Meromorphic A function f is meromorphic in a domain D if it is analytic in D except for poles.

Winding Number Let Γ be a simple closed contour that does not pass through 0. The winding number of Γ is the number of times the contour winds around the origin, which is positive if it goes around counterclockwise, and negative if it goes around clockwise. If C is a positively oriented simple closed contour, f is meromorphic in the domain enclosed by C and nonzero on C, and $\Gamma = f(C)$, then the winding number of Γ can be calculated from the change in the argument of $f(z)$ as f goes around C:

\[
\text{winding number of } \Gamma = \frac{1}{2\pi} \Delta_C \arg f(z).
\]

Argument Principle Suppose f is meromorphic in the domain interior to a positively oriented simple closed contour C, and f is analytic and non-zero on C. Let Z be the number of zeros of f inside C, including multiplicity, and P be the number of poles. Then

\[
\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} \, dz = \frac{1}{2\pi} \Delta_C \arg f(z) = Z - P.
\]

Rouche’s Theorem Suppose that f and g are analytic inside and on a simple closed contour C, and $|f(z)| > |g(z)|$ at each point on C. Then f and $f + g$ have the same number of zeros, counting multiplicities, inside C.

1