Curvature

Tom LaGatta

University of Arizona

April 23, 2008
For a smooth plane curve γ parametrized by arc length, curvature is defined as

$$K(t) = |\ddot{\gamma}(t)|.$$
Curvature of a Plane Curve

For a smooth plane curve γ parametrized by arc length, curvature is defined as

$$K(t) = |\ddot{\gamma}(t)|.$$

Let n be a normal vector field along γ.

Tom LaGatta (University of Arizona)
Curvature
April 23, 2008 3 / 83
For a smooth plane curve γ parametrized by arc length, curvature is defined as

$$K(t) = |\ddot{\gamma}(t)|.$$

Let n be a normal vector field along γ.

K is $1/radius$ of the osculating (kissing) circle.
Curvature of a Plane Curve

For a smooth plane curve γ parametrized by arc length, curvature is defined as

$$K(t) = |\ddot{\gamma}(t)|.$$

Let n be a normal vector field along γ.

K is 1/radius of the osculating (kissing) circle.

K is positive when the curve turns into n, but negative when turning away.
If M is a surface smoothly embedded in \mathbb{R}^3, at each point x there are two principal curvatures k_1 and k_2.
If \(M \) is a surface smoothly embedded in \(\mathbb{R}^3 \), at each point \(x \) there are two *principal curvatures* \(k_1 \) and \(k_2 \).

To calculate these at a point \(x \):

- Let \(n \) be the normal vector to \(M \) and \(P \) be any plane in \(\mathbb{R}^3 \) containing \(n \).
If M is a surface smoothly embedded in \mathbb{R}^3, at each point x there are two principal curvatures k_1 and k_2.

To calculate these at a point x:

- Let n be the normal vector to M and P be any plane in \mathbb{R}^3 containing n.
- Calculate the curvature K_P of the curve $\gamma_P = P \cap M$.
If M is a surface smoothly embedded in \mathbb{R}^3, at each point x there are two principal curvatures k_1 and k_2.

To calculate these at a point x:

- Let n be the normal vector to M and P be any plane in \mathbb{R}^3 containing n.
- Calculate the curvature K_P of the curve $\gamma_P = P \cap M$.
- Define

$$k_1 = \min_P K_P \quad \text{and} \quad k_2 = \max_P K_P.$$
The product

\[K = k_1 k_2 \]

is called the Gaussian curvature of \(M \).
The product

\[K = k_1 k_2 \]

is called the Gaussian curvature of \(M \).

Theorem (Gauss, Theorema Egregium)

\(K \) does not depend on the embedding of \(M \) in \(\mathbb{R}^3 \).

Thus curvature is an intrinsic property of a surface!
Some examples:

- The Euclidean plane \mathbb{R}^2 has zero curvature.
- The sphere S^2 has positive curvature.
- The hyperbolic plane H^2 has negative curvature.
Curvature of a Surface

Some examples:

- The Euclidean plane \mathbb{R}^2 has zero curvature.
- The sphere S^2 has positive curvature.
- The hyperbolic plane \mathbb{H}^2 has negative curvature.

How does curvature affect geodesics, the “straight lines” of M?
Curvature of a Surface

Some examples:

- The Euclidean plane \mathbb{R}^2 has zero curvature.
- The sphere S^2 has positive curvature.
- The hyperbolic plane \mathbb{H}^2 has negative curvature.

How does curvature affect geodesics, the “straight lines” of M?

- Positive curvature makes geodesics come together.
- Negative curvature forces them apart.

Geodesics are locally length-minimizing, but not necessarily globally! (Think of the sphere)
Knowing something about a local quantity at every point can give us a global result.

Theorem (Gauss-Bonnet)

If \(M \) is a compact surface, then

\[
\int_M K \, dA = 2\pi \chi(M),
\]

where \(\chi(M) \) is the Euler characteristic of \(M \).

The left side of the equation is local, since curvature is a pointwise function, whereas the right side is a global, topological quantity.
Knowing something about a local quantity at every point can give us a global result.

Theorem (Gauss-Bonnet)

If M is a compact surface, then

$$
\int_M K \, dA = 2\pi \chi(M),
$$

*where $\chi(M)$ is the Euler characteristic of M.***
Knowing something about a local quantity at every point can give us a global result.

Theorem (Gauss-Bonnet)

If M is a compact surface, then

$$
\int_M K \, dA = 2\pi \chi(M),
$$

where $\chi(M)$ is the Euler characteristic of M.

The left side of the equation is local, since curvature is a pointwise function, whereas the right side is a global, topological quantity.
Here is a nice application of Gauss-Bonnet:

Corollary

Every surface in \mathbb{R}^3 not homeomorphic to S^2 has both positive and negative curvature.
Here is a nice application of Gauss-Bonnet:

Corollary

Every surface in \mathbb{R}^3 not homeomorphic to S^2 has both positive and negative curvature.

- Let M be any compact, smooth surface in \mathbb{R}^3 not homeomorphic to S^2.
Here is a nice application of Gauss-Bonnet:

Corollary

Every surface in \(\mathbb{R}^3 \) not homeomorphic to \(S^2 \) has both positive and negative curvature.

- Let \(M \) be any compact, smooth surface in \(\mathbb{R}^3 \) not homeomorphic to \(S^2 \).
- Let \(S \) be the smallest sphere which encloses \(M \).
Here is a nice application of Gauss-Bonnet:

Corollary

Every surface in \mathbb{R}^3 not homeomorphic to S^2 has both positive and negative curvature.

- Let M be any compact, smooth surface in \mathbb{R}^3 not homeomorphic to S^2.
- Let S be the smallest sphere which encloses M.
- M is compact, so it must touch S. At this point, K is positive.
Here is a nice application of Gauss-Bonnet:

Corollary

Every surface in \mathbb{R}^3 not homeomorphic to S^2 has both positive and negative curvature.

- Let M be any compact, smooth surface in \mathbb{R}^3 not homeomorphic to S^2.
- Let S be the smallest sphere which encloses M.
- M is compact, so it must touch S. At this point, K is positive.
- By the classification of surfaces, $\chi(M) = 2 - 2\text{genus}(M) \leq 0$.

Here is a nice application of Gauss-Bonnet:

Corollary

Every surface in \(\mathbb{R}^3 \) not homeomorphic to \(S^2 \) has both positive and negative curvature.

- Let \(M \) be any compact, smooth surface in \(\mathbb{R}^3 \) not homeomorphic to \(S^2 \).
- Let \(S \) be the smallest sphere which encloses \(M \).
- \(M \) is compact, so it must touch \(S \). At this point, \(K \) is positive.
- By the classification of surfaces, \(\chi(M) = 2 - 2\text{ genus}(M) \leq 0 \).
- By Gauss-Bonnet,

\[
\int_M K \, dA = 2\pi \chi(M) \leq 0,
\]

so \(K \) must be negative somewhere. \(\Box \)
If we assume a uniform bound on curvature, we can say a lot about the topology of M.

Theorem (Bonnet-Myers)

If $K(x) \geq \delta > 0$ for all $x \in M$, then M is compact.

This justifies our intuition that positive curvature forces geodesics to come together.
If we assume a uniform bound on curvature, we can say a lot about the topology of M.

Theorem (Bonnet-Myers)

If $K(x) \geq \delta > 0$ for all $x \in M$, then M is compact.

This justifies our intuition that positive curvature forces geodesics to come together.
If we assume a uniform bound on curvature, we can say a lot about the topology of M.

Theorem (Bonnet-Myers)

If $K(x) \geq \delta > 0$ for all $x \in M$, then M is compact.
If we assume a uniform bound on curvature, we can say a lot about the topology of M.

Theorem (Bonnet-Myers)

If $K(x) \geq \delta > 0$ for all $x \in M$, then M is compact.

This justifies our intuition that positive curvature forces geodesics to come together.
What about negative curvature?
What about negative curvature?

Theorem (Hadamard-Cartan)

If $K(x) \leq 0$ for all $x \in M$, then there is exactly one geodesic between any two points x and y. Why does this make sense? A negatively curved space is locally everywhere like our toy model. If two geodesics start at a point, then they never come back together.
What about negative curvature?

Theorem (Hadamard-Cartan)

If $K(x) \leq 0$ for all $x \in M$, and M is simply connected (and complete),

then there is exactly one geodesic between any two points x and y.

Why does this make sense? A negatively curved space is locally everywhere like our toy model. If two geodesics start at a point, then they never come back together.
What about negative curvature?

Theorem (Hadamard-Cartan)

If $K(x) \leq 0$ for all $x \in M$, and M is simply connected (and complete), then there is exactly one geodesic between any two points x and y.
What about negative curvature?

Theorem (Hadamard-Cartan)

If \(K(x) \leq 0 \) for all \(x \in M \), and \(M \) is simply connected (and complete), then there is exactly one geodesic between any two points \(x \) and \(y \).

Why does this make sense? A negatively curved space is locally everywhere like our toy model. If two geodesics start at a point, then they never come back together.
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3

$$(x, y, f(x, y))$$

Curvature profile

$K(x, y)$
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.
Mixed Curvature Example: Two Hills

These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3

$(x, y, f(x, y))$

Curvature profile

$K(x, y)$
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3

$(x, y, f(x, y))$

Curvature profile

$K(x, y)$
Mixed Curvature Example: Two Hills

These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3

$(x, y, f(x, y))$

Curvature profile $K(x, y)$
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3

$(x, y, f(x, y))$

Curvature profile

$K(x, y)$
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3

$(x, y, f(x, y))$

Curvature profile

$K(x, y)$
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3 $(x, y, f(x, y))$

Curvature profile $K(x, y)$
Mixed Curvature Example: Two Hills

These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.
Mixed Curvature Example: Two Hills

These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3
$(x, y, f(x, y))$

Curvature profile $K(x, y)$
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.
Mixed Curvature Example: Two Hills

These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3
$(x, y, f(x, y))$

Curvature profile
$K(x, y)$
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3
$(x, y, f(x, y))$

Curvature profile $K(x, y)$
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3

$$(x, y, f(x, y))$$

Curvature profile

$$K(x, y)$$
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3

$(x, y, f(x, y))$

Curvature profile $K(x, y)$
Mixed Curvature Example: Two Hills

These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3

$(x, y, f(x, y))$

Curvature profile $K(x, y)$
Mixed Curvature Example: Two Hills

These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3

$(x, y, f(x, y))$

Curvature profile

$K(x, y)$
Mixed Curvature Example: Two Hills

These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3 $(x, y, f(x, y))$

Curvature profile $K(x, y)$
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3

$$(x, y, f(x, y))$$

Curvature profile

$K(x, y)$
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3
$(x, y, f(x, y))$

Curvature profile
$K(x, y)$
Mixed Curvature Example: Two Hills

These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.
Mixed Curvature Example: Two Hills

These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3 \\
$(x, y, f(x, y))$
These theorems are extremely powerful, but they completely fail in situations of mixed curvature. Here is an example.

Surface in \mathbb{R}^3 $(x, y, f(x, y))$

Curvature profile $K(x, y)$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

\[(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))\]
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$
In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$
In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$\left(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho) \right)$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

\[(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))\]
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$
Mixed Curvature Example: Bubble

In this example, the bubble has constant positive curvature at the top, but large negative curvature at the neck.

Surface of Revolution in \mathbb{R}^3

$(f(\rho) \cos \theta, f(\rho) \sin \theta, g(\rho))$
M. Berger.
A Panoramic View of Riemannian Geometry.

M. do Carmo.
Differential Geometry of Curves and Surfaces.

J. Jost.
Riemannian geometry and geometric analysis.

J. Lee.
Riemannian Manifolds: An Introduction to Curvature.

B. O’Neill.
Geodesics on Two Hills.
http://www.math.ucla.edu/~bon/.