1. Find all the elements in \(\mathbb{Z}/12\mathbb{Z} \) that have multiplicative inverse.

2. What’s the order of \(\text{Aut}(\mathbb{Z}/8\mathbb{Z}) \)? What’s the order of \(\text{Aut}(\mathbb{Z}/10\mathbb{Z}) \)? Are they isomorphic?

3. The set of nonzero complex numbers \(\mathbb{C}^\times \) is a group with multiplication of complex numbers as law of composition. The norm of a complex number \(z = x + iy \), where \(x, y \in \mathbb{R} \), is \(|z| = \sqrt{x^2 + y^2} \). It is known that given two complex numbers \(z_1, z_2 \in \mathbb{C} \), \(|z_1z_2| = |z_1||z_2| \). The unit circle is defined to be \(S^1 = \{ z \in \mathbb{C} : |z| = 1 \} \).
 (i). Show that \(S^1 \) is a normal subgroup of \(\mathbb{C}^\times \).
 (ii). If \(\mathbb{R}^{>0} \) is the group of all positive real numbers with multiplication of real numbers as law of composition, prove \(\mathbb{C}/S^1 \cong \mathbb{R}^{>0} \).

4. \(f : G \rightarrow G' \) is a group homomorphism, and \(H \) is a normal subgroup of \(G \) such that \(H \subseteq \ker(f) \). \(\pi : G \rightarrow G/H \) is the quotient map. Prove there is a unique homomorphism \(F : G/H \rightarrow G' \) such that \(f = F \circ \pi \), and \(F \) is injective if and only if \(H = \ker(f) \).

5. \(G \) is a group. \(H \) is a subgroup of \(G \) and \(N \) is a normal subgroup of \(G \).
 \(HN = \{ hn \in G | h \in H, n \in N \} \).
 (i). Prove that \(HN \) is a subgroup of \(G \).
 (ii). Prove that \(H/(H \cap N) \cong HN/N \). (Hint: consider \(f : H \rightarrow HN/N \) given by \(f(h) = hN \))

1