As noted, in a recent article by Semple (2003): ‘Of particular interest are the relative rates of misassembly (sequence assembled in the wrong order and/or orientation) and the relative coverage achieved by the three protocols. Unfortunately, the UCSC groups were alone in having published assessments of the rate of misassembly in the contigs they produced [ADD: see references (*) on subsequent assembly analysis and comparison].

Whole-genome shotgun assembly and comparison of human genome assemblies.
doi:10.1073/pnas.0307971100

- Page 155, right column, paragraph 4:
Note that, traditionally, assemblers have optimized/approximated one of the properties [ADD: only], listed above...

- Page 156, left column, paragraph 2:
Since Unitig construction can be computationally expensive, large-scale assemblers like CELERA/CABOG have adopted [ADD: (**)] a strategy, where Unitigs are computed as chains of mutually unique adjacent reads with best overlap between each other. [ADD: This technique takes time and space linear in the number of reads.]

Aggressive assembly of pyrosequencing reads with mates.

doi:10.1093/bioinformatics/btn548

- Page 158, right column, paragraph 4:
The experimental results show that SUTTA has competitive performance to the best state-of-the-art assemblers [ADD: based on contig size comparison].

We wish to thank Dr Jason Miller of Venter Institute for his careful reading of the paper, for pointing out inadvertent omission of several key citations, and for suggesting how various sentences could have been reworded.