Theorem. If \(G = \langle x \rangle \) is a cyclic group, then every subgroup of \(G \) is a cyclic subgroup.

Proof. Let \(H \) be a subgroup of \(G = \langle x \rangle \), such that \(H \neq \{e\} \). Let \(m = \min \{ k \in \mathbb{N} \setminus \{0\} \mid x^k \in H \} \).

Claim: \(H = \{ x^{lm} \in G \mid l \in \mathbb{Z} \} \).

First, \(\forall l \in \mathbb{Z}, \ x^{lm} = (x^m)^l \in H \) since \(x^m \in H \).

Second, suppose \(x^s \in H \), we will show \(m \mid s \):

Suppose \(m \nmid s \), then \(\exists q, r \in \mathbb{Z} \) such that
\[
 s = qm + r, \quad 0 < r < m.
\]

This implies \(x^s = x^{qm \cdot r} \Rightarrow x^r \in H \).

Contradict to \(m = \min \{ k \in \mathbb{N} \setminus \{0\} \mid x^k \in H \} \).

So we conclude \(H = \{ x^{lm} \in G \mid l \in \mathbb{Z} \} = \langle x^m \rangle \).

Remark. A cyclic group may have more than one generators, as we have seen for the case of \(\mathbb{Z}^+ \).

In general, \(G = \langle x \rangle \) can be generated by \(x^k \) if and only if \(|x| \) and \(k \) are relatively prime.
Homomorphism and Isomorphism

Definition. G and G' are groups. A homomorphism $\varphi : G \rightarrow G'$ is a map satisfying $\forall a, b \in G$, $\varphi(ab) = \varphi(a)\varphi(b)$.

That is, the function is compatible with the group structures.

Example. Determinant function:

\[
\det : \text{GL}_n(\mathbb{R}) \rightarrow \mathbb{R}^*
\]

\[
A \mapsto \det(A)
\]

Example. G is a group and $x \in G$.

Define $\varphi : \mathbb{Z}^+ \rightarrow G$

\[
k \mapsto x^k
\]

This is a homomorphism.

Proposition. A homomorphism $\varphi : G \rightarrow G'$ maps identity to identity and inverse to inverse:

1. $\varphi(1_G) = 1_{G'}$
2. $\forall g \in G$, $\varphi(g^{-1}) = \varphi(g)^{-1}$

Proof.

1. $\varphi(1_G) = \varphi(1_G \cdot 1_G) = \varphi(1_G) \cdot \varphi(1_G) \Rightarrow \varphi(1_G) = 1_{G'}$
2. $\varphi(g) \varphi(g^{-1}) = \varphi(g \cdot g^{-1}) = \varphi(1_G) = 1_{G'} \Rightarrow \varphi(g^{-1}) = \varphi(g)^{-1}$

Definition. $\varphi : G \rightarrow G'$ is a homomorphism. Define:

\[
\ker \varphi = \{ g \in G \mid \varphi(g) = 1_{G'} \}, \text{ call the kernel of } \varphi
\]

\[
\text{Im } \varphi = \{ \varphi(g) \in G' \mid g \in G \}, \text{ call the image of } \varphi
\]
Proposition. \(\Psi: G \rightarrow G' \) is a homomorphism, then:
ker \(\Psi \) is a subgroup of \(G \) and \(\text{Im} \Psi \) is a subgroup of \(G' \).

Proof. If \(a, b \in \text{ker} \Psi \), \(\Psi(a) = \Psi(b) = 1_{G'} \).
\(\Psi(a \cdot b) = \Psi(a) \cdot \Psi(b) = 1_{G'} \cdot 1_{G'} = 1_{G'} \)
so \(a \cdot b \in \text{ker} \Psi \), hence \(\text{ker} \Psi \) is a subgroup of \(G \).

If \(x, y \in \text{Im} \Psi \), then there exists \(a, b \in G \) such that
\(x = \Psi(a) \), \(y = \Psi(b) \).
\(x \cdot y = \Psi(a) \cdot \Psi(b) = \Psi(a \cdot b) = \Psi(1_{G'}) \)
so \(x \cdot y \in \text{Im} \Psi \), hence \(\text{Im} \Psi \) is a subgroup of \(G' \).

Proposition. \(\Psi: G \rightarrow G' \) is a homomorphism, then:
\(\Psi \) is injective if and only if \(\text{ker} \Psi = \{1_G\} \).

Proof. If \(\Psi \) is injective, then it's obvious \(\text{ker} \Psi = \{1_G\} \), since
\(\text{ker} \Psi = \Psi^{-1}(1_{G'}) \) contains at most one element when
\(\Psi \) is injective, and \(\Psi(1_G) = 1_{G'} \).
If \(\text{ker} \Psi = \{1_G\} \), \(\Psi(a) = \Psi(b) \), then:
\(\Psi(a) \cdot \Psi(b)^{-1} = 1_{G'} \Rightarrow \Psi(ab^{-1}) = 1_{G'} \)
\(\Rightarrow a \cdot b^{-1} \in \text{ker} \Psi = \{1_G\} \)
\(\Rightarrow a \cdot b^{-1} = 1_G \)
\(\Rightarrow a = b. \)

So \(\Psi \) is injective.

Example. \(\text{det}: \text{GL}_n(\mathbb{R}) \rightarrow \mathbb{R}^* \) is a homomorphism.
\(\text{ker}(\text{det}) = \{A \in \text{GL}_n(\mathbb{R}) \mid \text{det}(A) = 1\} = \text{SL}_n(\mathbb{R}). \)