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Abstract

Quantization of compressed sensing measurements is typically justified by the robust recovery
results of Candès, Romberg and Tao, and of Donoho. These results guarantee that if a uniform
quantizer of step size δ is used to quantize m measurements y = Φx of a k-sparse signal x ∈
RN , where Φ satisfies the restricted isometry property, then the approximate recovery x# via
`1-minimization is within O(δ) of x. The simplest and commonly assumed approach is to
quantize each measurement independently. In this paper, we show that if instead an rth order
Σ∆ quantization scheme with the same output alphabet is used to quantize y, then there is
an alternative recovery method via Sobolev dual frames which guarantees a reduction of the
approximation error by a factor of (m/k)(r−1/2)α for any 0 < α < 1, if m &r k(logN)1/(1−α).
The result holds with high probability on the initial draw of the measurement matrix Φ from the
Gaussian distribution, and uniformly for all k-sparse signals x that satisfy a mild size condition
on their supports.

1 Introduction

Compressed sensing is concerned with when and how sparse signals can be recovered exactly or
approximately from few linear measurements [9, 11, 15]. Let Φ be an m×N matrix providing the
measurements where m � N , and let ΣN

k denote the space of k-sparse signals in RN , k < m. A
standard objective, after a suitable change of basis, is that the mapping x 7→ y = Φx be injective on
ΣN
k . Minimal conditions on Φ that offer such a guarantee are well-known (see, e.g. [12]) and require

at least that m ≥ 2k. On the other hand, under stricter conditions on Φ, such as the restricted
isometry property (RIP), one can recover sparse vectors from their measurements by numerically
efficient methods, such as `1-minimization. Moreover, the recovery will also be robust when the
measurements are corrupted [10], cf. [16]; if ŷ = Φx + e where e is any vector such that ‖e‖2 ≤ ε,
then the solution x# of the optimization problem

min ‖z‖1 subject to ‖Φz − ŷ‖2 ≤ ε (1)

will satisfy ‖x− x#‖2 ≤ C1ε for some constant C1 = C1(Φ).
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The price paid for these stronger recovery guarantees is the somewhat smaller range of values
available for the dimensional parameters m, k, and N . While there are some explicit (deterministic)
constructions of measurement matrices with stable recovery guarantees, best results (widest range
of values) have been found via random families of matrices. For example, if the entries of Φ are
independently sampled from the Gaussian distribution N (0, 1

m), then with high probability, Φ will
satisfy the RIP (with a suitable set of parameters) if m ∼ k log(Nk ). Significant effort has been put
on understanding the phase transition behavior of the RIP parameters for other random families,
e.g., Bernoulli matrices and random Fourier samplers.

Quantization for compressed sensing measurements

The robust recovery result mentioned above is essential to the practicability of compressed sensing,
especially from an analog-to-digital conversion point of view. If a discrete alphabet A, such as
A = δZ for some step size δ > 0, is to be employed to replace each measurement yj with a
quantized measurement qj := ŷj ∈ A, then the temptation, in light of this result, would be to
minimize ‖e‖2 = ‖y − q‖2 over q ∈ Am. This immediately reduces to minimizing |yj − qj | for
each j, i.e., quantizing each measurement separately to the nearest element of A, which is called
memoryless scalar quantization (MSQ), also known as pulse code modulation (PCM).

Since ‖y − q‖2 ≤ 1
2δ
√
m, the robust recovery result guarantees that

‖x− x#
MSQ‖2 . δ

√
m. (2)

Note that (2) is somewhat surprising as the reconstruction error bound does not improve by in-
creasing the number of (quantized) measurements; on the contrary, it deteriorates. However, the√
m term is an artifact of our choice of normalization for the measurement matrix Φ. In the com-

pressed sensing literature, it is conventional to normalize a (random) measurement matrix Φ so
that it has unit-norm columns (in expectation). This is the necessary scaling to achieve isome-
try, and for random matrices it ensures that E‖Φx‖2 = ‖x‖2 for any x, which then leads to the
RIP through concentration of measure and finally to the robust recovery result stated in (1). On
the other hand, this normalization imposes an m-dependent dynamic range for the measurements
which scales as 1/

√
m, hence it is not fair to use the same value δ for the quantizer resolution as

m increases. In this paper, we investigate the dependence of the recovery error on the number of
quantized measurements where δ is independent of m. A fair assessment of this dependence can be
made only if the dynamic range of each measurement is kept constant while increasing the number
of measurements. This suggests that the natural normalization in our setting should ensure that
the entries of the measurement matrix Φ are independent of m. In the specific case of random
matrices, we can achieve this by choosing the entries of Φ standard i.i.d. random variables, e.g.
according to N (0, 1). With this normalization of Φ, the robust recovery result of [10] stated at the
beginning now becomes

‖ŷ − y‖2 ≤ ε =⇒ ‖x− x#‖2 ≤
C1√
m
ε, (3)

which also replaces (2) with

‖x− x#
MSQ‖2 . δ. (4)

As expected, this error bound does not deteriorate with m anymore. In this paper, we will adopt
this normalization convention and work with the standard Gaussian distribution N (0, 1) when
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quantization is involved, but also use the more typical normalization N (0, 1/m) for certain concen-
tration estimates that will be derived in Section 3. The transition between these two conventions
is of course trivial.

The above analysis of quantization error is based on MSQ, which involves separate (indepen-
dent) quantization of each measurement. The vast logarithmic reduction of the ambient dimension
N would seem to suggest that this strategy is essentially optimal since information appears to be
squeezed (compressed) into few uncorrelated measurements. Perhaps for this reason, the existing
literature on quantization of compressed sensing measurements focused mainly on alternative recon-
struction methods from MSQ-quantized measurements and variants thereof, e.g., [7,13,18,21,24,36].
In addition to [8], which uses Σ∆ modulation to quantize x before the random measurements are
made, the only exceptions we are aware of are [27,31], where the authors model the sparse vectors
probabilistically and construct non-uniform scalar quantizers that minimize the quantization error
among all memoryless quantizers provided that the sparse vectors obey some probabilistic model
and that the recovery is done with the lasso formulation (see [32]) of (1).

On the other hand, it is clear that if (once) the support of the signal is known (recovered),
then the m measurements that have been taken are highly redundant compared to the maximum k
degrees of freedom that the signal has on its support. At this point, the signal may be considered
oversampled. However, the error bound (4) does not offer an improvement of reconstruction accu-
racy, even if additional samples become available. (The RIP parameters of Φ are likely to improve
as m increases, but this does not seem to reflect on the implicit constant factor in (4) satisfactorily.)
This is contrary to the conventional wisdom in the theory and practice of oversampled quantization
in A/D conversion where reconstruction error decreases as the sampling rate increases, especially
with the use of quantization algorithms specially geared for the reconstruction procedure. The
main goal of this paper is to show how this can be done in the compressed sensing setting as well.

Quantization for oversampled data

Methods of quantization have long been studied for oversampled data conversion. Sigma-delta
(Σ∆) quantization (modulation), for instance, is the dominant method of A/D conversion for
audio signals and relies heavily on oversampling, see [14, 20, 26]. In this setting, oversampling is
typically exploited to employ very coarse quantization (e.g., 1 bit/sample), however, the working
principle of Σ∆ quantization is applicable to any quantization alphabet. In fact, it is more natural
to consider Σ∆ quantization as a “noisea shaping” method, for it seeks a quantized signal (qj) by
a recursive procedure to push the quantization error signal y− q towards an unoccupied portion of
the signal spectrum. In the case of bandlimited signals, this would correspond to high frequency
bands.

As the canonical example, the standard first-order Σ∆ quantizer with input (yj) computes a
bounded solution (uj) to the difference equation

(∆u)j := uj − uj−1 = yj − qj . (5)

This can be achieved recursively by choosing, for example,

qj = arg min
p∈A
|uj−1 + yj − p|. (6)

aThe quantization error is often modeled as white noise in signal processing, hence the terminology. However our
treatment of quantization error in this paper is entirely deterministic.
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Since the reconstruction of oversampled bandlimited signals can be achieved with a low-pass filter
ϕ that can also be arranged to be well-localized in time, the reconstruction error ϕ∗(y−q) = ∆ϕ∗u
becomes small due to the smoothness of ϕ. It turns out that, with this procedure, the reconstruction
error is reduced by a factor of the oversampling ratio λ, defined to be the ratio of the actual sampling
rate to the bandwidth of ϕ.

This principle can be iterated to set up higher-order Σ∆ quantization schemes. It is well-known
that a reconstruction accuracy of order O(λ−r) can be achieved (in the supremum norm) if a
bounded solution to the equation ∆ru = y − q can be found [14] (here, r ∈ N is the order of the
associated Σ∆ scheme). The boundedness of u is important for practical implementation, but it is
also important for the error bound. The implicit constant in this bound depends on r as well as
‖u‖∞. Fine analyses of carefully designed schemes have shown that optimizing the order can even
yield exponential accuracy O(e−cλ) for fixed sized finite alphabets A (see [20]), which is optimalb

apart from the value of the constant c.
The above formulation of noise-shaping for oversampled data conversion generalizes naturally

to the problem of quantization of arbitrary frame expansions, e.g., [3]. Specifically, we will consider
finite frames in Rk. A collection (ej)

m
1 in Rk is a frame for Rk with frame bounds 0 < A ≤ B <∞

if

∀x ∈ Rk, A‖x‖22 ≤
m∑
j=1

|〈x, ej〉|2 ≤ B‖x‖22.

Suppose that we are given an input signal x and an analysis frame (ei)
m
1 of size m in Rk. We can

represent the frame vectors as the rows of a full-rank m× k matrix E, the sampling operator. The
input sequence y to be quantized will simply be the frame coefficients, i.e., y = Ex. Similarly, let
us consider a corresponding synthesis frame (fj)

m
1 . We stack these frame vectors along the columns

of a k×m matrix F , the reconstruction operator, which is then a left inverse of E, i.e., FE = I. A
quantization algorithm will replace the coefficient sequence y with its quantization q ∈ Am, which
will then yield an approximate reconstruction x̂ using the synthesis frame via x̂ = Fq. Typically
(y −Am) ∩Ker(F ) = ∅, so we have x̂ 6= x. The reconstruction error is given by

x− x̂ = F (y − q), (7)

and the goal of noise shaping amounts to arranging q in such a way that y − q is close to Ker(F ).
If the sequence (fj)

m
1 of dual frame vectors were known to vary smoothly in j (including smooth

termination into null vector), then Σ∆ quantization could be employed without much alteration,
e.g., [6, 22]. However, this need not be the case for many examples of frames (together with their
canonical duals) that are used in practice. For this reason, it has recently been proposed in [5, 23]
to use special alternative dual frames, called Sobolev dual frames, that are naturally adapted to
Σ∆ quantization. It is shown in [5] (see also Section 2) that for any frame E, if a standard rth
order Σ∆ quantization algorithm with alphabet A = δZ is used to compute q := qΣ∆, then with
an rth order Sobolev dual frame F := FSob,r and x̂Σ∆ := FSob,rqΣ∆, the reconstruction error obeys
the bound

‖x− x̂Σ∆‖2 .r
δ
√
m

σmin(D−rE)
, (8)

bThe optimality remark does not apply to the case of infinite quantization alphabet A = δZ because depending
on the coding algorithm, the (effective) bit-rate can still be unbounded. Indeed, arbitrarily small reconstruction error
can be achieved with a (sufficiently large) fixed value of λ and a fixed value of δ by increasing the order r of the Σ∆
modulator. This would not work with a finite alphabet because the modulator will eventually become unstable. In
practice, almost all schemes need to use some form of finite quantization alphabet.
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where D is the m×m difference matrix defined by

Dij :=


1, if i = j,
−1, if i = j + 1,

0, otherwise,
(9)

and σmin(D−rE) stands for the smallest singular value of D−rE.

Contributions

For the compressed sensing application that is the subject of this paper, E will simply be a sub-
matrix of the measurement matrix Φ, hence it may have been found by sampling an i.i.d. random
variable. Minimum singular values of random matrices with i.i.d. entries have been studied ex-
tensively in the mathematical literature. For an m × k random matrix E with m ≥ k and with
i.i.d. entries sampled from a sub-Gaussian distribution with zero mean and unit variance,c one has

σmin(E) &
√
m−

√
k (10)

with high probability [29]. Note that in general D−rE would not have i.i.d. entries. A naive lower
bound for σmin(D−rE) would be σmin(D−r)σmin(E). However (see Proposition 3.1), σmin(D−r)
satisfies

σmin(D−r) �r 1, (11)

and therefore this naive product bound yields no improvement on the reconstruction error for Σ∆-
quantized measurements over the bound (4) for MSQ-quantized ones. In fact, the true behavior of
σmin(D−rE) turns out to be drastically different and is described in Theorem A, one of our main
results (see also Theorem 3.7).

For simplicity, we shall work with standard i.i.d. Gaussian variables for the entries of E. In
analogy with our earlier notation, we define the “oversampling ratio” λ of the frame E by

λ :=
m

k
. (12)

Theorem A. Let E be an m×k random matrix whose entries are i.i.d. N (0, 1). For any α ∈ (0, 1),
if λ ≥ c(logm)1/(1−α), then with probability at least 1− exp(−c′mλ−α),

σmin(D−rE) &r λ
α(r− 1

2
)√m, (13)

which yields the reconstruction error bound

‖x− x̂Σ∆‖2 .r λ
−α(r− 1

2
)δ. (14)

While the kind of decay in this error bound is familiar to Σ∆ modulation, the domain of
applicability of this result is rather surprising. Previously, the only setting in which this type of
approximation accuracy could be achieved (with or without Sobolev duals) was the case of highly
structured frames (e.g. when the frame vectors are found by sampling along a piecewise smooth
frame path). Theorem A shows that such an accuracy is obtained even when the analysis frame is
a random Gaussian matrix, provided the reconstruction is done via Sobolev duals.

cAs mentioned earlier, we do not normalize the measurement matrix Φ in the quantization setting.
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In the compressed sensing setting, one needs (13) to be uniform for all the frames E that are
found by selecting k columns of Φ at a time. The proof of Theorem A extends in a straightforward
manner to allow for this using a standard “union bound” argument, provided λ is known to be
slightly larger. More precisely, if Φ is an m×N matrix whose entries are i.i.d. according to N (0, 1),
and if λ := m/k ≥ c(logN)1/(1−α), then (13) holds for all E = ΦT with #T ≤ k with the same type
of probability bound (with new constants). This result can be utilized to improve the reconstruction
accuracy of a sparse signal x from its Σ∆-quantized compressed sensing measurements if the support
T of x is known. This is because if T is known, ΦT is known, and its Sobolev dual can be found and
used in the reconstruction. On the other hand, for most signals, recovering the exact or approximate
support is already nearly guaranteed by the robust recovery result shown in (3) together with the
stability of the associated Σ∆ quantizer. For example, a simple sufficient condition for full recovery
of the support is that all the |xj | for j ∈ T be larger than C‖y − qΣ∆‖2 for a suitable constant C.
A precise version of this condition is stated in Theorem B.

In light of all these results, we propose Σ∆ quantization as a more effective alternative of MSQ
(independent quantization) for compressed sensing. With high probability on the measurement
matrix, a significant improvement of the reconstruction accuracy of sparse signals can be achieved
through a two-stage recovery procedure:

1. Coarse recovery: `1-minimization (or any other robust recovery procedure) applied to qΣ∆

yields an initial, “coarse” approximation x# of x, and in particular, the exact (or approximate)
support T of x.

2. Fine recovery: Sobolev dual of the frame ΦT applied to qΣ∆ yields a finer approximation
x̂Σ∆ of x.

Combining all these, our second main theorem follows (also see Theorem 4.2):

Theorem B. Let Φ be an m × N matrix whose entries are i.i.d. according to N (0, 1). Suppose
α ∈ (0, 1) and λ := m/k ≥ c(logN)1/(1−α) where c = c(r, α). Then there are two constants c′ and
C that depend only on r such that with probability at least 1 − exp(−c′mλ−α) on the draw of Φ,
the following holds: For every x ∈ ΣN

k such that minj∈supp(x) |xj | ≥ Cδ, the reconstruction x̂Σ∆

satisfies

‖x− x̂Σ∆‖2 .r λ
−α(r− 1

2
)δ. (15)

To put this result in perspective, note that the approximation error given in (15) decays as
the “redundancy” λ = m

k increases. In fact, by using an arbitrarily high order Σ∆ scheme, we
can make this decay faster than any power law (albeit with higher constants). Note that such a
decay is not observed in the reconstruction error bound for MSQ given in (4). Of course, one could
argue that these upper bounds may not reflect the actual behavior of the error. However, in the
setting of frame quantization the performance of MSQ is well investigated. In particular, let E be
an m × k real matrix, and let K be a bounded set in Rk. For x ∈ K, suppose we obtain qMSQ(x)
by quantizing the entries of y = Ex using MSQ with alphabet A = δZ. Let ∆opt be an optimal
decoder. Then, Goyal et al. show in [19] that[

E ‖x−∆opt(qMSQ(x))‖22
]1/2

&k λ
−1δ

where λ = m/k and the expectation is with respect a probability measure on x that is, for example,
absolutely continuous. This lower bound limits the extent to which one can improve the reconstruc-
tion by means of alternative reconstruction algorithms from MSQ-quantized compressed sensing
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measurements. On the other hand, setting, for example, α = 3/4 in Theorem B we observe that
if we use a second-order Σ∆ scheme to quantize the measurements, and if we adopt the two-stage
recovery procedure proposed above, the resulting approximation will be superior to that produced
optimally from MSQ-quantized measurements, provided m/k is sufficiently large. Of course, one
might argue that it is contrary to the philosophy of compressed sensing to consider cases where λ is
large – we are, after all, using compressed sensing to reduce the sampling rate. However, as we also
mentioned above, redundancy is built into the compressed sensing paradigm: we need λ & logN
for the robust recovery result to hold, and we might as well utilize this redundancy when designing
effective quantizers in this setup.

It is possible to imagine more sophisticated and more effective quantization and recovery algo-
rithms for compressed sensing. However using Σ∆ quantization has a number of appealing features:

• It produces more accurate approximations than any known quantization scheme in this
setting (even when sophisticated recovery algorithms are employed).

• It is modular in the sense that if the fine recovery stage is not available or practical to
implement, then the standard (coarse) recovery procedure can still be applied as is.

• It is progressive in the sense that if new measurements arrive (in any given order), noise
shaping can be continued on these measurements as long as the state of the system (r real
values for an rth order scheme) has been stored.

• It is universal in the sense that it uses no information about the measurement matrix or the
signal.

The paper is organized as follows. We review the basics of Σ∆ quantization and Sobolev duals in
frame theory in Section 2, followed by the reconstruction error bounds for random Gaussian frames
in Section 3. We then present the specifics of our proposed quantization and recovery algorithm for
compressed sensing in Section 4. We present our numerical experiments in Section 5 and conclude
with extensions to more general settings in Section 6.

2 Background on Σ∆ quantization of frame expansions

Σ∆ quantization

The governing equation of a standard rth order Σ∆ quantization scheme with input y = (yj) and
output q = (qj) is

(∆ru)j = yj − qj , j = 1, 2, . . . , (16)

where the qj ∈ A are chosen according to some quantization rule, typically a predetermined function
of the input and past state variables (ul)l<j , given by

qj = Q(uj−1, . . . , uj−T , yj , . . . , yj−S). (17)

Not all Σ∆ quantization schemes are presented (or implemented) in this canonical form, but they
all can be rewritten as such for an appropriate choice of r and u. We shall not be concerned with
the specifics of the mapping Q, except that it needs to be so that u is bounded. The smaller the size
of the alphabet A gets relative to r, the harder it is to guarantee this property. The extreme case
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is 1-bit quantization, i.e., |A| = 2, which is typically the most challenging setting. We will not be
working in this case. In fact, for our purposes, A will in general have to be sufficiently fine to allow
for the recovery of the support of sparse signals. In order to avoid technical difficulties, we shall
work with the infinite alphabet A = δZ, but also note that only a finite portion of this alphabet will
be used for bounded signals. A standard quantization rule that has this “boundedness” property
is given by the greedy rule which minimizes |uj | given uj−1, . . . , uj−r and yj , i.e.,

qj = arg min
a∈A

∣∣∣ r∑
i=1

(−1)i−1

(
r

i

)
uj−i + yj − a

∣∣∣. (18)

It is easy to check that with this rule, one has |uj | ≤ 2−1δ and |yj − qj | ≤ 2r−1δ. In turn, if
‖y‖∞ < C, then one needs only L := 2dCδ e+ 2r + 1 levels. In this case, the associated quantizer is
said to be log2 L-bit, and we have

‖u‖∞ . δ and ‖y − q‖∞ .r δ. (19)

With more stringent quantization rules, the first inequality would also have an r-dependent con-
stant. In fact, it is known that for quantization rules with a 1-bit alphabet, this constant will be
as large as O(rr), e.g., see [14,20]. In this paper, unless otherwise stated, we shall be working with
the greedy quantization rule of (18).

The initial conditions of the recursion in (16) can be set arbitrarily, however for the purposes
of this paper it will be convenient to set them equal to zero. With u−r+1 = · · · = u0 = 0, and
j = 1, . . . ,m, the difference equation (16) can be rewritten as a matrix equation

Dru = y − q, (20)

where D is as in (9).
As before, we assume E is an m × k matrix whose rows form the analysis frame and F is a

k ×m left inverse of E whose columns form the dual (synthesis) frame. Given any x ∈ Rk, we set
y = Ex, and denote its rth order Σ∆ quantization by qΣ∆ and its reconstruction by x̂Σ∆ := FqΣ∆.
Substituting (20) into (7), we obtain the error expression

x− x̂ = FDru. (21)

With this expression, ‖x− x̂‖ can be bounded for any norm ‖ · ‖ simply as

‖x− x̂‖ ≤ ‖u‖∞
m∑
j=1

‖(FDr)j‖. (22)

Here (FDr)j is the jth column of FDr. This bound is also valid in infinite dimensions, and in
fact has been used extensively in the mathematical treatment of oversampled A/D conversion of
bandlimited functions.

For r = 1 and ‖ · ‖ = ‖ · ‖2, the sum term on the right hand side of (22) motivated the study of
the so-called frame variation defined by

V (F ) :=

m∑
j=1

‖fj − fj+1‖2, (23)
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where (fj) are the columns of F , and one defines fm+1 = 0; see [3]. Higher-order frame variations
to be used with higher-order Σ∆ schemes are defined similarly; see [2]. Frames (analysis as well as
synthesis) that are obtained via uniform sampling a smooth curve in Rk (so-called frame path) are
typical in many settings. However, the “frame variation bound” is useful in finite dimensions only
when the frame path terminates smoothly. Otherwise, it typically does not provide higher-order
reconstruction accuracy (see [2] for an exception). Designing smoothly terminating frames can be
technically challenging, e.g., [6].

Sobolev duals

Recently, a more straightforward approach was proposed in [22] for the design of (alternate) duals
of finite frames for Σ∆ quantization. Here, one instead considers the operator norm of FDr on `2
and the corresponding bound

‖x− x̂‖2 ≤ ‖FDr‖op‖u‖2. (24)

Note that this bound is not available in the infinite dimensional setting of bandlimited functions
due to the fact that u is typically not in `2. It is now natural to minimize ‖FDr‖op over all dual
frames of a given analysis frame E. These frames, introduced in [5], have been called Sobolev duals,
in analogy with `2-type Sobolev (semi)norms.

Σ∆ quantization algorithms are normally designed for analog circuit operation, so they control
‖u‖∞, which would control ‖u‖2 only in a suboptimal way. However, it turns out that there are
important advantages in working with the `2 norm in the analysis. The first advantage is that
Sobolev duals are readily available by an explicit formula. The solution Fsob,r of the optimization
problem

min
F
‖FDr‖op subject to FE = I (25)

is given by the matrix equation
Fsob,rD

r = (D−rE)†, (26)

where † stands for the Moore-Penrose inversion operator, which, in our case, is given by E† :=
(E∗E)−1E∗. Note that for r = 0 (i.e., no noise-shaping, or MSQ), one simply obtains F = E†, the
canonical dual frame of E.

The second advantage of this approach is its analytic tractability. Plugging (26) into (24), it
immediately follows that

‖x− x̂‖2 ≤ ‖(D−rE)†‖op‖u‖2 =
1

σmin(D−rE)
‖u‖2, (27)

where σmin(D−rE) stands for the smallest singular value of D−rE. There exist highly developed
methods for estimating spectral norms and more generally singular values of matrices, especially
in the random setting, as we shall employ in this paper.

3 Reconstruction error bound for random frames

In what follows, σj(A) will denote the jth largest singular value of the matrix A. Similarly,
λj(B) will denote the jth largest eigenvalue of the Hermitian matrix B. Hence, we have σj(A) =√
λj(A∗A). We will also use the notation Σ(A) for the diagonal matrix of singular values of A,
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with the convention (Σ(A))jj = σj(A). All matrices in our discussion will be real valued and the
Hermitian conjugate reduces to the transpose.

We have seen that the main object of interest for the reconstruction error bound is σmin(D−rE)
for a random frame E. Let H be a square matrix. The first observation we make is that when E
is i.i.d. Gaussian, the distribution of Σ(HE) is the same as the distribution of Σ(Σ(H)E). To see
this, let UΣ(H)V ∗ be the singular value decomposition of H where U and V are unitary matrices.
Then HE = UΣ(H)V ∗E. Since the unitary transformation U does not alter singular values, we
have Σ(HE) = Σ(Σ(H)V ∗E), and because of the unitary invariance of the i.i.d. Gaussian measure,
the matrix Ẽ := V ∗E has the same distribution as E, hence the claim. Therefore it suffices to
study the singular values of Σ(H)E. In our case, H = D−r and we first need information on the
deterministic object Σ(D−r). The following result will be sufficient for our purposes:

Proposition 3.1. Let r be any positive integer and D be as in (9). There are positive numerical
constants c1(r) and c2(r), independent of m, such that

c1(r)
(m
j

)r
≤ σj(D−r) ≤ c2(r)

(m
j

)r
, j = 1, . . . ,m. (28)

The somewhat standard proof of this result via the theory of Toeplitz matrices is given in
Appendix A.

The remainder of this section is dedicated to proving the main results of the paper. Let E be an
m×k matrix with i.i.d. entries drawn from N (0, 1/m). In Section 3.1, we show that if m/k is large
enough, σmin(D−rE) & (m/k)α(r−1/2), with high probability (Theorem 3.7, equivalently Theorem
A). To obtain this result, we use a property of Gaussian vectors (Proposition 3.2) and a standard
ε-net argument to upper bound the norm ‖SE‖`m2 →`k2 with high probability for an arbitrary positive

diagonal matrix S (Lemma 3.3). Next, we again use properties of Gaussian vectors (Proposition
3.4 and Corollary 3.5) and an ε-net argument to lower bound the least singular value of SE, with
high probability, under mild conditions on S (Theorem 3.6). By a careful choice of parameters in
the above results and for S = Σ(D−r), we then obtain Theorem 3.7.

In Section 3.2, we generalize Theorem 3.7 to the compressed sensing setting. In particular,
we use a standard union bound to show that if m/k is large enough, then with high probability,
σmin(D−rE) & (m/k)α(r−1/2), for any m× k sub-matrix E, of an m×N random matrix Φ whose
entries are drawn i.i.d. from N (0, 1/m) (Theorem 3.8).

3.1 Lower bound for σmin(D−rE)

In light of the above discussion, the distribution of σmin(D−rE) is the same as that of

inf
‖x‖2=1

‖Σ(D−r)Ex‖2. (29)

We replace Σ(D−r) with an arbitrary diagonal matrix S with Sjj =: sj > 0. The first two results
will concern upper bounds for the norm of independent but non-identically distributed Gaussian
vectors. They are rather standard, but we include them for the definiteness of our discussion when
they will be used later.

Proposition 3.2. Let ξ ∼ N (0, 1
m Im). For any Θ > 1,

P

 m∑
j=1

s2
jξ

2
j > Θ‖s‖2∞

 ≤ Θm/2e−(Θ−1)m/2. (30)

10



Proof. Since sj ≤ ‖s‖∞ for all j, we have

P

 m∑
j=1

s2
jξ

2
j > Θ‖s‖2∞

 ≤ P

 m∑
j=1

ξ2
j > Θ

 . (31)

This bound is the (standard) Gaussian measure of the complement of a sphere of radius
√
mΘ and

can be estimated very accurately. We use a simple approach via

P

 m∑
j=1

ξ2
j > Θ

 ≤ min
λ≥0

∫
Rm

e−(Θ−
∑m
j=1 x

2
j)λ/2

m∏
j=1

e−mx
2
j/2

dxj√
2π/m

= min
λ≥0

e−λΘ/2(1− λ/m)−m/2

= Θm/2e−(Θ−1)m/2, (32)

where in the last step we set λ = m(1−Θ−1).

Lemma 3.3. Let E be an m× k random matrix whose entries are i.i.d. N (0, 1
m). For any Θ > 1,

consider the event
E :=

{
‖SE‖`k2→`m2 ≤ 2

√
Θ‖s‖∞

}
.

Then
P (Ec) ≤ 5kΘm/2e−(Θ−1)m/2.

Proof. We follow the same approach as in [1]. The maximum number of ρ-distinguishable points on
the unit sphere in Rk is at most (2

ρ+1)k. (This follows by a volume argumentd as in e.g., [25, p.487].)

Fix a maximal set Q of 1
2 -distinguishable points of the unit sphere in Rk with #Q ≤ 5k. Since Q

is maximal, it is a 1
2 -net for the unit sphere. For each q ∈ Q, consider ξj = (Eq)j , j = 1, . . . ,m.

Then ξ ∼ N (0, 1
m Im). As before, we have

‖SEq‖22 =
m∑
j=1

s2
jξ

2
j .

Let E(Q) be the event
{
‖SEq‖2 ≤

√
Θ‖s‖∞, ∀q ∈ Q

}
. Then, by Proposition 3.2, we have the

union bound
P (E(Q)c) ≤ 5kΘm/2e−(Θ−1)m/2. (33)

Assume the event E(Q), and let M = ‖SE‖`k2→`m2 . For each ‖x‖2 = 1, there is q ∈ Q with

‖q − x‖2 ≤ 1/2, hence

‖SEx‖2 ≤ ‖SEq‖2 + ‖SE(x− q)‖2 ≤
√

Θ‖s‖∞ +
M

2
.

Taking the supremum over all x on the unit sphere, we obtain

M ≤
√

Θ‖s‖∞ +
M

2
,

i.e., ‖SE‖`k2→`m2 ≤ 2
√

Θ‖s‖∞. Therefore E(Q) ⊂ E , and the result follows.

dBalls with radii ρ/2 and centers at a ρ-distinguishable set of points on the unit sphere are mutually disjoint and
are all contained in the ball of radius 1 + ρ/2 centered at the origin. Hence there can be at most (1 + ρ/2)k/(ρ/2)k

of them.
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The following estimate concerns a lower bound for the Euclidean norm of (s1ξ1, . . . , smξm). It
is not sharp when the sj are identical, but it will be useful for our problem where sj = σj(D

−r)
obey a power law (see Corollary 3.5).

Proposition 3.4. Let ξ ∼ N (0, 1
m Im). For any γ > 0,

P

 m∑
j=1

s2
jξ

2
j < γ

 ≤ min
1≤L≤m

(eγm
L

)L/2
(s1s2 · · · sL)−1. (34)

Proof. For any t ≥ 0 and any integer L ∈ {1, . . . ,m}, we have

P

 m∑
j=1

s2
jξ

2
j < γ

 ≤
∫
Rm

e(γ−
∑m
j=1 s

2
jx

2
j)t/2

m∏
j=1

e−mx
2
j/2

dxj√
2π/m

= etγ/2
m∏
j=1

∫
R
e−x

2
j (m+ts2j )/2

dxj√
2π/m

= etγ/2
m∏
j=1

(1 + ts2
j/m)−1/2

≤ etγ/2
L∏
j=1

(ts2
j/m)−1/2

≤ etγ/2(m/t)L/2(s1s2 · · · sL)−1. (35)

For any L, we can set t = L/γ, which is the critical point of the function t 7→ etγt−L. Since L is
arbitrary, the result follows.

Corollary 3.5. Let ξ ∼ N (0, 1
m Im), r be a positive integer, and c1 > 0 be such that

sj ≥ c1

(
m

j

)r
, j = 1, . . . ,m. (36)

Then for any Λ ≥ 1 and m ≥ Λ,

P

 m∑
j=1

s2
jξ

2
j < c2

1Λ2r−1

 < (60m/Λ)r/2e−m(r−1/2)/Λ. (37)

Proof. By rescaling sj , we can assume c1 = 1. For any L ∈ {1, . . . ,m}, we have

(s1s2 · · · sL)−1 ≤ (L!)r

mrL
< (8L)r/2

(
Lr

ermr

)L
,

where we have used the coarse estimate L! < e1/12L(2πL)1/2(L/e)L < (8L)1/2(L/e)L. Setting
γ = Λ2r−1 in Proposition 3.4, we obtain

P

 m∑
j=1

s2
jξ

2
j < Λ2r−1

 < (8L)r/2

[(
ΛL

em

)L]r−1/2

. (38)
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We set L = bmΛ c. Since 1 ≤ Λ ≤ m, it is guaranteed that 1 ≤ L ≤ m. Since ΛL ≤ m, we get(
ΛL

em

)L
≤ e−L < e1−m

Λ

Plugging this in (38) and using 8e2 < 60, we find

P

 m∑
j=1

s2
jξ

2
j < Λ2r−1

 < (60m/Λ)r/2e−m(r−1/2)/Λ. (39)

Theorem 3.6. Let E be an m× k random matrix whose entries are i.i.d. N (0, 1
m), r be a positive

integer, and assume that the entries sj of the diagonal matrix S satisfy

c1

(
m

j

)r
≤ sj ≤ c2m

r, j = 1, . . . ,m. (40)

Let Λ ≥ 1 be any number and assume m ≥ Λ. Consider the event

F :=

{
‖SEx‖2 ≥

1

2
c1Λr−1/2‖x‖2, ∀x ∈ Rk

}
.

Then

P (Fc) ≤ 5ke−m/2 + 8r (17c2/c1)k Λk/2
(m

Λ

)r(k+1/2)
e−m(r−1/2)Λ.

Proof. Consider a ρ-net Q̃ of the unit sphere of Rk with #Q̃ ≤
(

2
ρ + 1

)k
where the value of ρ < 1

will be chosen later. Let Ẽ(Q̃) be the event
{
‖SEq‖2 ≥ c1Λr−1/2, ∀q ∈ Q̃

}
. By Corollary 3.5, we

know that

P
(
Ẽ(Q̃)c

)
≤
(

2

ρ
+ 1

)k (60m

Λ

)r/2
e−m(r−1/2)/Λ. (41)

Let E be the event in Lemma 3.3 with Θ = 4. Let E be any given matrix in the event E ∩ Ẽ(Q̃).
For each ‖x‖2 = 1, there is q ∈ Q̃ with ‖q − x‖2 ≤ ρ, hence by Lemma 3.3, we have

‖SE(x− q)‖2 ≤ 4‖s‖∞‖x− q‖2 ≤ 4c2m
rρ.

Choose

ρ =
c1Λr−1/2

8c2mr
=

c1

8c2

√
Λ

(Λ

m

)r
.

Hence

‖SEx‖2 ≥ ‖SEq‖2 − ‖SE(x− q)‖2 ≥ c1Λr−1/2 − 4c2m
rρ =

1

2
c1Λr−1/2.

This shows that E ∩ Ẽ(Q̃) ⊂ F . Clearly, ρ ≤ 1/8 by our choice of parameters and hence 2
ρ + 1 ≤ 17

8ρ .
Using the probability bounds of Lemma 3.3 and (41), we have

P (Fc) ≤ 5k4m/2e−3m/2 +

(
17

8ρ

)k (60m

Λ

)r/2
e−m(r−1/2)/Λ

≤ 5ke−m/2 + 8r(17c2/c1)kΛk/2
(m

Λ

)r(k+1/2)
e−m(r−1/2)/Λ, (42)

where we have used 2 < e and
√

60 < 8 for simplification.
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The following theorem is now a direct corollary of the above estimate.

Theorem 3.7. Let E be an m× k random matrix whose entries are i.i.d. N (0, 1
m), r be a positive

integer, D be the difference matrix defined in (9), and the constant c1 = c1(r) be as in Proposition
3.1. Let 0 < α < 1 be any number. Assume that

λ :=
m

k
≥ c3(logm)1/(1−α), (43)

where c3 = c3(r) is an appropriate constant. Then

P
(
σmin(D−rE) ≥ c1λ

α(r−1/2)
)
≥ 1− 2e−c4m

1−αkα (44)

for some constant c4 = c4(r) > 0.

Proof. Set Λ = λα in Theorem 3.6 and S = Σ(D−r). We only need to show that

max

[
5ke−m/2, 8r(17c2/c1)kΛk/2

(m
Λ

)r(k+1/2)
e−m(r−1/2)/Λ

]
≤ e−c4m1−αkα .

It suffices to show that
k log 5−m/2 ≤ −c4m

1−αkα

and

r log 8 + k log(17c2/c1) +
1

2
k log Λ + r(k +

1

2
) log(m/Λ)− (r−1

2
)
m

Λ
≤ −c4m

1−αkα.

The first inequality is easily seen to hold if λ ≥ log 5
1
2
−c4

. For the second inequality, first notice that

m/Λ = m1−αkα. Since k + 1/2 � k, and r − 1/2 � r, it is easily seen that we only need to check
that

k logm ≤ c5
m

Λ

for a sufficiently small c5. This follows from our assumption on λ by setting c5 = 1/c1−α
3 .

Remark. By replacing E in Theorem 3.7 with
√
mE, we obtain Theorem A.

3.2 Implication for compressed sensing matrices

Theorem 3.8. Let r, D, c1(r) be as in Theorem 3.7 and Φ be an m × N random matrix whose
entries are i.i.d. N (0, 1

m). Let 0 < α < 1 be any number and assume that

λ :=
m

k
≥ c6(logN)1/(1−α), (45)

where c6 = c6(r) is an appropriate constant. Then with probability at least 1− 2e−c7mλ
−α

for some
c7 = c7(r) > 0, every m× k submatrix E of Φ satisfies

σmin(D−rE) ≥ c1λ
α(r−1/2). (46)
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Proof. We will choose c7 = c4/2, where c4 is as in Theorem 3.7. The proof will follow immediately
by a union bound once we show that (

N

k

)
≤ e

1
2
c4m1−αkα .

Since
(
N
k

)
≤ Nk, it suffices to show that

k logN ≤ c4

2
m1−αkα.

Both this condition and the hypothesis of Theorem 3.7 will be satisfied if we choose

c6 = max(c3, (2/c4)1/(1−α)).

Remark. If Φ is a Gaussian matrix with entries i.i.d. N (0, 1) rather than N (0, 1
m), Theorem 3.8

applied to 1√
m

Φ implies that every m× k submatrix E of Φ satisfies

σmin(D−rE) ≥ c1λ
α(r−1/2)√m. (47)

4 Σ∆ quantization of compressed sensing measurements

In this section we will assume that the conditions of Theorem 3.8 are satisfied for some 0 < α < 1
and r, and the measurement matrix Φ that is drawn from N (0, 1) yields (47). For definiteness,
we also assume that Φ admits the robust recovery constant C1 = 10, i.e., the solution x# of the
program (1) satisfies

‖ŷ − y‖2 ≤ ε =⇒ ‖x− x#‖2 ≤
10√
m
ε.

Note that C1 depends only on the RIP constants of Φ and is well-behaved in our setting. For more
details and the admissibility of this value for C1, see [10].

Note again that our choice of normalization for the measurement matrix Φ is different from the
compressed sensing convention. As mentioned in the Introduction, it is more appropriate to work
with a measurement matrix Φ ∼ N (0, 1) in order to be able to use a quantizer alphabet that does
not depend on m. For this reason, in the remainder of the paper, Φ shall denote an m×N matrix
whose entries are i.i.d. from N (0, 1).

Let q := qΣ∆ be output of the standard greedy rth order Σ∆ quantizer with the alphabet
A = δZ and input y. As stated in Section 2, we know that ‖y − q‖∞ ≤ 2r−1δ and therefore
‖y − q‖2 ≤ 2r−1δ

√
m.

4.1 Coarse recovery and recovery of support

Our first goal is to recover the support T of x. Note that support recovery in various compressed
sensing contexts has received some attention lately (e.g., [17], [34], [35]). However, for this paper,
the results we present in this section are sufficient and more appropriate, given our choice of decoder.

To estimate the support T , we shall use a coarse approximation of x. Let

x′ := arg min ‖z‖1 subject to ‖Φz − q‖2 ≤ ε := 2r−1δ
√
m. (48)
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By the robust recovery result (for our choice of normalization for Φ), we know that

‖x− x′‖2 ≤ η := 5 · 2rδ.

The simplest attempt to recover T from x′ is to pick the positions of its k largest entries. This
attempt can fail if some entry of xj on T is smaller than η for then it is possible that x′j = 0 and
therefore j is not picked. On the other hand, it is easy to see that if the smallest nonzero entry of
x is strictly bigger than 2η in magnitude, then this method always succeeds. (Since ‖x−x′‖∞ ≤ η,
the entries of x′ are bigger than η on T and less than η on T c.) The constant 2 can be replaced
with

√
2 by a more careful analysis, and can be pushed arbitrarily close to 1 by picking more than

k positions. The proposition below gives a precise condition on how well this can be done. We also
provide a bound on how much of x can potentially be missed if no lower bound on |xj | is available
for j ∈ T .

Proposition 4.1. Let ‖x − x′‖`N2 ≤ η, T = supp x and k = |T |. For any k′ ∈ {k, . . . , N−1}, let

T ′ be the support of (any of) the k′ largest entries of x′.

(i) ‖xT\T ′‖2 ≤ βη where β ≤
(
1 + k

k′

)1/2
.

(ii) If |xj | > γη for all j ∈ T , where γ :=
(

1 + 1
k′−k+1

)1/2
, then T ′ ⊃ T .

Proof. (i) We have ∑
j∈T
|xj − x′j |2 +

∑
j∈T c
|x′j |2 = ‖x− x′‖22 ≤ η2. (49)

In particular, this implies ∑
j∈T\T ′

|xj − x′j |2 +
∑

j∈T ′\T

|x′j |2 ≤ η2. (50)

Suppose T \ T ′ 6= ∅. Then T ′ \ T is also nonempty. In fact, we have

|T ′ \ T | = |T \ T ′|+ k′ − k.

Now, observe that

1

|T \ T ′|
∑

j∈T\T ′
|x′j |2 ≤ max

j∈T\T ′
|x′j |2 ≤ min

j∈T ′\T
|x′j |2 ≤

1

|T ′ \ T |
∑

j∈T ′\T

|x′j |2,

which, together with (50) implies

‖xT\T ′‖2 ≤ ‖x′T\T ′‖2 + ‖(x− x′)T\T ′‖2 ≤ ‖x′T\T ′‖2 +

√
η2 − |T

′ \ T |
|T \ T ′|

‖x′T\T ′‖
2
2.

It is easy to check that for any A > 0, and any 0 ≤ t ≤ η/
√
A,

t+
√
η2 −At2 ≤

(
1 +

1

A

)1/2

η. (51)

The result follows by setting A = |T ′ \ T |/|T \ T ′| and noticing that A ≥ k′/k.

16



(ii) Let z1 ≥ · · · ≥ zN be the decreasing rearrangement of |x′1|, . . . , |x′N |. We have

∑
j∈T
|x′j |2 ≤

k∑
i=1

z2
i

so ∑
j∈T c
|x′j |2 ≥

N∑
i=k+1

z2
i ≥

k′+1∑
i=k+1

z2
i ≥ (k′ − k + 1)z2

k′+1.

Hence by (49) we have
max
j∈T
|xj − x′j |2 + (k′ − k + 1)z2

k′+1 ≤ η2.

Since |x′j | ≥ |xj | − |xj − x′j |, the above inequality now implies

min
j∈T
|x′j | ≥ min

j∈T
|xj | −max

j∈T
|xj − x′j | ≥ min

j∈T
|xj | −

√
η2 − (k′ − k + 1)z2

k′+1.

Now, another application of (51) with A = k′ − k + 1 yields

−
√
η2 − (k′ − k + 1)z2

k′+1 ≥ zk′+1 − γη

and therefore
min
j∈T
|x′j | ≥ min

j∈T
|xj |+ zk′+1 − γη > zk′+1 = max

j∈T ′c
|x′j |.

It is then clear that T ⊂ T ′ because if T ′c ∩ T 6= ∅, the inequality

max
j∈T ′c

|x′j | ≥ max
j∈T ′c∩T

|x′j | ≥ min
j∈T
|x′j |

would give us a contradiction.

Note that if the k′ largest entries of x′ are picked with k′ > k, then one would need to work with
T ′ for the fine recovery stage, and therefore the starting assumptions on Φ have to be modified for
k′. For simplicity we shall stick to k′ = k and consequently γ =

√
2.

4.2 Fine recovery

Once T is found, the rth order Sobolev dual frame F := FSob,r of E = ΦT is computed and we set
x̂Σ∆ = Fq. We now restate and prove Theorem B.

Theorem 4.2. Let Φ be an m ×N matrix whose entries are i.i.d. according to N (0, 1). Suppose
α ∈ (0, 1) and λ := m/k ≥ c(logN)1/(1−α) where c = c(r, α). Then there are two constants c′ and
C that depend only on r such that with probability at least 1 − exp(−c′mλ−α) on the draw of Φ,
the following holds: For every x ∈ ΣN

k such that minj∈supp(x) |xj | ≥ Cδ, the reconstruction x̂Σ∆

satisfies

‖x− x̂Σ∆‖2 .r λ
−α(r− 1

2
)δ. (52)
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Proof. Suppose that λ ≥ c(logN)1/(1−α) with c = c6 as in the proof of Theorem 3.8. Let qΣ∆ be
obtained by quantizing y := Φx via an rth order Σ∆ scheme with alphabet A = δZ and with the
quantization rule as in (18), and let u be the associated state sequence as in (16). Define x# as the
solution of the program

min ‖z‖1 subject to ‖Φz − qΣ∆‖2 ≤ ε.

Suppose that Φ admits the robust recovery constant C1, e.g. C1 = 10. Hence the solution x# of
the program (3) satisfies ‖x − x#‖2 ≤ C1ε/

√
m for every x in ΣN

k provided that ‖y − qΣ∆‖2 ≤ ε.
As discussed in Section 2, in this case we have ‖y − qΣ∆‖2 ≤ 2r−1δ

√
m which implies

‖x− x#‖2 ≤ C12r−1δ.

Assume that
min
j∈T
|xj | ≥ C1 · 2r−1/2δ =: Cδ. (53)

Then, Proposition 4.1 (with γ =
√

2 and η = C12r−1) shows that T ′, the support of the k largest
entries of x#, is identical to the support T of x. Finally, set

x̂Σ∆ = Fsob,rqΣ∆

where Fsob,r is the rth order Sobolev dual of ΦT . Using the fact that ‖u‖2 ≤ 2−1δ
√
m (see Section 2)

together with the conclusion of Theorem 3.8 and the error bound (27), we conclude that

‖x− x̂Σ∆‖2 ≤
‖u‖2√

mσmin(D−rE)
≤ λ−α(r−1/2)

2c1
δ. (54)

The normalizing
√
m factor appears in the first inequality in (54) because Theorem 3.8 is stated

for matrices with N (0, 1
m) entries. Note that the RIP and therefore the robust recovery will hold

with probability 1 − exp(c′′m), and our Sobolev dual reconstruction error bound will hold with
probability 1− exp(−c7mλ

−α). Here c1 and c7 are as in the proof of Theorem 3.8.

Remark. In the concrete case C1 = 10, suppose we have

min
j∈T
|xj | ≥

√
2η = 5 · 2r+1/2δ. (55)

If MSQ is used as the quantization method, then the best error guarantee we have that holds
uniformly on T would be

‖x− x#
MSQ‖∞ ≤ ‖x− x

#
MSQ‖2 ≤ 5δ.

It can be argued that the approximately recovered entries of x#
MSQ are meaningful only when the

minimum nonzero entry of x is at least as large as the maximum uncertainty in x#
MSQ, which is

only known to be bounded by 5δ. Hence, in some sense the size condition (55) is natural (modulo
the factor 2r+1/2).
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4.3 Quantizer choice and rate-distortion issues

Suppose that we are given a CS problem with fixed dimensions m, N , and k, which also fixes λ.
Furthermore suppose x ∈ Σk satisfies

A ≤ |xj | ≤ ρ for all j ∈ T. (56)

Our ultimate goal is to determine the quantizer (among the infinite family of Σ∆ quantizers of
arbitrary order as well as MSQ) that minimizes the resulting approximation error for the given
problem dimensions for a fixed bit-budget. A complete analysis of this problem is beyond the scope
of this paper. However, below we will show that even a first-order Σ∆ quantizer is significantly
superior to MSQ as long as the quantizer step size δ is sufficiently small and λ satisfies the condition
of Theorem 4.2 for r = 1.

For usefulness of our results, we need δ, the quantizer step size, to satisfy

δ ≤ A

10
√

2
(57)

where, as before, we assumed C1 = 10. Fix some δ that satisfies (57). Next, we need to determine
finite alphabets A1 = {±jδ : j = 0, 1, . . . , 2B1} and A2 = {±jδ : j = 0, 1, . . . , 2B2} that ensure
that the first-order Σ∆ quantizer implemented with A1 and MSQ implemented with A2 do not
overload whenever y = Φx is quantized with the respective scheme. In the case of the first-order
Σ∆ quantizer, we then require B1 to satisfy 2B1δ ≥ ‖y‖∞, and in the case of MSQ, we need
2B2δ ≥ ‖y‖∞ − δ/2. Therefore, in order to estimate B1 and B2 as a function of the problem
dimensions, we need to bound ‖y‖∞ efficiently.

An improved bound for the dynamic range

If we use the RIP, then Φ does not expand the `2-norm of k-sparse vectors by more than a factor
of 2
√
m (note our choice of normalization for Φ), and therefore it follows that

‖y‖∞ ≤ ‖y‖2 ≤ 2
√
m‖x‖2 ≤ 2ρ

√
mk,

which is a restatement of the inequality

‖E‖`k∞→`m∞ ≤
√
k‖E‖`k2→`m2

that holds for any m× k matrix E. However, it can be argued that the (∞,∞)-norm of a random
matrix should typically be smaller. In fact, if E were drawn from the Bernoulli model, i.e., Eij ∼ ±1,
then we would have

‖E‖`k∞→`m∞ = k = λ−1/2
√
mk,

as can easily be seen from the general formula

‖E‖`k∞→`m∞ = max
1≤i≤m

k∑
j=1

|Eij |. (58)

Using simple concentration inequalities for Gaussian random variables, it turns out that for the
range of aspect ratio λ = m/k and probability of encountering a matrix Φ that we are interested in,
we have ‖E‖`k∞→`m∞ ≤ λ−α/2

√
mk for every m × k submatrix E of Φ. We start with the following

estimate:
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Proposition 4.3. Let ξ1, . . . , ξk i.i.d. standard Gaussian variables. Then, for any Θ > 1,

P

 k∑
j=1

|ξj | > Θ

 ≤ 2ke−Θ2/(2k). (59)

Proof.

P

 k∑
j=1

|ξj | > Θ

 ≤ min
t≥0

∫
Rk
e−(Θ−

∑k
j=1 |xj |)t

k∏
j=1

e−x
2
j/2

dxj√
2π

= min
t≥0

e−Θt

(
et

2/2

∫
R
e−

1
2

(|x|−t)2 dx√
2π

)k
= min

t≥0
e−Θt

(
2et

2/2

∫ ∞
0

e−
1
2

(x−t)2 dx√
2π

)k
≤ 2k min

t≥0
e−Θt+kt2/2

= 2ke−Θ2/(2k). (60)

where in the last step we set t = Θ/k.

Proposition 4.4. Let Φ be an m×N random matrix whose entries are i.i.d. N (0, 1). Let 0 < α < 1
be any number and assume that

λ :=
m

k
≥ c1(logN)1/(1−α), (61)

where c1 is an appropriate constant. Then with probability at least 1− e−c2m1−αkα for some c2 > 0,
every m× k submatrix E of Φ satisfies

‖E‖`k∞→`m∞ ≤ λ
−α/2√mk. (62)

Proof. Proposition 4.3 straightforwardly implies that

P
(
{∃T such that |T | = k and ‖ΦT ‖`k∞→`m∞ > Θ}

)
≤
(
N

k

)
m2ke−Θ2/(2k). (63)

Let Θ = λ−α/2
√
mk. It remains to show that

k logN + k log 2 + logm+ c2m
1−αkα ≤ Θ2

2k
.

If c1 in (61) is sufficiently large and c2 is sufficiently small, then the expression on the left hand
side is bounded by kλ1−α/2 = Θ2/(2k).

Without loss of generality, we may now assume that Φ also satisfies the conclusion of Proposition
4.4. Hence we have an improved bound on the range of y given by

‖y‖∞ ≤ ρλ−α/2
√
mk = ρλ(1−α)/2k. (64)
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Comparison of Σ∆ and MSQ

Let A1,A2, B1, B2 be as in the discussion below (57). Using (64), we see that B1 needs to satisfy

2B1δ ≥ ρλ(1−α)/2k, (65)

so that the first-order Σ∆ quantizer is not overloaded when implemented with A1. Similarly, in
the case MSQ, we need B2 satisfy

2B2δ ≥ ρλ(1−α)/2k − δ/2. (66)

In a practical setting it is natural to assume that ρ � δ, and consequently we have B1 ≈ B2,
i.e., we may as well assume A1 = A2. Thus, to compare the two quantization schemes, we need to
compare only the associated approximation errors. Based on Theorem 4.2, the approximation error
(the distortion) DΣ∆ incurred after the fine recovery stage via Sobolev duals satisfies the bound

DΣ∆ ≤
π

2
λ−α/2δ. (67)

which follows from (54) after setting c1 = c1(1) = 1/π (see (84)). A similar calculation for the
MSQ encoder with the standard `1 decoder results in

DMSQ ≤ 5δ. (68)

Interpretation

The analysis above requires that both MSQ and Σ∆ encoders utilize high-resolution quantizers. In
this setting, the benefit of using a first-order Σ∆ encoder is obvious upon comparing (67) and (68).
It is important, though, to note that the above comparison makes sense only for a fixed value of λ
that is built in to the compressed sensing setup and is sufficiently large to satisfy the condition of
Theorem 4.2. If additional bits were available, it is more economical to put those in use to reduce
the quantizer step size δ rather than for collecting more measurements.

From Theorem 4.2 it is clear that Σ∆ quantizers of order r > 1 could improve the distortion
further if λ is sufficiently large. Specifically, given λ there is an optimal order r(λ) that minimizes
the associated distortion after taking into account all r-dependencies of the numerical constants. An
analysis to determine the optimal order as a function of λ, and the associated minimum distortion,
is beyond the scope of this paper. However, numerical experiments that we present in the next
section suggest that with modest values of λ, Σ∆ schemes of order r = 2 and r = 3 indeed produce
approximations with significantly smaller distortion.

5 Numerical experiments

In order to test the accuracy of Theorem 3.7, our first numerical experiment concerns the minimum
singular value of D−rE as a function of λ = m/k. In Figure 1, we plot the worst case (the largest)
value, among 1000 realizations, of 1/σmin(D−rE) for the range 1 ≤ λ ≤ 25, where we have kept
k = 50. As predicted by this theorem, we find that the negative slope in the log-log scale is roughly
equal to r − 1/2, albeit slightly less, which seems in agreement with the presence of our control
parameter α. As for the size of the r-dependent constants, the function 5rλ−r+1/2 seems to be a
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reasonably close numerical fit, which also explains why we observe the separation of the individual
curves after λ > 5.

Our next experiment involves the full quantization algorithm for compressed sensing including
the “recovery of support” and “fine recovery” stages. To that end, we first generate a 1000× 2000
matrix Φ, where the entries of Φ are drawn i.i.d. according to N (0, 1). To examine the performance
of the proposed scheme as the redundancy λ increases in comparison to the performance of the
standard MSQ quantization, we run a set of experiments: In each experiment we fix the sparsity
k ∈ {10, 20}, and we generate k-sparse signals x with the non-zero entries of each signal supported
on a random set T , but with magnitude 1/

√
k. This ensures that ‖x‖2 = 1. Next, for m ∈

{100, 200, ..., 1000} we generate the measurements y = Φ(m)x, where Φ(m) is comprised of the first
m rows of Φ. We then quantize y using MSQ, as well as the 1st and 2nd order Σ∆ quantizers,
defined via (16) and (18) (in all cases the quantizer step size is δ = 10−2). For each of these
quantized measurements q, we perform the coarse recovery stage, i.e., we solve the associated `1
minimization problem to recover a coarse estimate of x as well as an estimate T̃ of the support T .
The approximation error obtained using the coarse estimate (with MSQ quantization) is displayed
in Figure 2 (see the dotted curve). Next, we implement the fine recovery stage of our algorithm.
In particular, we use the estimated support set T̃ and generate the associated dual Fsob,r. Defining

Fsob,0 := (Φ
(m)

T̃
)†, in each case, our final estimate of the signal is obtained via the fine recovery stage

as x̂T̃ = Fsob,rq, x̂T̃ c = 0. Note that this way, we obtain an alternative reconstruction also in the
case of MSQ. We repeat this experiment 100 times for each (k,m) pair and plot the maximum of
the resulting errors ‖x− x̃‖2 as a function of λ in Figure 2. For our final experiment, we choose the
entries of xT i.i.d. fromN (0, 1), and use a quantizer step size δ = 10−4. Otherwise, the experimental
setup is identical to the previous one. The maximum of the resulting errors ‖x− x̃‖2 as a function
of λ is reported in Figure 3.

The main observations that we obtain from these experiments are as follows:

• Σ∆ schemes outperform the coarse reconstruction obtained from MSQ quantized measure-
ments significantly even when r = 1 and even for small values of λ.

• For the Σ∆ reconstruction error, the negative slope in the log-log scale is roughly equal to r.
This outperforms the (best case) predictions of Theorem B which are obtained through the
operator norm bound and suggests the presence of further cancellation due to the statistical
nature of the Σ∆ state variable u, similar to the white noise hypothesis.

• When a fine recovery stage is employed in the case of MSQ (using the Moore-Penrose pseu-
doinverse of the submatrix of Φ that corresponds to the estimated support of x), the ap-
proximation is consistently improved (when compared to the coarse recovery). Moreover, the
associated approximation error is observed to be of order O(λ−1/2), in contrast with the error
corresponding to the coarse recovery from MSQ quantized measurements (with the `1 decoder
only) where the approximation error does not seem to depend on λ. A rigourous analysis of
this behaviour is an open problem.
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6 Remarks on extensions

6.1 Other noise-shaping matrices

In the above approach, the particular quantization scheme that we use can be identified with its
“noise-shaping matrix”, which is Dr in the case of an rth order Σ∆ scheme and the identity matrix
in the case of MSQ.

The results we obtained above are valid for the aforementioned noise-shaping matrices. However,
our techniques are fairly general and our estimates can be modified to investigate the accuracy
obtained using an arbitrary quantization scheme with the associated invertible noise-shaping matrix
H. In particular, the estimates depend solely on the distribution of the singular values of H. Of
course, in this case, we also need change our “fine recovery” stage and use the “H-dual” of the
corresponding frame E, which we define via

FHH = (HE)†. (69)

As an example, consider an rth order high-pass Σ∆ scheme whose noise shaping matrix is Hr

where H is defined via

Hij :=

{
1, if i = j or if i = j + 1,
0, otherwise.

(70)

It is easy to check that the singular values of H are identical to those of D. It follows that all the
results presented in this paper are valid also if the compressed measurements are quantized via an
an rth order high-pass Σ∆ scheme, provided the reconstruction is done using the Hr-duals instead
of the rth order Sobolev duals. Note that such a result for high-pass Σ∆ schemes is not known to
hold in the case of structured frames.

6.2 Measurement noise and compressible signals

One of the natural questions is whether the quantization methods developed in this paper are
effective in the presence of measurement noise in addition to the error introduced during the
quantization process. Another natural question is how to extend this theory to include the case
when the underlying signals are not necessarily strictly sparse, but nevertheless still “compressible”.

Suppose x ∈ RN is not sparse, but compressible in the usual sense (e.g. as in [10]), and let
y = Φx+ e, where e stands for additive measurement noise. The coarse recovery stage inherits the
stability and robustness properties of `1 decoding for compressed sensing, therefore the accuracy of
this first reconstruction depends on the best k-term approximation error for x, and the deviation of
Φx from the quantized signal q (which comprises of the measurement noise e and the quantization
error y − q). Up to constant factors, the quantization error for any (stable) Σ∆ quantizer is
comparable to that of MSQ, hence the reconstruction error at the coarse recovery stage would
also be comparable. In the fine recovery stage, however, the difference between σmax(FHH) and
σmax(FH) plays a critical role. In the particular case of H = Dr and FH = Fsob,r, the Sobolev duals
we use in the reconstruction are tailored to reduce the effect of the quantization error introduced
by an rth order Σ∆ quantizer. This is reflected in the fact that as λ increases, the kernel of the
reconstruction operator Fsob,r contains a larger portion of high-pass sequences (like the quantization
error of Σ∆ modulation), and is quantified by the bound σmax(Fsob,rD

r) . λ−(r−1/2)m−1/2 (see
Theorem A, (26) and (27)). Consequently, obtaining more measurements increases λ, and even
though ‖y − q‖2 increases as well, the reconstruction error due to quantization decreases. At the
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same time, obtaining more measurements would also increase the size of the external noise e, as well
as the “aliasing error” that is the result of the “off-support” entries of x. However, this noise+error
term is not counteracted by the action of Fsob,r. In fact, for any dual F , the relation FE = I
implies σmax(F ) ≥ 1/σmax(E) & m−1/2 already and in the case of measurement noise, it is not
possible to do better than the canonical dual E† on average. In this case, depending on the size of
the noise term, the fine recovery stage may not improve the total reconstruction error even though
the “quantizer error” is still reduced.

One possible remedy for this problem is to construct alternative quantization schemes with
associated noise-shaping matrices that balance the above discussed trade-off between the quanti-
zation error and the error that is introduced by other factors. This is a delicate procedure, and it
will be investigated thoroughly in future work. However, a first such construction can be made by
using “leaky” Σ∆ schemes with H given by

Hij :=


1, if i = j,
−µ if i = j + 1,

0, otherwise,
(71)

where µ ∈ (0, 1). Our preliminary numerical experiments (see Figure 4) suggest that this approach
can be used to improve the accuracy of the approximation further in the fine recovery stage in
this more general setting. We note that the parameter µ above can be adjusted based on how
compressible the signals of interest are and what the expected noise level is.
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A Singular values of D−r

It will be more convenient to work with the singular values of Dr. Note that because of our
convention of descending ordering of singular values, we have

σj(D
−r) =

1

σm+1−j(Dr)
, j = 1, . . . ,m. (72)

For r = 1, an explicit formula is available [30,33]. Indeed, we have

σj(D) = 2 cos

(
πj

2m+ 1

)
, j = 1, . . . ,m, (73)
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which implies

σj(D
−1) =

1

2 sin
(
π(j−1/2)
2(m+1/2)

) , j = 1, . . . ,m. (74)

The first observation is that σj(D
r) and (σj(D))r are different, because D and D∗ do not

commute. However, this becomes insignificant as m → ∞. In fact, the asymptotic distribution
of (σj(D

r))mj=1 as m → ∞ is rather easy to find using standard results in the theory of Toeplitz

matrices: D is a banded Toeplitz matrix whose symbol is f(θ) = 1 − eiθ, hence the symbol of Dr

is (1− eiθ)r. It then follows by Parter’s extension of Szegö’s theorem [28] that for any continuous
function ψ, we have

lim
m→∞

1

m

m∑
j=1

ψ(σj(D
r)) =

1

2π

∫ π

−π
ψ(|f(θ)|r) dθ. (75)

We have |f(θ)| = 2 sin |θ|/2 for |θ| ≤ π, hence the distribution of (σj(D
r))mj=1 is asymptoti-

cally the same as that of 2r sinr(πj/2m), and consequently, we can think of σj(D
−r) roughly

as
(
2r sinr(πj/2m)

)−1
. Moreover, we know that ‖Dr‖op ≤ ‖D‖rop ≤ 2r, hence σmin(D−r) ≥ 2−r.

When combined with known results on the rate of convergence to the limiting distribution in
Szegö’s theorem, the above asymptotics could be turned into an estimate of the kind given in
Proposition 3.1, perhaps with some loss of precision. Here we shall provide a more direct approach
which is not asymptotic, and works for all m > 4r. The underlying observation is that D and D∗

almost commute: D∗D −DD∗ has only two nonzero entries, at (1, 1) and (m,m). Based on this
observation, we show below that D∗rDr is then a perturbation of (D∗D)r of rank at most 2r.

Proposition A.1. Let C(r) = D∗rDr − (D∗D)r where we assume m ≥ 2r. Define

Ir := {1, . . . , r} × {1, . . . , r} ∪ {m− r + 1, . . . ,m} × {m− r + 1, . . . ,m}.

Then C
(r)
i,j = 0 for all (i, j) ∈ Icr . Therefore, rank(C(r)) ≤ 2r.

Proof. Define the set Cr of all “r-cornered” matrices as

Cr = {M : Mi,j = 0 if (i, j) ∈ Icr},

and the set Br of all “r-banded” matrices as

Br = {M : Mi,j = 0 if |i− j| > r}.

Both sets are closed under matrix addition. It is also easy to check the following facts (for the
admissible range of values for r and s):

(i) If B ∈ Br and C ∈ Cs, then BC ∈ Cr+s and CB ∈ Cr+s.

(ii) If B ∈ Br and B̃ ∈ Bs, then BB̃ ∈ Br+s.

(iii) If C ∈ Cr and C̃ ∈ Cs, then CC̃ ∈ Cmax(r,s).

(iv) If C ∈ Cr, then D∗CD ∈ Cr+1.
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Note that DD∗, D∗D ∈ B1 and the commutator [D∗, D] =: Γ1 ∈ C1. Define

Γr := (D∗D)r − (DD∗)r = (DD∗ + Γ1)r − (DD∗)r.

We expand out the first term (noting the non-commutativity), cancel (DD∗)r and see that every
term that remains is a product of r terms (counting each DD∗ as one term) each of which is either
in B1 or in C1. Repeated applications of (i), (ii), and (iii) yield Γr ∈ Cr.

We will now show by induction on r that C(r) ∈ Cr for all r such that 2r ≤ m. The cases r = 0
and r = 1 hold trivially. Assume the statement holds for a given value of r. Since

C(r+1) = D∗(C(r) + Γr)D

and Γr ∈ Cr, property (iv) above now shows that C(r+1) ∈ Cr+1.

The next result, originally due to Weyl (see, e.g., [4, Thm III.2.1]), will now allow us to estimate
the eigenvalues of D∗rDr using the eigenvalues of (D∗D)r:

Theorem A.2 (Weyl). Let B and C be m ×m Hermitian matrices where C has rank at most p
and m > 2p. Then

λj+p(B) ≤ λj(B + C), j = 1, . . . ,m− p, (76)

λj−p(B) ≥ λj(B + C), j = p+ 1, . . . ,m, (77)

where we assume eigenvalues are in descending order.

We are now fully equipped to prove Proposition 3.1.

Proof of Proposition 3.1. We set p = 2r, B = (D∗D)r, and C = C(r) = D∗rDr− (D∗D)r in Weyl’s
theorem. By Proposition A.1, C has rank at most 2r. Hence, we have the relations

λj+2r((D
∗D)r) ≤ λj(D∗rDr), j = 1, . . . ,m− 2r, (78)

λj−2r((D
∗D)r) ≥ λj(D∗rDr), j = 2r + 1, . . . ,m. (79)

Since λj((D
∗D)r) = λj(D

∗D)r, this corresponds to

σj+2r(D)r ≤ σj(Dr), j = 1, . . . ,m− 2r, (80)

σj−2r(D)r ≥ σj(Dr), j = 2r + 1, . . . ,m. (81)

For the remaining values of j, we will simply use the largest and smallest singular values of Dr as
upper and lower bounds. However, note that

σ1(Dr) = ‖Dr‖op ≤ ‖D‖rop = (σ1(D))r

and similarly
σm(Dr) = ‖D−r‖−1

op ≥ ‖D−1‖−rop = (σm(D))r.

Hence (80) and (81) can be rewritten together as

σmin(j+2r,m)(D)r ≤ σj(Dr) ≤ σmax(j−2r,1)(D)r, j = 1, . . . ,m. (82)
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Inverting these relations via (72), we obtain

σmin(j+2r,m)(D
−1)r ≤ σj(D−r) ≤ σmax(j−2r,1)(D

−1)r, j = 1, . . . ,m. (83)

Finally, to demonstrate the desired bounds of Proposition 3.1, we rewrite (74) via the inequality
2x/π ≤ sinx ≤ x for 0 ≤ x ≤ π/2 as

m+ 1/2

π(j − 1/2)
≤ σj(D−1) ≤ m+ 1/2

2(j − 1/2)
, (84)

and observe that min(j + 2r,m) �r j and max(j − 2r, 1) �r j for j = 1, . . . ,m.

Remark. The constants c1(r) and c2(r) that one obtains from the above argument would be
significantly exaggerated. This is primarily due to the fact that Proposition 3.1 is not stated in
the tightest possible form. The advantage of this form is the simplicity of the subsequent analysis
in Section 3.1. Our estimates of σmin(D−rE) would become significantly more accurate if the
asymptotic distribution of σj(D

−r) is incorporated into our proofs in Section 3.1. However, the
main disadvantage would be that the estimates would then hold only for all sufficiently large m.
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Figure 1: Numerical behavior (in log-log scale) of 1/σmin(D−rE) as a function of λ = m/k, for
r = 0, 1, 2, 3, 4. In this figure, k = 50 and 1 ≤ λ ≤ 25. For each problem size, the largest value of
1/σmin(D−rE) among 1000 realizations of a random m × k matrix E sampled from the Gaussian
ensemble N (0, 1

mIm) was recorded.

10 20 30 40 50 60 70 80 90 100

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

performance of various quantization/decoding schemes, k = 10

m
a

xi
m

u
m

 l 2
−

n
o

rm
 o

f 
th

e
 e

rr
o

r

λ

PCM → l
1

PCM → l
1
 → F

can

Σ∆ (r=1) → l
1
 → F

sob,1

Σ∆ (r=2) → l
1
 → F

sob,2

cλ
−r, r=0.5,1,2

(a)

5 10 15 20 25 30 35 40 45 50

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

performance of various quantization/decoding schemes, k = 20

m
a

xi
m

u
m

 l 2
−

n
o

rm
 o

f 
th

e
 e

rr
o

r

λ

PCM → l
1

PCM → l
1
 → F

can

Σ∆ (r=1) → l
1
 → F

sob,1

Σ∆ (r=2) → l
1
 → F

sob,2

cλ
−r, r=0.5,1,2

(b)

Figure 2: The worst case performance of the proposed Σ∆ quantization and reconstruction schemes
for k = 10 and k = 20. For this experiment the non-zero entries of x are constant and δ = 0.01.
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Figure 3: The worst case performance of the proposed Σ∆ quantization and reconstruction schemes
for for k = 10 and k = 20. For this experiment the non-zero entries of x are i.i.d. N (0, 1) and
δ = 10−4.
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Figure 4: The worst case performance of the proposed Σ∆ quantization and reconstruction schemes
(with general duals) for k = 10 and k = 20. For this experiment the non-zero entries of x are
constant and δ = 0.01.
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