Homework I First-Half

Due in class July 11 2017

0. Read The Following Sections:

Chapter 10. Vectors and the Geometry of Space: Section 10.1 Three-Dimensional Coordinate Systems, 10.2 Vectors, 10.3 The Dot Product

1. Show that the equation represents a sphere, and find its center and radius:

$$x^2 + y^2 + z^2 - 2x - 4y + 8z = 15$$

2. Sketch the surface in the *xyz*-coordinate space \mathbb{R}^3 represented by

x + y = 1

- 3. compute $2\vec{u} 3\vec{v}$ where $\vec{u} = <3, -2, 5 >$ and $\vec{v} = <-1, 4, 3 >$
- 4. Find a unit vector that has the opposite direction as $\vec{v} = \langle 2, 2, -1 \rangle$
- 5. $\vec{v} = \langle -6, 12, -2 \rangle$. Find λ, μ, η such that $\vec{v} = \lambda \vec{a} + \mu \vec{b} + \eta \vec{c}$, where $\vec{a} = \langle 1, 1, -1 \rangle$, $\vec{b} = \langle 1, -1, 1 \rangle$, $\vec{c} = \langle -1, 1, 1 \rangle$
- 6. Prove the following two vectors are orthogonal:

$$\vec{u} = <-5, 3, 6>, \vec{v} = <6, -8, 9>$$

- 7. Find an unit vector that makes an angle of $\frac{\pi}{3}$ with $\vec{v} = <1, \sqrt{3}, -2\sqrt{3} >$ and perpendicular to $\vec{k} = <0, 0, 1 >$.
- 8. Find the scalar projection and vector projection of $\vec{v} = <1,2,3>$ onto $\vec{u} = <3,6,-2>$
- 9. Show that if $\vec{u} + \vec{v}$ and $\vec{u} \vec{v}$ are orthogonal, then $|\vec{u}| = |\vec{v}|$