1. \(G \) is a finite group of order \(n \). If \(k \) is an integer that is relatively prime to \(n \), prove the function \(\phi : G \rightarrow G \) defined by \(\phi(x) = x^k \) is a bijective function.

Solution: Since \(G \) is finite and \(\phi \) is a function maps \(G \) to itself, it suffices to show \(G \) is surjective.

\(k \) and \(n \) are relatively prime implies there exists \(a, b \in \mathbb{Z} \) such that \(ka + nb = 1 \). For any \(x \in G \), the order of \(x \) divides \(|G| = n \), so \(x^n = 1 \). Thus \(x = x^1 = x^{ka+nb} = (x^a)^k(x^n)^b = (x^a)^k = \phi(x^a) \). We see \(\phi \) is surjective.

2. Let \(a \) and \(b \) be elements of a group \(G \). Prove that \(ab \) and \(ba \) have the same order.

Solution: Assume \(|ab| = n \). \((ab)^n = a(ba)^{n-1}b = 1 \Rightarrow b[a(ba)^{n-1}]a = ba \Rightarrow ba(ba)^{n-1}ba = ba \Rightarrow (ba)^n = 1 \), so \(|ba| \) divides \(|ab| \). Similarly, we can show \(|ba| \) divides \(|ab| \), hence \(|ab| = |ba| \).

3. \(G \) is a group, \(H_1 \) and \(H_2 \) are finite subgroups of \(G \). If \(|H_1| \) and \(|H_2| \) are relatively prime, prove \(H_1 \cap H_2 = \{1\} \).

Solution: If \(x \in H_1 \cap H_2 \), then \(x \in H_1 \) implies \(|x| \) divides \(|H_1| \), and \(x \in H_2 \) implies \(|x| \) divides \(|H_2| \). \(|H_1| \) and \(|H_2| \) are relatively prime, so \(|x| = 1 \), i.e. \(x = 1 \).

4. How many different equivalence relations can we define on a set of four elements?

Solution: We know equivalence relations are in one-to-one correspondence with partition of a set, so we only need to find all the partitions of a set of four elements.

Denote this set by \(\{a, b, c, d\} \), we see the possible partitions are as follows:

\(\{a\} \sqcup \{b\} \sqcup \{c\} \sqcup \{d\} \),

\(\{a\} \sqcup \{b\} \sqcup \{c, d\} \), \(\{a\} \sqcup \{c\} \sqcup \{b, d\} \), \(\{a\} \sqcup \{d\} \sqcup \{b, c\} \), \(\{b\} \sqcup \{c\} \sqcup \{a, d\} \),

\(\{a, b\} \sqcup \{c, d\} \), \(\{a, c\} \sqcup \{b, d\} \), \(\{a, d\} \sqcup \{b, c\} \)

\(\{a\} \sqcup \{b, c, d\} \), \(\{b\} \sqcup \{a, c, d\} \), \(\{c\} \sqcup \{a, b, d\} \), \(\{d\} \sqcup \{a, b, c\} \)

\(\{a, b, c, d\} \)

So there are in total 15 of them.

Remark: In general, the number of partitions of a set of \(n \) elements is called the Bell Number. You may read this Wikipedia Page for more story on that: https://en.wikipedia.org/wiki/Bell_number

1
5. Let \(X = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous} \} \). Define a relation on \(X \): \(f_1 \sim f_2 \) if \(f_1 - f_2 \equiv C \) for some constant \(C \). Prove this is an equivalence relation on \(X \).

Solution: (i). Reflexive: for any \(f \in X \), \(f - f \equiv 0 \), so \(f \sim f \)

(ii). Symmetric: If \(f_1 \sim f_2 \), then there exists \(C \in \mathbb{R} \) such that \(f_1 - f_2 / -2 \equiv C \), hence \(f_2 \sim f_1 \)

(iii). Transitive: If \(f_1 \sim f_2 \) and \(f_2 \sim f_3 \), then there exists \(C_1 \in \mathbb{R} \) and \(C_2 \in \mathbb{R} \) such that \(f_1 - f_2 \equiv C_1 \) and \(f_2 - f_3 \equiv C_2 \), so \(f_1 - f_3 = (f_1 - f_2) + (f_2 - f_3) \equiv C_1 + C_2 \), hence \(f_1 \sim f_3 \)

6. If \(R \) and \(R' \) are two equivalence relations on a set \(S \), is \(R \cap R' \) also an equivalence relation on \(S \)?

Solution: \(R \cap R' \) is an equivalence relation.

(i). Reflexive: for any \(x \in S \), \((x, x) \in R \) and \((x, x) \in R' \), so \((x, x) \in R \cap R' \)

(ii). Symmetric: If \((x, y) \in R \cap R' \), then \((x, y) \in R \) and \((x, y) \in R' \). \(R \) and \(R' \) are equivalence relations, so \((y, x) \in R \) and \((y, x) \in R' \), hence \((y, x) \in R \cap R' \)

(iii). Transitive: If \((x, y) \in R \cap R' \) and \((y, z) \in R \cap R' \), then \((x, y) \in R \) and \((y, z) \in R \) implies \((x, z) \in R \), and \((x, y) \in R' \) and \((y, z) \in R' \) implies \((x, z) \in R' \), we get \((x, z) \in R \cap R' \)

7. If \(G \) is a group of order \(p^n \), where \(p \) is a prime and \(n > 1 \). Prove \(G \) contains an element of order \(p \).

Solution: Pick any non-identity element \(x \in G \). \(|x| \) divides \(|G| = p^n \), so \(|x| = p^r \) for some \(1 \leq r \leq n \).

If \(r = 1 \), then \(x \) is an element of order \(p \), done.

If \(r > 1 \), consider the element \(y = x^{p^{r-1}} \): \(y^p = (x^{p^{r-1}})^p = x^{p^r} = 1 \), so \(|y| = p \) if we can show \(y \neq 1 \).

Suppose \(y = 1 \), then this is to say \(x^{p^{r-1}} = 1 \), contradict to \(|x| = p^r \), we conclude that \(y \neq 1 \).

8. If \(G \) has five subgroups of order 7, prove \(G \) has at least 35 elements.

Solution: If \(H \) and \(K \) are two subgroups of order 7 in \(G \) such that \(H \neq K \), then \(H \cap K = \{1\} \). Suppose there is non-identity \(x \in H \cap K \), then in particular, \(x \in H \), so \(|x| \) divides \(|H| = 7 \), and \(x \) is not the identity, it follows \(|x| = 7 \), so \(< x > = H \). Similarly, \(< x > = K \), we get \(H = K \), contradict to the assumption \(H \neq K \), therefore such \(x \) does not exists. we conclude \(H \cap K = \{1\} \).
If there are five different subgroups of order 7, then by the above paragraph, except the identity element, any two of those five subgroups share no element. It follows there are $1 + 5 \times (7 - 1) = 31$ elements in the union of these five subsets, so $|G| \geq 31$.

G contains subgroups of order 7 implies 7 divides $|G|$, and 35 is the smallest multiple of 7 that is no smaller than 31, so we conclude $|G| \geq 35$.

3