = \frac{\partial f}{\partial x}(x, y) \cdot a + \frac{\partial f}{\partial y}(x, y) \cdot b
\]

Proof. For a fixed \((x_0, y_0)\) in the domain of \(f \), we define the function

\[
g(h) = f(x_0 + ha, y_0 + hb)
\]

Then we get

\[
g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}
\]

\[
= D_{\vec{u}} f(x_0, y_0)
\]

But we can also write

\[
g(h) = f(x, y), \quad x = x_0 + ha, \quad y = y_0 + hb
\]

so the Chain Rule implies

\[
g'(h) = \frac{\partial f}{\partial x}(x, y) \cdot \frac{dx}{dh} + \frac{\partial f}{\partial y}(x, y) \cdot \frac{dy}{dh}
\]

\[
= a \frac{\partial f}{\partial x}(x, y) + b \frac{\partial f}{\partial y}(x, y)
\]

When \(h = 0 \), \(x = x_0 \), \(y = y_0 \). So

\[
g'(0) = a \frac{\partial f}{\partial x}(x_0, y_0) + b \frac{\partial f}{\partial y}(x_0, y_0)
\]

By the unit vector \(\vec{u} \) forms an angle \(\theta \) with the positive \(x \)-axis, then

\[
\vec{u} = \langle \cos \theta, \sin \theta \rangle
\]

If the unit vector \(\vec{u} \) is the directional derivative of \(f \) by

\[
D_{\vec{u}} f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) \cdot \cos \theta + \frac{\partial f}{\partial y}(x_0, y_0) \cdot \sin \theta
\]

Example. Find the directional derivative \(D_{\vec{u}} f(x, y) \) if \(f(x, y) = x^2 - 3xy + 4y^2 \)

and \(\vec{u} \) is the unit vector given by angle \(\theta = \frac{\pi}{6} \). What is \(D_{\vec{u}} f(1, 2) \)?

\[
D_{\vec{u}} f(x, y) = \frac{\partial f}{\partial x}(x, y) \cos \frac{\pi}{6} + \frac{\partial f}{\partial y}(x, y) \sin \frac{\pi}{6} = (2x - 3y) \cdot \frac{\sqrt{3}}{2} + (-3x + 8y) \cdot \frac{1}{2}
\]

\[
D_{\vec{u}} f(1, 2) = (3 \cdot 1^2 - 3 \cdot 2) \cdot \frac{\sqrt{3}}{2} + (-3 \cdot 1 + 8 \cdot 2) \cdot \frac{1}{2} = \frac{13 - 3\sqrt{3}}{2}
\]
We have seen that \(D_{\mathbf{u}} f(x, y) = \frac{\partial f}{\partial x}(x, y), \mathbf{u} + \frac{\partial f}{\partial y}(x, y), \mathbf{u} \) if \(\mathbf{u} = \langle a, b \rangle \) is a unit vector. We can rewrite the above equation as
\[
D_{\mathbf{u}} f(x, y) = \langle \frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y) \rangle \cdot \langle a, b \rangle
\]
We now define the gradient of \(f \) to be the vector
\[
\nabla f(x, y) = \langle \frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y) \rangle
\]
then \(D_{\mathbf{u}} f(x, y) = \nabla f(x, y) \cdot \mathbf{u} \)

Example. Find the gradient of the function \(f(x, y) = x^2y^3 - 4y \) at \((2, -1)\), and find the directional derivative in the direction of the vector \(\mathbf{v} = \langle 2, 5 \rangle \).

\[
\nabla f(x, y) = \langle 2xy^3, 3x^2y^2 - 4 \rangle
\]
so \(\nabla f(2, -1) = \langle -4, 8 \rangle \)

Note \(\mathbf{v} \) is not a unit vector, so we first compute the unit vector in the direction of \(\mathbf{v} \), which is
\[
\mathbf{v} = \frac{2}{\sqrt{29}}, \frac{5}{\sqrt{29}}
\]

So \(D_{\mathbf{v}} f(2, -1) = \nabla f(2, -1) \cdot \mathbf{v} = \langle -4, 8 \rangle \cdot \langle \frac{2}{\sqrt{29}}, \frac{5}{\sqrt{29}} \rangle = \frac{32}{\sqrt{29}} \)

We can extend the above constructions of directional derivatives and gradient vectors to functions of \(n \) variables (in particular, \(3 \) variables)

The gradient gives a solution to the maximization of directional derivatives:

Theorem. If \(f \) is a differentiable function of \(n \) variables, then the maximum value of \(D_{\mathbf{u}} f(x_1, \ldots, x_n) \) is \(|\nabla f(x_1, \ldots, x_n)| \), and it is achieved when \(\mathbf{u} = \frac{\nabla f(x_1, \ldots, x_n)}{|\nabla f(x_1, \ldots, x_n)|} \)
Proof. \[\nabla f \cdot \mathbf{u} = |\nabla f| \cdot |\mathbf{u}| \cdot \cos \theta = |\nabla f| \cdot \cos \theta \]
so \(\nabla f \cdot \mathbf{u} \) obtains maximum when \(\theta = 0 \).

Example. \(f(x,y) = xe^y \). In what direction does \(f \) have the maximum rate of change at \((2,0)\)? What's the maximum rate of change?

\[\nabla f(x,y) = \langle e^y, xe^y \rangle, \text{ so } \nabla f(2,0) = \langle 1, 2 \rangle \]

The maximum rate of change is along \(\nabla f(2,0) = \langle 1, 2 \rangle \) direction.
The maximum rate of change is \(|\nabla f(2,0)| = \sqrt{5} \).
The gradient has another important application, which is related to level sets:

Theorem. If \(F(x_1, \ldots, x_n) = C \) is a level set, then \(\nabla F \) is a normal vector for this level set in the space \(\mathbb{R}^n \). In particular, when \(n = 2 \), \(\nabla f(x,y) \) is perpendicular to the tangent line of \(f(x,y) = C \) at \((x,y)\); when \(n = 3 \), \(\nabla f(x,y,z) \) is perpendicular to the tangent plane of \(f(x,y,z) = C \) at \((x,y,z)\).

Example. Find the equation of the tangent plane at \((-2,1,-3)\) to the ellipsoid \(\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3 \).

Let \(F(x,y,z) = \frac{x^2}{4} + y^2 + \frac{z^2}{9} \), then \(\nabla F(x,y,z) = \langle \frac{x}{2}, 2y, \frac{2z}{9} \rangle \)

so \(\nabla F(-2,1,-3) = \langle -1, 2, -\frac{2}{3} \rangle \)

so the tangent plane has equation

\[-1 \cdot (x+2) + 2 \cdot (y-1) - \frac{2}{3} \cdot (z+3) = 0.\]

\[\Rightarrow 3x - 6y + 2z + 18 = 0\]