1. Let \(f : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \) be given by \(f(m, n) = m - n \). Discuss whether \(f \) is injective, surjective, bijective.

Solution: Since \(f(m, n) = f(m', n') \) as long as \(m - n = m' - n' \), in particular, \(f(0, 0) = f(1, 1) \), we see the function is not injective.

\(f \) is surjective since \(\forall r \in \mathbb{R}, r = f(r, 0) \).

\(f \) is not bijective since it is not injective.

2. \(S \) is a finite set with cardinality greater than 1. Construct a bijective map

\[f : S \times \mathbb{Z} \rightarrow \mathbb{Z} \]

and prove it is bijective.

Solution: We denote the elements of \(S \) by \(a_0, ..., a_{n-1} \), where \(n \) is the cardinality of \(S \).

Define

\[f : S \times \mathbb{Z} \rightarrow \mathbb{Z} \]

\[(a_i, k) \mapsto kn + i \]

This \(f \) is a bijection, which is proved as follows.

\(f \) is injective: if \(f(a_i, k) = f(a_j, k') \), then \(kn + i = k'n + j \), so \(i - j = (k' - k)n \), which indicates \(i - j \) is a multiple of \(n \). Since \(0 \leq i \leq n - 1 \) and \(0 \leq j \leq n - 1 \), \(-n \leq i - j \leq n - 1 \), so the only chance for \(i - j \) to be a multiple of \(n \) is when \(i = j \), then \(k' = k \), so \((a_i, k) = (a_j, k') \).

\(f \) is surjective: for any \(m \in \mathbb{Z} \), by the division rule of integers, we know there exists integers \(q \) and \(r \) such that \(m = qn + r \), where \(0 \leq r \leq n - 1 \), so \(m = f(a_r, q) \), hence \(f \) is surjective.

3. Use strong induction to show any integer \(n \geq 2 \) can be written as a product of one or more prime numbers.

Solution: (1). When \(n = 2 \), we know 2 is a prime, so 2 is a product of one prime.

(2). Suppose the statement holds for all \(2 \leq k \leq n \). If \(n + 1 \) is a prime, then we are done, since it is a product of one prime. If \(n + 1 \) is not a prime, then we
can write \(n + 1 = ab \) where \(2 \leq a \leq n, \ 2 \leq b \leq n \). By induction hypothesis, both \(a \) and \(b \) can be written as a product of primes, so the product \(ab = n + 1 \) is also a product of primes.

We finish the proof.

4. \(X \) is a nonempty set. Define \(P(X) = \{ f : X \to X | f \text{ is a bijective function} \} \). Define a law of composition

\[
P(X) \times P(X) \to P(X)
\]

\[
(f_1, f_2) \mapsto f_1 \circ f_2
\]

i.e. composition of functions. Prove \(P(X) \) is a group with respect to this law of composition. Is \(P(X) \) a finite group?

Solution:

(1). The composition of functions is associative:

\[
(f_1 \circ f_2) \circ f_3 = f_1 \circ (f_2 \circ f_3)
\]

(2). The identity element is the identity function on \(X \), \(id_X : X \to X \) such that \(id_X(x) = x \) for any \(x \in X \). Then we see it satisfies \(f \circ id_X = id_X \circ f = f \) for any \(f \in S(X) \)

(3). Since \(f \in S(X) \) is a bijection, it has an inverse function \(f^{-1} \) such that \(f \circ f^{-1} = f^{-1} \circ f = id_X \), so the inverse function is the inverse element.

We conclude \(S(X) \) with composition of functions is a group.

\(S(X) \) is a finite group if and only if \(X \) is a finite set.

5. Prove the set of nonzero real numbers \(\mathbb{R}^* \) with multiplication of numbers as the law of composition is a group.

Solution:

(1). The multiplication of real numbers is associative, i.e. \((ab)c = a(bc) \) for any \(a, b, c \in \mathbb{R}^* \).

(2). The identity element is the number \(1 \in \mathbb{R}^* \): \(a \cdot 1 = 1 \cdot a = a \) for any \(a \in \mathbb{R}^* \).

(3). The inverse element of \(a \in \mathbb{R}^* \) is \(\frac{1}{a} \in \mathbb{R}^* \), since \(a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1 \).

So we see \(\mathbb{R}^* \) with real number multiplication is a group.

6. Prove the set of all \(n \times n \) matrices with real entries, \(M_n(\mathbb{R}) \), is an Abelian group if we define the law of composition to be addition of matrices.

Solution:

(1). Addition of matrices is associative: \((A + B) + C = A + (B + C) \) for any \(A, B, C \in M_n(\mathbb{R}) \).
(2). The identity element is the $n \times n$ zero matrix 0_n: $A + 0_n = 0_n + A = A$ for any $A \in M_n(\mathbb{R})$

(3). The inverse of A is $-A$: $A + (-A) = (-A) + A = 0_n$.

So $M_n(\mathbb{R})$ with matrix addition is a group. It is an Abelian group since the matrix addition is commutative: $A + B = B + A$ for any $A, B \in M_n(\mathbb{R})$

7. Let G be the set of all functions $\mathbb{R} \rightarrow \mathbb{R}$. Given f_1 and f_2 in G, define $f_1 + f_2$ to be the function $(f_1 + f_2)(x) = f_1(x) + f_2(x)$ for any $x \in \mathbb{R}$. Show that G is an Abelian group with the above law of composition.

Solution: (1). The law of composition is associative: for any $f_1, f_2, f_3 \in G$, $((f_1 + f_2) + f_3)(x) = (f_1 + f_2)(x) + f_3(x) = (f_1(x) + f_2(x)) + f_3(x) = f_1(x) + (f_2(x) + f_3(x)) = f_1(x) + (f_2 + f_3)(x) = (f_1 + (f_2 + f_3))(x)$ for any $x \in \mathbb{R}$, so $(f_1 + f_2) + f_3 = f_1 + (f_2 + f_3)$.

(2). The identity element is the zero function $f_0(x) \equiv 0$: for any $f \in G$, $(f + f_0)(x) = f(x) + f_0(x) = f(x) = f_0(x) + f(x) = (f_0 + f)(x)$, so $f + f_0 = f_0 + f = f$.

(3). The inverse of $f \in G$ is the function $-f \in G$ defined by $(-f)(x) = -f(x)$ for any $x \in \mathbb{R}$: $(f + (-f))(x) = f(x) + (-f)(x) = f(x) + (-f(x)) = 0$, and similarly $((-f) + f)(x) = 0$, so $f + (-f) = (-f) + f = f_0$.

So G with composition of functions is a group. It is an Abelian group because for any $f_1, f_2 \in G$, $(f_1 + f_2)(x) = f_1(x) + f_2(x) = f_2(x) + f_1(x) = (f_2 + f_1)(x)$, so $f_1 + f_2 = f_2 + f_1$.

8. G is a group. If $x \cdot x = 1$ for any $x \in G$, prove that G is an Abelian group.

Solution: $x \cdot x = 1$ for any $x \in G$ is equivalent to $x = x^{-1}$ for any $x \in G$.

For any $a, b \in G$, ab is also an element in G, so $ab = (ab)^{-1} = b^{-1}a^{-1} = ba$. So the group is Abelian.