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Abstract—This paper proposes a novel Nyquist-rate analog-to-
digital (A/D) conversion algorithm which achieves exponential ac-
curacy in the bit-rate despite using imperfect components. The
proposed algorithm is based on a robust implementation of a beta-
encoder with � � � � �� �

�
����, the golden ratio. It was previ-

ously shown that beta-encoders can be implemented in such a way
that their exponential accuracy is robust against threshold offsets
in the quantizer element. This paper extends this result by allowing
for imperfect analog multipliers with imprecise gain values as well.
Furthermore, a formal computational model for algorithmic en-
coders and a general test bed for evaluating their robustness is
proposed.

Index Terms—Analog-to-digital conversion, beta encoders, beta
expansions, golden ratio, quantization, robustness.

I. INTRODUCTION

T HE aim of A/D conversion is to quantize analog signals,
i.e., to represent signals which take their values in the con-

tinuum by finite bitstreams. Basic examples of analog signals
include audio signals and natural images. Typically, the signal
is first sampled on a grid in its domain, which is sufficiently
dense so that perfect (or near-perfect) recovery from the ac-
quired sample values is ensured by an appropriate sampling the-
orem. The next stage of A/D conversion consists of replacing the
sequence of continuous-valued signal samples with a sequence
of discrete-valued quantized signal, which is then coded suit-
ably for further stages of the digital pipeline.

Over the years, A/D conversion systems have evolved into
two main categories: Nyquist-rate converters and oversampling
converters. Nyquist-rate analog-to-digital converters (ADCs)
operate in a memoryless fashion in that each signal sample is
quantized separately; the goal is to approximate each sample
value as closely as possible using a given bit-budget, e.g.,
the number of bits one is allowed to use to quantize each
sample. In this case, the analog objects of interest reduce to real

Manuscript received August 31, 2008; revised February 20, 2010. Date of
current version September 15, 2010. I. Daubechies was supported in part by
the NSF Grant DMS-0504924. C. S. Güntürk was supported in part by NSF
Grant CCF-0515187, in part by an Alfred P. Sloan Research Fellowship, and in
part by an NYU Goddard Fellowship. Y. Wang was supported in part by NSF
Grant DMS-0410062. Ö. Yılmaz was supported in part by an NSERC Discovery
Grant.

I. Daubechies is with the Department of Mathematics and with the Program
in Applied and Computational Mathematics, Princeton University, Princeton,
NJ 08544 USA (e-mail: ingrid@math.princeton.edu).

C. S. Güntürk is with the Courant Institute of Mathematical Sciences, New
York University, New York, NY 10012 USA (e-mail: gunturk@courant.nyu.
edu).

Y. Wang is with the Department of Mathematics, Michigan State University,
East Lansing, MI 48824 USA (e-mail: ywang@math.msu.edu).

Ö. Yılmaz is with the Department of Mathematics, The University of British
Columbia, Vancouver, BC V6T 1Z2 Canada (e-mail: oyilmaz@math.ubc.ca).

Communicated by E.-H. Yang, Associate Editor for Source Coding.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2010.2059750

numbers in some interval, say . The overall accuracy of
Nyquist-rate conversion is thus proportionate to the accuracy
with which each sample is quantized, provided a suitably
stable reconstruction filter is used at the digital-to-analog (D/A)
conversion stage. The popular Pulse Code Modulation (PCM)
is based on Nyquist-rate conversion. In contrast, oversampling
ADCs incorporate memory elements (i.e., feedback) in their
structure so that the quantized value of each sample depends on
other (prior) sample values and their quantization. The overall
accuracy of such converters can only be assessed by comparing
the continuous input signal with the continuous output signal
obtained from the quantized sequence after the D/A conversion
stage. This is because signal samples are quantized collectively
and the resolution of the quantization alphabet is typically very
coarse. In fact, an oversampling ADC can operate with even a
one-bit quantization alphabet, provided the oversampling ratio
is sufficiently high.

The type of ADC that is most suitable for a given application
depends on many parameters such as the given bandwidth, the
desired conversion speed, the desired conversion accuracy, and
the given precision of the analog circuit elements. Nyquist rate
converters can deal with high-bandwidth input signals and op-
erate relatively fast, but require high-precision circuit elements.
Oversampling converters, on the other hand, have to work with
lower-bandwidth input signals, but can incorporate low-cost,
imprecise analog components. One of the main reasons why
oversampling converters have been very popular is this robust-
ness property [1], [2].

Robustness of an ADC depends on the very algorithm it is
based on. For example, PCM is typically based on successive
approximation, and oversampling converters are based on
sigma-delta modulation [1]–[3]. modulation itself
comes in a wide variety of schemes, each one providing a
different level of accuracy for a given oversampling ratio (or
bit-budget). Under perfect operating conditions, i.e., using
precise circuit elements and without noise, the accuracy of

modulation falls short of the asymptotically optimal1

exponential accuracy of PCM [4], even though a lesser form
of exponential accuracy can be achieved with modulation
as well [5]. On the other hand, when nonideal (and, therefore,
more realistic) circuits are considered, modulation is
known to perform better. This robustness is largely attributed to
the redundant set of output codes that modulation produces
(see, e.g., [6]). However, the rate-distortion limits of A/D
conversion, be in oversampled or Nyquist settings, is in general
not well understood. This paper will focus on Nyquist-rate
ADCs and introduce a novel encoding algorithm in this setting,
called the golden ratio encoder (GRE), which will be shown to
possess superior robustness and accuracy properties. To explain
what we mean by this, we first present below the robustness

1In Section II-A, we define a precise notion of asymptotically rate-optimal
encoders.
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issues of two Nyquist-rate ADC algorithms, the successive
approximation algorithm of PCM, and a robust improvement to
PCM based on fractional base expansions (beta-encoders) that
has been proposed more recently.

A. Pulse Code Modulation (PCM)

Let . The goal is to represent by a finite bitstream,
say, of length . The most straightforward approach is to con-
sider the standard binary (base-2) representation of

(1)

and to let be the -bit truncation of the infinite series in (1),
i.e.,

(2)

It is easy to see that so that
provide an -bit quantization of with distortion not more than

. This method provides the most efficient memoryless en-
coding in a rate-distortion sense.

As our goal is analog-to-digital conversion, the next natural
question is how to compute the bits on an analog circuit. One
popular method to obtain , called successive approximation,
extracts the bits using a recursive operation. Let and
suppose is as in (2) for . Define
for . It is easy to see that the sequence satisfies the
recurrence relation

(3)

and the bits can simply be extracted via the formula

(4)

Note that the relation (3) is the doubling map in disguise;
, where .

The successive approximation algorithm as presented above
provides an algorithmic circuit implementation that computes
the bits in the binary (base-2) expansion of while keeping
all quantities ( and ) macroscopic and bounded, which
means that these quantities can be held as realistic and mea-
surable electric charges. However, the base-2 representation
together with the successive approximation algorithm is not the
most popular choice as an A/D conversion method, even though
it is the most popular choice as a digital encoding format. This
is mainly because of its lack of robustness. As said above,
analog circuits are never precise, suffering from arithmetic
errors (e.g., through nonlinearity) as well as from quantizer
errors (e.g., threshold offset), simultaneously being subject to
thermal noise. Consequently, all mathematical relations hold
only approximately, and all quantities are approximately equal
to their theoretical values. In the case of the algorithm described
in (3) and (4), this means that the approximation error will
exceed acceptable bounds after only a finite (small) number
of iterations due to the fact that the dynamics of the above
doubling map has “sensitive dependence on initial conditions”.

From a theoretical point of view, the imprecision problem
associated to the successive approximation algorithm is perhaps
not a sufficient reason to discard the base-2 representation out
of hand. After all, we do not have to use the specific algorithm
in (3) and (4) to extract the bits, and conceivably there could be
better, i.e., more resilient, algorithms to evaluate for each

. However, the root of the real problem lies deeper: the bits in
the base-2 representation are essentially uniquely determined,
and are ultimately computed by a greedy method. Since

, there exists essentially no choice other
than to set according to (4). (A possible choice exists for of
the form , with an odd integer, and even then, only
the bit can be chosen freely: for the choice , one has

for all ; for the choice , one has
for all .) It is clear that there is no way to recover from an
erroneous bit computation: if the value 1 is assigned to even
though , then this causes an “overshoot” from
which there is no way to “back up” later. Similarly assigning
the value 0 to when implies a “fall-behind”
from which there is no way to “catch up” later.

Due to this lack of robustness, the base-2 representation is
not the preferred quantization method for A/D conversion. For
similar reasons, it is also generally not the preferred method for
D/A conversion.

B. Beta Encoders

It turns out that fractional base -representations ( -expan-
sions) are more error resilient [4], [7]–[10]. Fix . It is
well known that every in (in fact, in ) can
be represented by an infinite series

(5)

with an appropriate choice of the bit sequence . Such a se-
quence can be obtained via the following modified successive
approximation algorithm: Define . Then the
bits obtained via the recursion

(6)

satisfy (5) whenever . If
, the above recursion is called the greedy selection algo-

rithm; if it is the lazy selection algorithm.
The intermediate cases correspond to what we call cautious se-
lection. An immediate observation is that many distinct -repre-
sentations in the form (5) are now available. In fact, it is known
that for any , almost all numbers (in the Lebesgue
measure sense) have uncountably many distinct -representa-
tions [11]. Although -bit truncated -representations are only
accurate to within , which is inferior to the accuracy
of a base-2 representation, the redundancy of -representation
makes it an appealing alternative since it is possible to recover
from (certain) incorrect bit computations. In particular, if these
mistakes result from an unknown threshold offset in the quan-
tizer, then it turns out that a cautious selection algorithm (rather
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than the greedy or the lazy selection algorithms) is robust pro-
vided a bound for the offset is known [4]. In other words, perfect
encoding is possible with an imperfect (flaky) quantizer whose
threshold value fluctuates in the interval .

It is important to note that a circuit that computes truncated
-representations by implementing the recursion in (6) has two

critical parameters: the quantizer threshold (which, in the case
of the “flaky quantizer”, is the pair ) and the multiplier .
As discussed above, -encoders are robust with respect to the
changes in the quantizer threshold. On the other hand, they are
not robust with respect to the value of (see Section II-C for a
discussion). A partial remedy for this has been proposed in [8]
which enables one to recover the value of with the required
accuracy, provided its value varies smoothly and slowly from
one clock cycle to the next.

C. Accuracy and Robustness

The above discussion highlights the fact that accuracy and
robustness are two of the main design criteria for ADCs. The
accuracy of an ADC is typically defined in terms of the rela-
tion between the bit rate and the associated distortion, as men-
tioned above and formalized in the next section. For example,
we say that an ADC is exponentially accurate if the distortion
is bounded by an exponential function of the bit rate. On the
other hand, robustness is harder to assess numerically. A quan-
titative measure of accuracy together with a numerical assess-
ment of the robustness properties of ADCs seems to be absent
in the literature (even though an early attempt was made in [4]).
In this paper, we shall analyze the implementation of a wide
class of ADCs, including PCM with successive approximation,
beta encoders, and modulators, via a new computational
model framework. This model framework incorporates directed
acyclic graphs (DAGs) along with certain scalar circuit param-
eters that are used to define algorithmic converters, and makes
it possible to formally investigate whether a given ADC is ro-
bust with respect to any of its circuit parameters.

D. Contribution of This Paper

In Section II-C, we specify the DAG models and the associ-
ated parameters of the ADCs that we discussed above. We show
that oversampling ADCs (based on modulation) are robust
with respect to their full parameter set. However, the accuracy of
such converters is only inverse polynomial in the bit rate. Beta
encoders, on the other hand, achieve exponential accuracy, but
they are not robust with respect to certain circuit parameters (see
discussion Section II-C).

Our main contribution in this paper is a novel ADC which we
call the golden ratio encoder (GRE). GRE computes -repre-
sentations with respect to base via an
implementation that does not fit into one of the above outlined
algorithms for -representations. We show that GRE is robust
with respect to its full parameter set in its DAG model, while en-
joying exponential accuracy in the bit rate . To our
knowledge, GRE is the first example of such a scheme.

E. Paper Outline

In Section II-A, we introduce notation and basic termi-
nology. In Section II-B, we review and formalize fundamental
properties of algorithmic converters. Section II-C introduces
a computational model for algorithmic converters, formally
defines robustness for such converters, and reviews, within the
established framework, the robustness properties of several
algorithmic ADCs in the literature. Section III is devoted to
GRE and its detailed study. In particular, Sections III-A and
III-B, we introduce the algorithm underlying GRE and establish
basic approximation error estimates. In Section III-C, we give
our main result, i.e., we prove that GRE is robust in its full
parameter set. Sections III-D–III-F discuss several additional
properties of GRE. Finally, in Section IV, we comment on how
one can construct “higher-order” versions of GRE.

II. ENCODING, ALGORITHMS AND ROBUSTNESS

A. Basic Notions for Encoding

We denote the space of analog objects to be quantized by .
More precisely, let be a compact metric space with metric

. Typically, will be derived from a norm defined in
an ambient vector space, via . We say that

is an -bit encoder for if maps to . An
infinite family of encoders is said to be progressive if
it is generated by a single map such that for

(7)

In this case, we will refer to as the generator, or sometimes
simply as the encoder, a term which we will also use to refer to
the family .

We say that a map is a decoder for if maps the
range of to some subset of . Once is an infinite set,
can never be one-to-one; hence, analog-to-digital conversion is
inherently lossy. We define the distortion of a given encoder-
decoder pair by

(8)

and the accuracy of by

(9)

The compactness of ensures that there exists a family of
encoders and a corresponding family of decoders

such that as ; i.e., all
can be recovered via the limit of . In this

case, we say that the family of encoders is invertible.
For a progressive family generated by , this
actually implies that is one-to-one. Note, however, that the
supremum over in (8) imposes uniformity of approximation,
which is slightly stronger than mere invertibility of .

An important quality measure of an encoder is the rate at
which as . There is a limit to this rate
which is determined by the space . (This rate is connected
to the Kolmogorov -entropy of , , defined to be the
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base-2 logarithm of the smallest number such that there ex-
ists an -net for of cardinality [12]. If we denote the map

by , i.e., , then the infimum
of over all possible encoders is roughly equal to

.) Let us denote the performance of the optimal encoder
by the number

(10)

In general, an optimal encoder may be impractical, and a
compromise is sought between optimality and practicality.
It is, however, desirable when designing an encoder that its
performance is close to optimal. We say that a given family of
encoders is asymptotically rate-optimal for , if there
exists a sequence such that

(11)

for all . Here represents the fraction of additional bits that
need to be sent to guarantee the same reconstruction accuracy
as the optimal encoder using bits.

An additional important performance criterion for an ADC
is whether the encoder is robust against perturbations. Roughly
speaking, this robustness corresponds to the requirement that for
all encoders that are small (and mostly unknown) per-
turbations of the original invertible family of encoders ,
it is still true that , possibly at the same rate as

, using the same decoders. The magnitude of the perturba-
tions, however, need not be measured using the Hamming metric
on (e.g., in the form ). It
is more realistic to consider perturbations that directly have to
do with how these functions are computed in an actual circuit,
i.e., using small building blocks (comparators, adders, etc.). It is
often possible to associate a set of internal parameters with such
building blocks, which could be used to define appropriate met-
rics for the perturbations affecting the encoder. From a math-
ematical point of view, all of these notions need to be defined
carefully and precisely. For this purpose, we will focus on a spe-
cial class of encoders, so-called algorithmic converters. We will
further consider a computational model for algorithmic con-
verters and formally define the notion of robustness for such
converters.

B. Algorithmic Converters

By an algorithmic converter, we mean an encoder that can
be implemented by carrying out an autonomous operation (the
algorithm) iteratively to compute the bit representation of any
input . Many ADCs of practical interest, e.g., modulators,
PCM, and beta-encoders, are algorithmic encoders. Fig. 1 shows
the block diagram of a generic algorithmic encoder.

Let denote the set of possible “states” of the converter cir-
cuit that get updated after each iteration (clock cycle). More pre-
cisely, let

be a “quantizer” and let

Fig. 1. Block diagram describing an algorithmic encoder.

be the map that determines the state of the circuit in the next
clock cycle given its present state. After fixing the initial state
of the circuit , the circuit employs the pair of functions
to carry out the following iteration:

(12)

This procedure naturally defines a progressive family of en-
coders with the generator map given by

We will write to refer to the algorithmic converter
defined by the pair and the implicit initial condition .
If the generator is invertible (on ), then we say that the
converter is invertible, as well.

Definition 1 (1-Bit Quantizer): We define the 1-bit quantizer
with threshold value to be the function

.
(13)

Examples of Algorithmic Encoders:
1. Successive approximation algorithm for PCM. The succes-

sive approximation algorithm sets , and
computes the bits , , in the binary expan-
sion via the iteration

(14)

Defining and , we
obtain an invertible algorithmic converter for .
A priori, we can set , though it is easily seen that all
the remain in .

2. Beta-encoders with successive approximation implementa-
tion [4]. Let . A -representation of is an ex-
pansion of the form , where .
Unlike a base-2 representation, almost every has infin-
itely many such representations. One class of expansions
is found via the iteration

(15)

where . The case cor-
responds to the “greedy” expansion, and the case
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to the “lazy” expansion. All values of
are admissible in the sense that the re-

main bounded, which guarantees the validity of the inver-
sion formula. Therefore, the maps , and

define an invertible algorithmic
encoder for . It can be checked that all re-
main in a bounded interval independently of .

3. First-order with constant input. Let . The
first-order (Sigma-Delta) ADC sets the value of

arbitrarily and runs the following iteration:

(16)

It is easy to show that for all , and the bound-
edness of implies

(17)

that is, the corresponding generator map is invert-
ible. For this invertible algorithmic encoder, we have

, , , and
.

4. -order with constant input. Let be the forward
difference operator defined by . A

-order ADC generalizes the scheme in Example 3
by replacing the first-order difference equation in (16) with

(18)

which can be rewritten as

(19)

where . Here is com-
puted by a function of and the previous state
variables , which must guarantee that
the remain in some bounded interval for all , pro-
vided that the initial conditions are picked
appropriately. If we define the vector state variable

, then it is apparent that we can
rewrite the above equations in the form

(20)

where is the companion matrix defined by

...
...

. . .
... (21)

and . If is such that there exists a
set with the property implies

for each , then it is guar-
anteed that the are bounded, i.e., the scheme is stable.
Note that any stable order scheme is also a first order
scheme with respect to the state variable . This

Fig. 2. Sample DAG model for the function pair ���� �.

implies that the inversion formula (17) holds, and, there-
fore, (20) defines an invertible algorithmic encoder. Stable

schemes of arbitrary order have been devised in [13]
and in [5]. For these schemes is a proper subinterval of

.

C. Computational Model for Algorithmic Encoders and
Formal Robustness

Next, we focus on a crucial property that is required for any
ADC to be implementable in practice. As mentioned before,
any ADC must perform certain arithmetic (computational) op-
erations (e.g., addition, multiplication), and Boolean operations
(e.g., comparison of some analog quantities with predetermined
reference values). In the analog world, these operations cannot
be done with infinite precision due to physical limitations.
Therefore, the algorithm underlying a practical ADC needs to
be robust with respect to implementation imperfections.

In this section, we shall describe a computational model for
algorithmic encoders that includes all the examples discussed
above and provides us with a formal framework in which to in-
vestigate others. This model will also allow us to formally de-
fine robustness for this class of encoders, and make comparisons
with the state-of-the-art converters.

Directed Acyclic Graph Model: Recall (12) which (along
with Fig. 1) describes one cycle of an algorithmic encoder. So
far, the pair of maps has been defined in a very gen-
eral context and could have arbitrary complexity. In this section,
we would like to propose a more realistic computational model
for these maps. Our first assumption will be that and

.
A directed acyclic graph (DAG) is a directed graph with no

directed cycles. In a DAG, a source is a node (vertex) that has
no incoming edges. Similarly, a sink is a node with no outgoing
edges. Every DAG has a set of sources and a set of sinks, and
every directed path starts from a source and ends at a sink. Our
DAG model will always have source nodes that correspond
to and the -dimensional vector , and sink nodes
that correspond to and the -dimensional vector . This
is illustrated in Fig. 2 which depicts the DAG model of an im-
plementation of the Golden Ratio Encoder (see Section III and
Fig. 4). Note that the feedback loop from Fig. 1 is not a part
of the DAG model; therefore, the nodes associated to and
have no incoming edges in Fig. 2. Similarly the nodes associated
to and have no outgoing edges. In addition, the node
for , even when is not actually used as an input to ,
will be considered only as a source (and not as a sink).

In our DAG model, a node which is not a source or a sink
will be associated with a component, i.e., a computational de-
vice with inputs and outputs. Mathematically, a component is
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Fig. 3. Representative class of components in an algorithmic encoder.

Fig. 4. Block diagram of the Golden Ratio Encoder (Section III) corresponding
to the DAG model in Fig. 2.

simply a function (of smaller “complexity”) selected from a
given fixed class. In the setting of this paper, we shall be con-
cerned with only a restricted class of basic components: con-
stant adder, pair adder/subtractor, constant multiplier, pair mul-
tiplier, binary quantizer, and replicator. These are depicted in
Fig. 3 along with their defining relations, except for the binary
quantizer, which was defined in (13). Note that a component
and the node at which it is placed should be consistent, i.e., the
number of incoming edges must match the number of inputs of
the component, and the number of outgoing edges must match
the number of outputs of the component.

When the DAG model for an algorithmic encoder defined
by the pair employs the ordered -tuple of components

(including repetitions), we will denote this
encoder by .

Robustness: We would like to say that an invertible algo-
rithmic encoder is robust if is also invert-
ible for any in a given neighborhood of and if the
generator of has an inverse defined on
that is also an inverse for the generator of . To make
sense of this definition, we need to define the meaning of “neigh-
borhood” of the pair .

Let us consider an algorithmic encoder as
described above. Each component in may incorporate
a vector of parameters (allowing for the possibility of the
null vector). Let be the aggregate parameter
vector of such an encoder. We will then denote by .

Let be a space of parameters for a given algorithmic
encoder and consider a metric on . We now say that

is robust if there exists a such that
is invertible for all with with

a common inverse. Similarly, we say that is

robustin approximation if there exists a and a family of
decoders such that

for all with , where
and is a constant that is independent of

.
From a practical point of view, if an algorithmic encoder

is robust, and is implemented with a per-
turbed parameter instead of the intended , one can still
obtain arbitrarily good approximations of the original analog
object without knowing the actual value of . However, here
we still assume that the “perturbed” encoder is algorithmic,
i.e., we use the same perturbed parameter value at each
clock cycle. In practice, however, many circuit components are
“flaky”, that is, the associated parameters vary at each clock
cycle. We can describe such an encoder again by (12); however,
we need to replace by , where is the
sequence of the associated parameter vectors. With an abuse of
notation, we denote such an encoder by (even
though this is clearly not an algorithmic encoder in the sense
of Section II-B). Note that if , i.e.,
for all , the corresponding encoder is . We
now say that is strongly robust if there exists

such that is invertible for all with
with a common inverse. Here, is the

space of parameter sequences for a given converter, and is
an appropriate metric on . Similarly, we call an algorithmic
encoder strongly robust in approximation if there exists
and a family such that

for all flaky encoders with
where is the metric on obtained

by restricting (assuming such a restriction makes sense),
is the N-tuple whose components are each , and

.
Examples of Section II-B: Let us consider the examples of

algorithmic encoders given in Section II-B. The successive ap-
proximation algorithm is a special case of the beta encoder for

and . As we mentioned before, there is no unique
way to implement an algorithmic encoder using a given class of
components. For example, given the set of rules set forth ear-
lier, multiplication by 2 could conceivably be implemented as
a replicator followed by a pair adder (though a circuit engineer
would probably not approve of this attempt). It is not our goal
here to analyze whether a given DAG model is realizable in
analog hardware, but to find out whether it is robust given its
set of parameters.

The first order quantizer is perhaps the encoder with the
simplest DAG model; its only parametric component is the bi-
nary quantizer, characterized by . For the beta encoder it
is straightforward to write down a DAG model that incorporates
only two parametric components: a constant multiplier and a bi-
nary quantizer. This model is thus characterized by the vector
parameter . The successive approximation encoder
corresponds to the special case . If the constant
multiplier is avoided via the use of a replicator and adder, as
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described above, then this encoder would be characterized by
, corresponding to the quantizer threshold.

These three models ( quantizer, beta encoder, and succes-
sive approximation) have been analyzed in [4] and the following
statements hold:

1. The successive approximation encoder is not robust for
(with respect to the Euclidean metric on

). The implementation of successive approximation that
avoids the constant multiplier as described above, and thus
characterized by is not robust with respect to .

2. The first order quantizer is strongly robust in approx-
imation for the parameter value (and in fact for
any other value for ). However, for

.
3. The beta encoder is strongly robust in approximation for a

range of values of , when is fixed. Technically,
this can be achieved by a metric which is the sum of the
discrete metric on the first coordinate and the Euclidean
metric on the second coordinate between any two vectors

, and . This way we ensure that the
first coordinate remains constant on a small neighborhood
of any parameter vector. Here for

. This choice of the metric, however, is not
necessarily realistic.

4. The beta encoder is not robust with respect to the Euclidean
metric on the parameter vector space in which both

and vary. In fact, this is the case even if we consider
changes in only: let and be the generators of beta
encoders with parameters and , respec-
tively. Then and do not have a common inverse for
any . To see this, let . Then a simple
calculation shows

where for any .
Consequently, .
This shows that to decode a beta-encoded bit-stream, one
needs to know the value of at least within the desired
precision level. This problem was addressed in [8], where
a method was proposed for embedding the value of in
the encoded bit-stream in such a way that one can recover
an estimate for (in the digital domain) with exponen-
tial precision. Beta encoders with the modifications of [8]
are effectively robust in approximation (the inverse of the
generator of the perturbed encoder is different from the in-
verse of the intended encoder; however, it can be precisely
computed). Still, even with these modifications, the corre-
sponding encoders are not strongly robust with respect to
the parameter .

5. The stable schemes of arbitrary order that were de-
signed by Daubechies and DeVore, [13], are strongly ro-
bust in approximation with respect to their parameter sets.
Also, a wide family of second-order schemes, as dis-
cussed in [14], are strongly robust in approximation. On
the other hand, the family of exponentially accurate one-bit

schemes reported in [5] are not robust because each

scheme in this family employs a vector of constant multi-
pliers which, when perturbed arbitrarily, result in bit se-
quences that provide no guarantee of even mere invert-
ibility (using the original decoder). The only reconstruc-
tion accuracy guarantee is of Lipshitz type, i.e., the error
of reconstruction is controlled by a constant times the pa-
rameter distortion.

Neither of these cases result in an algorithmic encoder with
a DAG model that is robust in its full set of parameters and
achieves exponential accuracy. To the best of our knowledge,
our discussion in the next section provides the first example of
an encoder that is (strongly) robust in approximation while si-
multaneously achieving exponential accuracy.

III. GOLDEN RATIO ENCODER

In this section, we introduce a Nyquist rate ADC, thegolden
ratio encoder (GRE), that bypasses the robustness concerns
mentioned above while still enjoying exponential accuracy
in the bit-rate. In particular, GRE is an algorithmic encoder
that is strongly robust in approximation with respect to its full
set of parameters, and its accuracy is exponential. The DAG
model and block diagram of the GRE are given in Figs. 2 and
4, respectively.

A. The Scheme

We start by describing the recursion underlying the GRE. To
quantize a given real number , we set
and , and run the iteration process

(22)

Here, is a quantizer to be specified later. Note
that (22) describes a piecewise affine discrete dynamical system
on . More precisely, define

(23)

Then we can rewrite (22) as

(24)

Now, let , , and suppose is a quan-
tizer on . The formulation in (24) shows that GRE is
an algorithmic encoder, , where

for . Next, we show that GRE is invertible
by establishing that, if is chosen appropriately, the sequence

obtained via (22) gives a beta representation of with
.

B. Approximation Error and Accuracy

Proposition 1: Let and suppose are generated
via (22) with and . Then
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if and only if the state sequence is bounded. Here is
the golden mean.

Proof: Note that

(25)

where the third equality follows from , and the
last equality is obtained by setting and . Defining
the -term approximation error to be

it follows that

provided
(26)

Clearly, (26) is satisfied if there is a constant , independent
of , such that , . Conversely, suppose (26) holds, and
assume that is unbounded. Let N be the smallest integer
for which for some . Without loss of
generality, assume (the argument below, with simple
modifications, applies if ). Then, using (22) repeatedly,
one can show that

where is the Fibonacci number. Finally, using

(which is known as Binet’s formula, e.g., see [15]) we conclude
that for every positive integer , showing that
(26) does not hold if the sequence is not bounded.

Note that the proof of Proposition 1 also shows that the
-term approximation error decays exponentially in

if and only if the state sequence , obtained when encoding
, remains bounded by a constant (which may depend on ).

We will say that a GRE is stable on if the constant in
Proposition 1 is independent of , i.e., if the state se-
quences with and are bounded by a constant
uniformly in . In this case, the following proposition holds.

Proposition 2: Let be the generator of the GRE, de-
scribed by (22). If the GRE is stable on , it is exponentially
accurate on . In particular, .

Next, we investigate quantizers that generate stable
encoders.

C. Stability and Robustness With Imperfect Quantizers

To establish stability, we will show that for several choices
of the quantizer , there exist bounded positively invariant sets

such that . We will frequently use the basic
1-bit quantizer

if
if .

Most practical quantizers are implemented using arithmetic op-
erations and . One class that we will consider is given by

if
if .

(27)

Note that in the DAG model of GRE, the circuit components that
implement incorporate a parameter vector

. Here, is the threshold of the 1-bit basic quantizer, and
is the gain factor of the multiplier that maps to . One

of our main goals in this paper is to prove that GRE, with the
implementation depicted in Fig. 4, is strongly robust in approxi-
mation with respect to its full set of parameters. That is, we shall
allow the parameter values to change at each clock cycle (within
some margin). Such changes in parameter can be incorporated
to the recursion (22) by allowing the quantizer to be flaky.
More precisely, for , let be the flaky version of
defined by

if
if

or if .

We shall denote by the flaky version of , which is now

Note that (22), implemented with , does not gen-
erate an algorithmic encoder. At each clock cycle, the action of

is identical to the action of
for some . In this case, using the notation intro-
duced before, (22) generates . We will refer
to this encoder family as GRE with flaky quantizer.

A Stable GRE With No Multipliers—The Case : We
now set in (27) and show that the GRE implemented
with is stable, and thus generates an encoder family with
exponential accuracy (by Proposition 2). Note that in this case,
the recursion relation (22) does not employ any multipliers (with
gains different from unity). In other words, the associated DAG
model does not contain any “constant multiplier” component.

Proposition 3: Consider , defined as in (23). Then
satisfies

Proof: By induction. It is easier to see this on the equivalent
recursion (22). Suppose , i.e., and
are in . Then is in

, which concludes the proof.

It follows from the above proposition that the GRE imple-
mented with is stable whenever the initial state

, i.e., . In fact, one can make a stronger statement
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because a longer chunk of the positive real axis is in the basin
of attraction of the map .

Proposition 4: The GRE implemented with is stable on
, where is the golden mean. More precisely, for any

, there exists a positive integer such that
for all .

Corollary 5: Let , set , , and
generate the bit sequence by running the recursion (22)
with . Then, for

One can choose uniformly in in any closed subset of
. In particular, for all .

Remarks:
1. The proofs of Proposition 4 and Corollary 5 follow trivially

from Proposition 3 when . It is also easy to see
that for , i.e., after one iteration the state
variables and are both in . Furthermore, it can
be shown that

where denotes the Fibonacci number. We do not
include the proof of this last statement here, as the argu-
ment is somewhat long, and the result is not crucial from
the viewpoint of this paper.

2. In this case, i.e., when , the encoder is not robust
with respect to quantizer imperfections. More precisely, if
we replace with , with ,
then can grow regardless of how small is. This
is a result of the mixing properties of the piecewise affine
map associated with GRE. In particular, one can show that

, where is the set of points
whose forward image is outside the unit square. Fig. 5
shows the fraction of 10,000 randomly chosen -values for
which as a function of . In fact, suppose
with and . Then, the probability that is
outside of is , which is superior to the
case with PCM where the corresponding probability scales
like . This observation suggests that “GRE with no mul-
tipliers”, with its simply-implementable nature, could still
be useful in applications where high fidelity is not required.
We shall discuss this in more detail elsewhere.

Other Values of —Stable and Robust GRE: In the previous
subsection, we saw that GRE, implemented with , , is
stable on , and thus enjoys exponential accuracy; un-
fortunately, the resulting algorithmic encoder is not robust. In
this subsection, we show that there is a wide parameter range
for and for which the map with has
positively invariant sets that do not depend on the particular
values of and . Using such a result, we then conclude that,
with the appropriate choice of parameters, the associated GRE
is strongly robust in approximation with respect to , the quan-
tizer threshold, and , the multiplier needed to implement .
We also show that the invariant sets can be constructed to
have the additional property that for a small value of one

Fig. 5. We choose 10,000 values for �, uniformly distributed in ��� �� and run
the recursion (22) with � � � with � � �� � �� � � ��. The graphs
show the ratio of the input values for which �� � � � versus � for � � �	�	
(solid) and � � �	� (dashed).

has , where denotes the open ball
around 0 with radius . In this case, depends on . Conse-
quently, even if the image of any state is perturbed within
a radius of , it still remains within . Hence, we also achieve
stability under small additive noise or arithmetic errors.

Lemma 6: Let . There is
a set , explicitly given in (29), and a wide range for
parameters , , and such that .

Proof: Our proof is constructive. In particular, for a given
, we obtain a parametrization for , which turns out to be a

rectangular set. The corresponding ranges for , , and are
also obtained implicitly below. We will give explicit ranges for
these parameters later in the text.

Our construction of the set , which only depends on ,
is best explained with a figure. Consider the two rectangles

and in Fig. 6. These rectangles are de-
signed to be such that their respective images under the linear
map , and the affine map , defined by

and

(28)

are the same, i.e.,
.

The rectangle is such that its -neighborhood is
contained within the union of and .
This guards against additive noise. The fact that the rect-
angles and overlap (the shaded
region) allows for the use of a flaky quantizer. Call this
region . As long as the region in which the quantizer op-
erates in the flaky mode is a subset of , and on

and on , it follows
that . It is then
most convenient to choose and we
clearly have . Note that if ,
any choice , , and for which the graph of
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Fig. 6. Positively invariant set and the demonstration of its robustness with respect to additive noise and imperfect quantization.

remains inside the shaded region for will
ensure .

Next, we check the existence of at least one solution to this
setup. This can be done easily in terms the parameters defined
in the figure. First note that the linear map has the eigen-
values and with corresponding (normalized) eigenvec-
tors and . Hence,

acts as an expansion by a factor of along , and reflection
followed by contraction by a factor of along . is the
same as followed by a vertical translation of . It follows
after some straightforward algebraic calculations that the map-
ping relations described above imply

Consequently, the positively invariant set is the set of all
points inside the rectangle where

(29)

Note that depends only on . Moreover, the existence of the
overlapping region is equivalent to the condition
which turns out to be equivalent to

Flaky Quantizers, Linear Thresholds: Next, we consider the
case and specify ranges for , and such that

.

Proposition 7: Let and such that

(30)

be fixed. Define (31) and (32), shown at the bottom of the
next page. If , then

for every .
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Remarks:
1. The dark line segment depicted in Fig. 6 within the overlap-

ping region , refers to a hypothetical quantizer threshold
that is allowed to vary within . Proposition 7 essentially
determines the vertical axis intercepts of lines with a given
slope, , the corresponding segments of which remain
in the overlapping region . The proof is straightforward
but tedious, and will be omitted.

2. In Fig. 7, we show and for
. Note that and are both increasing

in . Moreover, for in the range shown in (30), we have
with

at the two endpoints, and . Hence,
and enclose a bounded region, say . If

is in , then for
.

3. For any , note that is in-
vertible at and set

Then, for any , we have

provided

Note also that for any , we have
. Thus

if . Consequently, we
observe that

for any and .
4. We can also determine the allowed range for , given the

range for , , by reversing the argument above. The
extreme values of and are

(33)

(34)

Fig. 7. We plot � ��� �� and � ����� with � � ���� (dashed), � �
���� (solid), and � � � (dotted). If ��� � �� � � � remains in the shaded
region, then � ������ � ���� 	 � ��� for � � ����.

For any in the open interval between these extreme
values, set

Then, for any , is in
the allowed region where

(35)

(36)

This is shown in Fig. 7. Consequently, we observe that
GRE implemented with remains stable for
any , and provided and

.
5. For the case , the expressions above simplify sig-

nificantly. In (30), and . Con-
sequently, the extreme values and are 1 and 2,
respectively. One can repeat the calculations above to de-
rive the allowed ranges for the parameters to vary. Observe
that gives the widest range for the parameters. This
can be seen in Fig. 7.

We now go back to the GRE and state the implications of the
results obtained in this subsection. The recursion relations (22)

(31)

(32)
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that define GRE assume perfect arithmetic. We modify (22) to
allow arithmetic imperfections, e.g., additive noise, as follows:

(37)

and conclude this section with the following stability theorem.

Theorem 8: Let , and

as in (30). For every , there exists ,
, and such that the encoder described by (37) with

is stable provided and .
Proof: This immediately follows from our remarks above.

In particular, given , choose such that the corre-
sponding . By monotonicity of
both and , any will do.
Next, choose some , and set

. The statement of the theorem now holds with
and .

When , i.e., when we assume the recursion relations
(22) are implemented without an additive error, Theorem 8 im-
plies that GRE is strongly robust in approximation with respect
to the parameter , , and . More precisely, the following
corollary holds.

Corollary 9: Let , and . There exist
, and , such that , generated via (22) with ,
, and , approximate exponentially accurately

whenever . In particular, the -term approximation
error satisfies

where .
Proof: The claim follows from Proposition 1 and Theorem

8: Given , set , and choose , , and as in Theorem 8.
As the set contains , such a choice ensures that
the corresponding GRE is stable on . Using Proposition
1, we conclude that . Finally, as

,

D. Effect of Additive Noise and Arithmetic Errors on
Reconstruction Error

Corollary 9 shows that the GRE is robust with respect to quan-
tizer imperfections under the assumption that the recursion rela-
tions given by (22) are strictly satisfied. That is, we have quite a
bit of freedom in choosing the quantizer , assuming the arith-
metic, i.e., addition, can be done error-free. We now investigate
the effect of arithmetic errors on the reconstruction error. To this
end, we model such imperfections as additive noise and, as be-
fore, replace (22) with (37), where denotes the additive noise.
While Theorem 8 shows that the encoder is stable under small
additive errors, the reconstruction error is not guaranteed to be-
come arbitrarily small with increasing number of bits. This is

Fig. 8. Demonstration of the fact that reconstruction error saturates at the noise
level. Here the parameters are � � ���, � � ���, � � ���, and �� � � � .

observed in Fig. 8 where the system is stable for the given im-
perfection parameters and noise level; however, the reconstruc-
tion error is never better than the noise level.

Note that for stable systems, we unavoidably have

(38)

where the “noise term” in (38) does not vanish as tends to
infinity. To see this, define . If we assume

to be i.i.d. with mean 0 and variance , then we have

Hence, we can conclude from this the -independent result

In Fig. 8, we incorporated uniform noise in the range
. This would yield ,

hence the saturation of the root-mean-square-error (RMSE)
at . Note, however, that the figure was created with an
average over 10,000 randomly chosen values. Although
independent experiments were not run for the same values of ,
the -independence of the above formula enables us to predict
the outcome almost exactly.

In general, if is the probability density function for each
, then will converge to a random variable the probability

density function of which has Fourier transform given by the
convergent infinite product

E. Bias Removal for the Decoder

Due to the nature of any ’cautious’ beta-encoder, the stan-
dard -bit decoder for the GRE yields approximations that are
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Fig. 9. Efficient digital implementation of the requantization step for the Golden Ratio Encoder.

biased, i.e., the error has a nonzero mean. This is readily
seen by the error formula

which implies that for all and . Note that all
points in the invariant rectangle satisfy .

This suggests adding a constant ( -independent) term to
the standard -bit decoding expression to minimize . Var-
ious choices are possible for the norm. For the -norm,
should be chosen to be average value of the minimum and the
maximum values of . For the 1-norm, should be the
median value and for the 2-norm, should be the mean value
of . Since we are interested in the 2-norm, we will choose

via

where is the range of values and we have assumed uniform
distribution of values.

This integral is in general difficult to compute explicitly due
to the lack of a simple formula for . One heuristic that
is motivated by the mixing properties of the map is to re-
place the average value by . If the
set of initial conditions did not have zero 2-D
Lebesgue measure, this heuristic could be turned into a rigorous
result as well.

However, there is a special case in which the bias can be com-
puted explicitly. This is the case and . Then
the invariant set is and

where denotes the coordinate-wise fractional part operator
on any real vector. Since for all nonzero in-
tegers , it follows that for all . Hence,
setting , we find

It is also possible to compute the integral explicitly
when and for some . In this case,
it can be shown that the invariant set is the union of at most
3 rectangles whose axes are parallel to and . We omit the
details.

F. Circuit Implementation: Requantization

As we mentioned briefly in the introduction, A/D converters
(other than PCM) typically incorporate a requantization stage

after which the more conventional binary (base-2) representa-
tions are generated. This operation is close to a decoding oper-
ation, except it can be done entirely in digital logic (i.e., perfect
arithmetic) using the bitstreams generated by the specific algo-
rithm of the converter. In principle sophisticated digital circuits
could also be employed.

In the case of the Golden Ratio Encoder, it turns out that a
fairly simple requantization algorithm exists that incorporates a
digital arithmetic unit and a minimum amount of memory that
can be hardwired. The algorithm is based on recursively com-
puting the base-2 representations of powers of the golden ratio.
In Fig. 9, denotes the -bit base-2 representation of .
Mimicking the relation , the digital cir-
cuit recursively sets

which then gets multiplied by and added to , where

The circuit needs to be set up so that is the expansion of
in base 2, accurate up to at least bits, in addition to the

initial conditions and . To minimize round-off
errors, could be taken to be a large number (much larger than

, which determines the output resolution).

IV. HIGHER-ORDER SCHEMES: TRIBONACCI

AND POLYNACCI ENCODERS

What made the Golden Ratio Encoder (or the “Fibonacci”
Encoder) interesting was the fact that a beta-expansion for

was attained via a difference equation with coeffi-
cients, thereby removing the necessity to have a perfect constant
multiplier. (Recall that multipliers were still employed for the
quantization operation, but they no longer needed to be precise.)

This principle can be further exploited by considering more
general difference equations of this same type. An immediate
class of such equations are suggested by the recursion

where is some integer. For , one gets the Fibonacci
sequence if the initial condition is given by , . For

, one gets the Tribonacci sequence when ,
. The general case yields the Polynacci sequence.

For bit encoding of real numbers, one then sets up the iteration

(39)
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with the initial conditions , . In
-dimensions, the iteration can be rewritten as

...
...

...
. . .

. . .
...

...
... (40)

It can be shown that the characteristic equation

has its largest root in the interval (1, 2) and all remaining
roots inside the unit circle (hence, is a Pisot number). More-
over as , one has monotonically.

One is then left with the construction of quantization rules
that yield bounded sequences . While this is a

slightly more difficult task to achieve, it is nevertheless possible
to find such quantization rules. The details will be given in a
separate manuscript.

The final outcome of this generalization is the accuracy
estimate

whose rate becomes asymptotically optimal as .
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