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On the Robustness of Single-Loop Sigma–Delta
Modulation

C. Sinan Güntürk, Jeffrey C. Lagarias, and Vinay A. Vaishampayan, Member, IEEE

Abstract—Sigma–delta modulation, a widely used method of
analog-to-digital (A/D) signal conversion, is known to be robust
to hardware imperfections, i.e., bit streams generated by slightly
imprecise hardware components can be decoded comparably well.
We formulate a model for robustness and give a rigorous analysis
for single-loop sigma–delta modulation applied to constant signals
(dc inputs) for time cycles, with an arbitrary (small enough)
initial condition 0, and a quantizer that may contain an offset
error. The mean-square error (MSE) of any decoding scheme for
this quantizer (with 0 and the offset error known) is bounded
below by 1

96

3. We also determine the asymptotically best pos-
sible MSE as for perfect decoding when 0 = 0 and
0 = 1

2
. The robustness result is the upper bound that a trian-

gular linear filter decoder (with both 0 and the offset error un-
known) achieves an MSE of40

3

3. These results establish the
known result that the (1 3) decay of the MSE with is op-
timal in the single-loop case, under weaker assumptions than pre-
vious analyses, and show that a suitable linear decoder is robust
against offset error. These results are obtained using methods from
number theory and Fourier analysis.

Index Terms—Dynamical systems, oversampled quantization,
quantization, robustness, sigma–delta modulation.

I. INTRODUCTION

M ODERN techniques of high-accuracy analog-to-digital
(A/D) conversion of band-limited signals is based on

using single-bit quantization together with oversampling, as a
practical alternative to using a multibit quantizer on a sequence
sampled at the Nyquist rate. This is true for reasons related to
both the quantizer and to oversampling. Single-bit quantizers
are preferable to multibit quantizers because they are easier and
cheaper to build. Also, single-bit sigma–delta modulation is ro-
bust against circuit imperfection, owing to the feedback which
compensates for deviations in the quantization thresholds. The
deviations in two-level feedback, which occurs in the case of
single-bit quantization, only amounts to an offset error com-
bined with an amplification error, while deviations from a mul-
tilevel feedback would cause irreversible harmonics. We con-
sider this robustness viewpoint further below. Oversampling fa-
cilitates implementations in various ways, including making the
job of analog filtering easier, see Candy and Temes [3] for a gen-
eral discussion.
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Sigma–delta modulation is a widely used method for A/D
conversion, see [3], [20], [22], [25]. It transforms a band-lim-
ited signal by oversampling using a single-bit quantizer with
feedback, to produce a two-valued signal stream which we
call thecoded signal. This signal stream is then appropriately
filtered—usually with a linear filter—to produce a (vector)
quantized version of the original signal. This filtering step may
be regarded as a form of decoding. The simplest version of
sigma–delta modulation is the single-loop version originally
introduced in [23], [1], [14], [8], but many more complicated
multiloop systems have since been considered.

The sigma–delta modulator is a nonlinear system with feed-
back and is notoriously difficult to analyze. One of the first rig-
orous analyses of this system was performed by Gray for con-
stant inputs [8], where he showed that filtering the quantization
output sequence with a rectangular window of lengthresults
in a reconstruction error bounded by , for all initial con-
ditions and values of the constant input. Gray [9] later used a
connection with ergodic theory to show that the mean-squared
error (MSE) decays asymptotically as , as ,
where is the number of taps of the filter used in decoding. The
notion of MSE used here is taken over a uniform distribution of
the value to be estimated, but also requires a time average1

of the error signal. Concerning lower bounds, Hein and Zakhor
[18] and Hein, Ibrahim, and Zakhor [17] showed that for any
decoding scheme for dc input, the quantization error must be at
least as large as a constant times , where the constant de-
pends on the initial value of the integrator in the sigma–delta
modulator at the beginning of the quantization interval. In actual
practice, sigma–delta modulators are used for A/D conversion of
band-limited signals and not for dc signals. Constant signals are
apparently the worst case for such modulators, and engineering
practice recommends adding a high-frequency dither signal to
make the input vary, cf. Candy and Temes [4, p. 14]. Regarding
the performance on more general classes of signals, and the use
of nonlinear decoding methods, see [11], [21], [6], [27]–[29];
we discuss this further in the concluding section.

This paper studies the robustness of sigma–delta schemes
against certain hardware imperfections. This seems to be one of
the main reasons they are used in practice [4, p. 13]. Nonideal-
ities for circuits using a single-bit quantizer can include offset
quantizer threshold, offset quantization level, leakage in the
integrator, nonunitary integrator gain, nonzero initial state, and
random noise. Because of their complexity, robustness of a given

1See Gray [9, eq. (6.1 ff)]. This time averaged quantityMf(x̂ � ) g is
equivalent to an average over initial conditions that are the values ofu oc-
curring in an infinitely long string of samples with fixed input valuex. In fact,
Gray’s paper is mainly concerned with the statistics of the “quantization noise”
fq(u ) � u :n � 1g.
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Fig. 1. Robust encoding problem.

system has generally been studied by simulation, see [21] for an
example. Feely and Chua [7] presenta rigorousstudy of the effect
of integratorleakageonquantizationofdcinputs.Inthiscasethere
canbeconstantsizeerrorswhichdonotgotozeroasthenumber
ofoutputbitsincreases,becausethereisamode-lockingeffect.2 In
this paper, we study the effects of offset quantizer thresholds and
ofnonzeroinitialstateof theencoder,andrigorouslyestablishthat
robustdecodersdoexist forconstantsignals.

The issue of robustness is one of information theory insofar as
it concerns the design of both the encoder and decoder. From the
robustnessviewpoint,anA/Dconversionschemeisa(necessarily
nonlinear) encoding operation that produces an output stream
of bits describing a signal. One has an ideal system used
for circuit design while the actual hardware produces a system

that approximates the behavior of but which makes
certain “systematic” errors. Whenever feedback is present, the
nonlinear nature of the system can potentially lead, after some
time, to large discrepancies between the internal states of system

and system given the same input, no matter how small
the “systematic” errors are. Here the “errors” which relate the
difference of the actual system to the ideal system are highly
correlated,butcanleadtoextremechangesintheoutputbitstream
(large Hamming distance). The robust encoding problem is to
design an ideal encoder for which there exists some decoder
robust against certain types of hardware imperfections .
Given a robust encoder, the robust decoding problem is to design
a decoder which produces an adequate reconstruction of
the signal from the digital bit streams produced by any of the (not
precisely known) systems . The robust coding problem is
quite different from the classical model in information theory of
the binary-symmetric channel, in which errors occur randomly.
In the classical case, error-correcting coding is introduced in
advance of transmission over the channel, but that is not available
in this context. Here, the errorsare not randombut are systematic,
causedbytheuncertainty intheencoderused.

Besides formulating a framework for the robust encoding
problem in the context of sigma–delta modulators, the object
of this paper is to provide an analysis of robustness in the
“simplest” situation. We give a rigorous performance analysis
of single-loop sigma–delta modulation in the case of a constant
signal, which includes the effect of nonzero initial state
and of possible offset in the quantizer. As indicated above,
the decay of the MSE for such signals is well known to be of
order , under various hypotheses. Here we rigorously
demonstrate robustness by showing that a simple linear decoder
achieves MSE of order with the initial condition and
dc offset in the quantizer unknown. To describe the precise
results, for constant signals, the sigma–delta modulator can
be viewed as a (scalar) quantizer, in which the quantization

2This provides a reason that constant signals are to be avoided in practice using
sigma–delta modulators.

assigned to a constant signalis the sequence of quantized
bits produced over the time periods, which will depend
on , the initial state of the sigma–delta modulator, and
the quantizer used, allowing offset error. Our analysis for
single-loop sigma–delta modulation with constant input signal

is valid for any fixed small enough initial state, for time
periods, allowing offset error in the quantizer. More precisely,
for offset error with we may allow .
We give upper and lower bounds for the MSE of this quantizer,
assuming only that the dc signalis uniformly distributed in

. In particular, no assumption is imposed on the quantizer
noise statistics within the time periods. The lower bound of

is valid for the optimal quantizer, which assumes that
both and the offset are known to the decoder. The proof
uses the same idea as [18] and [17] but sharpens it slightly in
obtaining a uniform bound independent of. We also obtain
asymptotically exact bounds for the MSE of optimal quanti-
zation for the special cases and as ,
using detailed facts about Farey fractions. The result for

has the constant , which sets a limit on
how much the lower bound can be improved. The robustness
result is the upper bound, which is , for the MSE using
the triangular linear filter decoder, which treats both the initial
integrator value and the offset as unknown to the decoder.
The proof uses Fourier series and an estimate from elementary
number theory. These MSE bounds improve on the analysis
of Gray [9] in that they do not do any averaging of the signal
over input values , and are valid for each fixed initial value

separately. The specific constantsand obtained in the
analysis can be further improved, with more detailed estimates,
which we do not attempt to do. A small improvement related to
the upper bound is indicated at the end of Appendix C.

Compared to a multibit quantizer which can achieve an expo-
nentially small MSE of order , the sigma–delta quanti-
zation output sequence is not efficient. However, this does not
mean that the quantizer is very nonuniform. It is well known,
e.g., [17], that the number of distinct codewords of length
produced by the first-order sigma–delta modulator on constant
signals, for fixed and , is bounded by . Hence, an ex-
ponential rate-distortion function is still achievable with further
coding of the output bit stream. The particular set of ad-
missible output codewords depends on the parametersand
. In our model with no random errors, a received codeword

contains some information about and It is this extra infor-
mation that makes robust decoding possible in this case.

II. PROBLEM FORMULATION

We first formulate the robust encoding problem as the simple
block diagram given in Fig. 1. We are given a family of encoders

where is a (vector) parameter. We may
think of these as representing an ideal encoder with the param-
eter measuring the deviation from ideality of a particular hard-
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Fig. 2. Encoder of a single-stage sigma–delta modulator.

ware implementation. The parameteris not under any control,
except to lie in a fixed compact setrepresenting the manufac-
turing tolerances. The decoder’s performance is to be measured
in the worst case against all the allowable encoders. We use MSE
as a performance measure. This model scheme does not include
any source of random errors, just systematic encoding errors
embodied in the parameter. For the sigma–delta modulator we
can take , but as we show below, the behavior of the
system really depends only on the single parameter .
We study the asymptotic behavior as the numberof output
bits becomes large. The possible existence of a robust decoder
depends on the family of encoders considered. For example,
Feely and Chua [7] consider encoders that include leaky in-
tegrators, and their results imply that for constant inputs and op-
timal decoding, the MSE does not go to zero with increasing,
so that a robust decoder does not exist in the asymptotic sense
considered here.

We consider systems that use a single-bit quantizer. Anideal
quantizerhas a threshold at and reconstruction levelsand
, whosequantizing map is given by

.
(2.1)

An offset quantizerhas a threshold at , where we as-
sume for some (say, ),
and reconstruction levels atand , hence is thequantizing map

given by

.
(2.2)

A single-loop (or first-order) sigma–delta modulator is illus-
trated in Fig. 2. The sigma–delta modulator consists of a quan-
tizer in a feedback loop. The behavior of the system with an
ideal quantizer is described by

(2.3)

while with the nonideal quantizer it is

(2.4)

The output vector at time is denoted . The fol-
lowing simple fact, observed in [19], simplifies the robust quan-
tizing problem.

Lemma 2.1:Let be a fixed input sequence. The output bit
sequence for the nonideal first-order sigma–delta modulator
with initial value and offset is identical to the output bit
sequence for the ideal first-order sigma–delta modulator with
the modified input value .

Proof: Since , on setting ,
the system (2.4) becomes equivalent to the system (2.3) with the
initial condition .

Lemma 2.1 shows that studying robustness of a first-order
sigma–delta modulator against arbitrary initial value and
offset error reduces to the special case of studying the ideal
system (2.3) with arbitrary (unknown) initial condition. This
reduction is special to first-order sigma–delta modulation. In
higher order schemes, the initial value and offset parameter

are independent sources of error.
Let us suppose the offset errorsatisfies

The system (2.3) with the ideal quantizer maps the interval
into itself, so if the original initial condition

for satisfies

(2.5)

then this condition is preserved under iteration (2.4). As long as

(2.5) is satisfied for all allowable values of , and the
subsequent analysis applies.

In view of the Lemma 2.1, in analyzing robustness against
offset error, it suffices to treat the case of a first-order
sigma–delta modulator with an ideal quantizer, and consider
robustness against the choice of initial value, and this we do
in the remainder of the paper. We treatas given, and average
over the input value , assumed uniformly distributed on
and independent of the value.

The ideal quantizer output at time is denoted and is
related to input by . From (2.3), it follows that
the quantizer output is given by

(2.6)

Equation (2.6) defines a map : , with input
and output . As the

vary, this map changes value at points where

(2.7)

These points constitute the boundaries of the level sets of,
in other words, the -bit quantization bins. Thus, a partition of

is created. Note that implicit in (2.7), is a nonlinear
function of the input . The resulting bins are very
irregularly shaped.

Now suppose that we have constant input signal , for
. This corresponds to looking at the intersections

of the sets in the partition with the principal diagonal of
given by . This naturally induces a
partition of , which we refer to as theeffective quantizer, in
order to distinguish it from the binary quantizer in the loop. The
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thresholds of the effective quantizer are obtained by determining
values of in that solve

(2.8)

Lemma 2.2:For a general in the range ,
the quantization thresholds are given by

(2.9)

where , and denotes the
fractional part of .

We give the derivation in Appendix A. For the special cases
and , the set of thresholds is the set

The set is related to theFarey series of order , which
is the set of fractions in reduced form with ,

, with , on the interval ,
arranged in ascending order [13, Ch. 3]. To be more specific,
let be the subset of the Farey series of order that has
evendenominators. Then it follows that . On the
other hand, the special cases and have

, the Farey series itself. The
connection of breakpoints for to the Farey series was
observed in Hein and Zakhor [20, p. 24].

Our problem is to give lower and upper bounds for the mean-
squared quantization error for fixed with the constant dc
input assumed drawn from the uniform distribution on .
For lower bounds, we assume optimal decoding, whereis
known to the decoder. The optimal MSE quantizer is described
using the map , which maps to the midpoint of
the interval that lies in, the endpoints of being successive
elements of the thresholds of the effective quantizer with initial
value . The map is the optimal quantizer under
our assumption that the quantitybeing quantized is uniformly
distributed in and independent of . Our objective is to
lower-bound the MSE, given by the integral

MSE (2.10)

In the upper bound case, we supposeis fixed but unknown
to the decoder, and consider a decoding algorithm which uses
a particular linear filter of length , the triangular filter. Let

denote the triangular filtered estimate for, which
depends on and . Our objective is to upper-bound

MSE (2.11)

for all . The choice of triangular filter for analysis is explained
at the end of Section IV.

III. L OWER BOUND FORMSE

In this section, we suppose that the initial valueis fixed and
known, with . The unit interval is partitioned
into subintervals , where
is the data available to the decoder. Theoptimal decoding
algorithm3 assigns to the quantization data
associated to the midpoint of the interval . There are
at most quantization intervals determined by the
values given in (2.9). For , some of the values are
repeated,4 and the number of distinct values is asymptotic
to as , using [13, Theorem 330], since the
points of can be put in one-to-one correspondence with
the Farey sequence . It is well known that the intervals
produced by the Farey sequence range in size from
down to size , see [13, Theorem 35]. The interval
contributes all by itself to the MSE of the optimal
decoding algorithm. We now show that the same bound holds
for an arbitrary .

Theorem 3.1:Suppose that is fixed with
and let be drawn uniformly from . Then, single-loop

oversampled sigma–delta modulation

with oversampling rate , using the optimal quantizer
with known to the quantizer, has MSE

MSE (3.1)

Proof: The value completely determines the quantiza-
tion bins. The quantization bin endpoints consist of the points

(3.2)

where . We will show that at least one of the
open intervals or contains no quantization
threshold. This interval is of length , and since an interval
of length , contributes to the MSE, the contribution of
this interval is .

Case 1: .
For , and

hence contains no quantization threshold.
Case 2: .
For , and

hence contains no quantization threshold.

The optimal lower bound in Theorem 3.1 appears to have a
constant on the order of five times larger thanbut seems hard
to determine. However, we can show the following exact result.

3The optimality of this algorithm is a consequence of the assumption that the
quantityx being quantized is uniformly distributed in[0; 1]. When conditioned
on the dataYYY , the distribution ofx is uniform on the quantization intervalJ(YYY ).

4That is, the values and for anyk � 2 determine the same quantization
threshold.
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Theorem 3.2:Suppose that or and let
be drawn uniformly from . Then single-loop oversampled
sigma–delta modulation

with oversampling rate , using the optimal quantizer
with known to the quantizer, has MSE

MSE as
(3.3)

where

and

We prove this result in Appendix B. The proof is based on
the explicit relation of the set of quantization thresholds in these
two cases with the Farey series. Theorem 3.2 sets a limit on how
much improvement is possible in the constantappearing in
Theorem 3.1, showing that the best constant can be no larger
than . Numerical simulations suggest that this bound
for is actually close to the minimum over all initial
conditions , and conceivably it might give the best constant.

IV. UPPERBOUND FORMSE

In this section, we suppose that is viewed as fixed
with , but is unknown. The quantization values

are known to the decoder. For simplicity,
we assume that is even.

We consider a triangular filter decoder

(4.1)

in which are given by

.
(4.2)

We give a detailed analysis for the case only; for the
case we may discard the value and use the
above filter on the remaining values.

Theorem 4.1:Suppose that is fixed with
and let be drawn uniformly in . Then single-loop over-
sampled sigma–delta modulation

at oversampling rate , using quantizer , has MSE

MSE (4.3)

The proof uses two number-theoretic lemmas, whose proofs
are given in Appendix C. In the following, denotes the
greatest common divisor of and .

Lemma 4.1:For fixed constant and all positive integers
and

(4.4)

Lemma 4.2:For all positive integers

(4.5)

Proof of Theorem 4.1:Suppose is even. We set

where is the triangular filter decoder

(4.6)

of filter weights (4.2), and . We have

Summing this by parts and substituting (A2) from Appendix A
yields

(4.7)

Then we have

(4.8)

which, upon taking the square yields

(4.9)

We now consider the MSE

MSE

Substituting (A4) from Appendix A into (4.9), and integrating,
we get

MSE

(4.10)
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We expand this expression, substitute
for positive , and rearrange to get

MSE

(4.11)

Next we apply Lemma 4.1 to (4.11) and replace the term
by its maximum value , to obtain

MSE

(4.12)

Finally, we conclude our estimate of MSE by applying
Lemma 4.2 with to (4.12) (combining
the double sums) to obtain

MSE (4.13)

which yields the desired bound.

Remarks:

1) The triangular filter was used in the analysis because of
the identity (4.7) that it yields for the error expression.
The “first-order” terms of size get canceled out
due to the subtraction, and this was exploited in the esti-
mate (4.8). This is not the case for the rectangular filter;
indeed, a telescoping argument gives that the error expres-
sion for this filter is equal to , which is
in general not smaller than . Other reasons based
on the Fourier transform can be given, see He, Kuhlmann,
and Buzo [15, Sec. IV.C].

2) Gray [9] determines the optimal linear filter (in the con-
text of [9]), whose general shape is similar to the trian-
gular filter, but differs from it slightly. Hein and Zakhor
[19] later constructed an “optimal” nonlinear decoding
method.

3) The proof of Theorem 4.1 did not determine the best
constant for MSE using the triangular filter, and some
improvements are possible on the constantby more
careful argument. The constant in Lemma 4.2 can be im-
proved slightly.

V. CONCLUSION

This paper gave rigorous upper and lower bounds on the MSE
for single-loop sigma–delta modulation applied to constant in-
puts, where the quantizer may have offset error and an arbi-

trary fixed initial value . It showed that a particular linear de-
coder is robust against such errors, and attains the optimal MSE
within a multiplicative constant. In these special circumstances,
a nonlinear decoder can save at most a multiplicative constant in
MSE over a linear decoder, and cannot achieve further asymp-
totic improvement in MSE as . These results show that
the redundancy built into oversampled sigma–delta modulation
schemes is serving the useful purpose of permitting robust de-
coding by a linear decoder. It seems likely that for the first-order
scheme, robust decoders should exist for a general class of non-
constant signals, but that is a more difficult question which we
have not addressed.

The methods of this paper exploited certain features specific
to first-order sigma–delta modulation (e.g., Lemma 2.1), which
do not hold for higher order sigma–delta schemes. However, the
general approach of viewing higher order schemes as discrete
dynamical systems is a useful one, to which Fourier-analytic
methods can be successfully applied, as in Daubechies and De-
Vore [6] and Güntürk [10], and for these number-theoretic ideas
of a more sophisticated type may also be relevant.

It would be of great interest to extend robustness analyses to
higher order sigma–delta systems and to obtain bounds valid
for general band-limited signals rather than constant signals.
For constant signals, it is believed that ath-order sigma–delta
modulation scheme can achieve an MSE that decays like

for signals of length , and that this should be
best possible. An upper bound is demonstrated
for certain th-order sigma–delta schemes in He, Kuhlmann,
and Buzo [15, Secs. 3 and 4], [16], but their analysis treats the
input as fixed, and then lets ; the error estimates
obtained are not uniform in (and require that be irrational),
hence their MSE bounds do not apply in the framework5 of this
paper. Is there a similar upper bound for some

th-order sigma–delta modulation scheme, using the MSE
criterion of this paper, and are there such schemes that are
robust against offset error in the quantizer, assuming perfect
integrators are used? For signals drawn from a wider class
of band-limited signals, it is believed that the achievable6

MSE should be , see Thao [27]. Demonstrating
this rigorously, with or without robustness, is apparently an
open problem. A rigorous lower bound of for
band-limited signals was obtained by Thao [27]. In the case

, nonlinear coding schemes that experimentally achieve
for a class of sinusoidal signals are given in [21],

[28], [29].
For general band-limited functions, it is an open problem

to rigorously establish whether nonlinear decoding schemes
for sigma–delta modulation schemes can offer an asymptotic
improvement over linear decoding. If so, another issue would
be whether there exists a nonlinear decoding achieving this
improvement which is robust. It seems an important general
problem to quantify the tradeoff between efficiency and robust-
ness in such schemes, both theoretically and in practice.

5The framework of this paper requires integrating their bounds overx, and
the resulting integral diverges.

6This MSE averages over a larger class of (bounded) signals, so the contribu-
tion of constant signals to the MSE is reduced.
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APPENDIX A
PROOF OFLEMMA 2.1

Set . Then, for , we have
. This way, the recursion (2.3) can be rewritten as

(A1)

Suppose . Then from (A1), implies
.
If is constant, then in fact, , for

all . If we now define

(A2)

then the iteration for is just rotation on the unit circle

(A3)

hence

(A4)

with , as was originally observed by Gray [8].
Thus, substituting this in (A2) one arrives at the formula

(A5)

On the other hand, one also has

(A6)

Combining the two and using , it follows that

(A7)

Clearly, the sequence is uniquely determined by the se-
quence , andvice versa. From (A7), it follows that in-
crements by one at the points ; ,
starting with at and ending with at . So,
the -tuple and, consequently, the quantization
codeword attains single and distinct values on
each of the subintervals defined by the threshold points
given in (2.9), which completes the proof.

APPENDIX B
PROOF OFTHEOREM 3.2

Lemma 2.2 shows that for the set of thresholds is

while for the set of thresholds is

the Farey series of order .
We first treat the case and estimate

MSE MSE

where means is an interval determined by , and
denotes its length. We will show that

MSE (B1)

in which is Euler’s -function, which counts the number of
integers with which are relatively prime to. The
intervals and each contribute . For each

, there are fractions in lowest terms.

Any two adjacent Farey fractions, have ,

for otherwise their mediant and falls between and

, contradicting their being adjacent. Thus, if

are the two neighboring fractions in , implies that
and . A well-known property of Farey

fractions is that for adjacent fractions, hence
the interval has length and

has length . All these intervals are disjoint
and they contribute

to MSE . Since , we obtain the bounds

Now

so that

on using , and . These bounds imply

Since
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we obtain

(B2)

Let denote the contribution to MSE coming from all
the remaining intervals. Each of them has endpoints, with

, hence their length . There are at
most such intervals, hence

Combining this with (B2) establishes (B1).
We next consider the case and estimate

MSE (B.3)

We will show that

MSE

(B4)

To begin, for we note that is a threshold and the set of
thresholds is symmetric about , so that

MSE (B5)

Next, we rescale the thresholds in by a factor of
to obtain themodified Farey series of order

and

Thus,

MSE MSE (B.6)

where

MSE (B7)

The modified Farey series is obtained from the Farey series
by removing all points with , which we call “even”

Farey points. Let the neighboring Farey points to the left and
right of such an be , and note that neither of
the neighboring points is “even.” The associated Farey intervals

and have lengths and
. In , these intervals are combined into a single interval

of length . The contribution to MSE for this
interval is , rather than the two contributions

in MSE . Using the identity
, we have

MSE MSE (B8)

where

(B9)

To estimate , we split it into two subsums and , where
sums over all “even” with , and sums

over those “even” with .
In the first subsum, we have , , hence

(B10)

Here is “even,” so its denominator is odd, and there are
exactly “even” numerators . We obtain

in a similar fashion to the estimate (B2).
To bound the second sum , we note that the mediant

lies inside . The only point of inside this
interval is , so we conclude that

Thus, at least one of and exceeds , hence

where . Each value can occur at most
times, hence

Combining these estimates gives7

(B11)
Then combining (B1), (B6), (B8), and (B11) yields the desired
formula (B4).

It remains to obtain explicit formulas for the coefficients in
the formulas (B1) and (B4) above, i.e., to determine the con-
stants . We use the fact [30, p. 6] that

One easily calculates that

7The possible “even” points = contributes onlyO( ) to T and
goes in the error term.
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since if is odd and if is
even. We take and obtain

MSE

where , and

MSE

where .

APPENDIX C
PROOF OFLEMMAS 4.1 AND 4.2

Proof of Lemma 4.1:We shall prove the lemma by estab-
lishing the formula

(C1)

where . Denote the expression on the left-hand side
by . We substitute and for in the Fourier
series expansion

where for and . This Fourier
series is only conditionally convergent, and is to be interpreted
as the limit as of the sum taken from to . How-
ever, its partial sums are uniformly bounded

for all and all (C2)

In fact, one can take [24, Example 4, p. 22]. Hence,
using the bounded convergence theorem, one can change the
order of integration and double sum to obtain

(C3)

Summing up (C3) over the nonzero indexes given by
and straightforward manipulations result in

(C4)

which, in turn, implies using

(C5)

for some .

Remark: Using the formula

(C.6)

the exact value of is easily found to be

Proof of Lemma 4.2:We have

(C7)

However, this last expression is bounded by

which proves (4.5).

Remark: The constant appearing in (4.5) can be improved
to by using the inequality

(C8)

where is the Euler–Mascheroni constant defined by

(C9)

Numerical experiments suggest the optimal constant to be.
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