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ABSTRACT

As the planet warms, climate models predict that rain will become heavier

but less frequent, and that the circulation will weaken. Here, two heuristic

models relating moisture, vertical velocity, and rainfall distributions are de-

veloped, one in which the distribution of vertical velocity is prescribed and

another in which it is predicted. These models are used to explore the re-

sponse to warming and moistening, changes in the circulation, atmospheric

energy budget, and stability. Some key assumptions of the models include that

relative humidity is fixed within and between climate states and that stability

is constant within each climate state. The first model shows that an increase

in skewness of the vertical velocity distribution is crucial for capturing salient

characteristics of the changing distribution of rain, including the muted rate of

mean precipitation increase relative to extremes and the decrease in the total

number or area of rain events. The second model suggests that this increase

in the skewness of the vertical velocity arises from the asymmetric impact of

latent heating on vertical motion.
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1. Introduction26

Changes in rain are inexorably tied to changes in atmospheric circulation. In response to global27

warming, climate model projections show an increase in global-mean precipitation, the rate of28

which is in balance with the change in atmospheric radiative cooling (O’Gorman et al. 2012;29

Pendergrass and Hartmann 2014a). This rate of increase, 1-3% per degree of warming across30

climate models, is smaller than the rate of increase of moisture in the atmosphere, which roughly31

follows saturation vapor pressure at ∼7% K−1 (Held and Soden 2006). The difference between the32

rates of increase of moisture and precipitation with warming imply a slowing of the atmospheric33

overturning circulation (Betts 1998). The weakening circulation in climate model projections34

manifests as a decrease in spatial variance of convective mass flux (Held and Soden 2006) and the35

Walker circulation (the anti-symmetric component of variance of 500 hPa vertical velocity in the36

tropics, Vecchi and Soden 2007).37

Along with changes in circulation, climate model projections show changes in the distribution38

of rainfall, as shown in Fig. 1 from version 5 of the Coupled Model Intercomparison Project39

(for CMIP5, Taylor et al. 2012, following Pendergrass and Hartmann 2014b). More rain falls at40

heavier rain rates, less rain falls at moderate rain rates, and the number of rainy days decreases.41

These changes in the distribution of rainfall in response to warming (both induced by increasing42

carbon dioxide forcing and between El Niño and La Nina phases of ENSO) in models can be43

well described by two empirically derived patterns, denoted the “shift” and “increase” modes44

(Pendergrass and Hartmann 2014c), which are illustrated in Fig. 2.45

The “increase” mode (Fig. 2a,b) characterizes an increase in the frequency of rain by the same46

fraction at all rain rates. The bell shape of the distribution, when plotted as a function of log(rain47

rate) in Fig. 2a, simply follows the climatological distribution of rain frequency. While the change48
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in rain amount is characterized by a similar bell-shaped pattern, it occurs at higher rain rates49

(Fig. 2b). The total amount of rain is the product of the rain frequency and rain rate, such that an50

increase in rain frequency at higher rain rates has a larger impact on the total precipitation than it51

does at lower rain rates. An increase in rain frequency implies a reduction in the number of dry52

days. In the global mean, it rains about half of the time, such that a one percent increase at all rain53

rates is associated with a one-half percent reduction in dry days.54

The “shift” mode (Fig. 2c,d) characterizes a movement of the distribution of rain to higher rain55

rates, but with no net increase in the total rain amount. It is defined as a shift of the rain amount56

distribution (Fig. 2d); the corresponding change in the rain frequency distribution can also be57

obtained (Fig. 2c). A larger decrease in the frequency of light rain events is needed to offset the58

smaller increase in the frequency of strong rain events on total precipitation, hence the shift mode59

is associated with an increase in the number of dry days. For a one percent increase in the shift60

mode, the total number of dry days increases by about one-half of a percent.61

Pendergrass and Hartmann (2014b) found that a combination of the shift and increase modes62

could capture most of the change in the distribution of rain in most climate model simulations of63

global warming, and the entire change in some models. The essence of their result can be found by64

comparing Fig. 1c and d with Fig. 2e and f: the combination of shift and increase modes optimally65

fitted to the multi-model mean change in the rain distribution. The response of the shift mode is66

larger than the increase mode, such that there is a modest increase in the frequency of dry days.67

Not all of the change in the distribution of rain in climate models is captured by the shift and68

increase modes. Pendergrass and Hartmann (2014c) identified two additional aspects of the chang-69

ing distribution of rain common to many models: the light rain mode and the extreme mode. The70

light rain mode is the small increase in rain frequency just below 1 mm d−1 visible in Fig. 1c, also71

evident in Lau et al. (2013). The extreme mode represents additional increases in rain at the heav-72
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iest rain rates, beyond what is captured by the shift and increase modes. It is crucial for capturing73

the response of extreme precipitation to warming.74

Changes in moisture, circulation, and the distribution of rain in response to warming are related.75

Indeed, the changes in the intensity of extreme rain events in climate model projections of global76

warming can be linearly related to changes in moisture and vertical velocity in most models and77

regions (Emori and Brown 2005; O’Gorman and Schneider 2009; Chou et al. 2012). This moti-78

vates us to consider whether we can understand the changing distribution of rain in terms of the79

changes in moisture and vertical velocity distributions, constituting a physically based, rather than80

empirically derived, approach.81

One might assume that changes in the distribution of rain are complex. The distribution of rain82

(particularly the global distribution) is generated by a number of different types of precipitating83

systems, each of which is driven by somewhat different mechanisms and might respond differently84

to external forcing. For example, it would not be surprising if midlatitude cyclones and tropical85

convection responded differently to global warming. On the other hand, we expect many aspects of86

the response to warming to be fairly straightforward: warming along with moistening at a relative87

humidity that stays constant on surfaces of constant temperature (Romps 2014).88

In this study, we approach the relationships among changes in moisture, vertical velocity, and89

rain by examining the response to straightforward changes of simple statistical distributions. We90

develop two heuristic models that predict the distribution of rain from moisture and vertical veloc-91

ity distributions. We will see that despite the potential for complexity among these relationships,92

we can recover many aspects of the changes in rainfall and vertical velocity we see in climate93

models in an idealized setting.94

In Section 2, we introduce the first model, in which distributions of moisture and vertical velocity95

are prescribed. We use the model to explore how the distribution of rain responds to warming and96
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moistening, and to changes in the strength and asymmetry (or skewness) of the vertical velocity97

distribution. Then, in Section 3, we introduce a second model that predicts the vertical velocity98

distribution in order to understand its changes in concert with those of the distribution of rain.99

In Section 4, we show that climate model simulations also have increasing skewness of vertical100

velocity with warming. Finally, we consider the implications of the increasing skewness of vertical101

velocity on convective area in Section 5 and conclude our study in Section 6.102

2. The first model: Prescribed vertical velocity103

We know rain is a result of very complex processes, many of which are parameterized rather than104

explicitly modeled in climate models. At the most basic level, rain is regulated by two processes:105

(1) the moisture content, which is tied to the temperature structure, assuming constant relative106

humidity, and (2) the magnitude of upward vertical velocity. Instead of considering variability107

in space, consider a distribution that captures the structure of all regions globally. Furthermore,108

neglect concerns about the vertical structure of the motion or the structure of the atmosphere, and109

consider only the vertical flux of moisture through the cloud base.110

The key – and gross – simplification of this model is that we will assume that the vertical velocity111

is independent of the temperature and moisture content, so we can model these as two independent112

distributions. We know this is not the case – upward velocity is often driven by convection, which113

occurs where surface temperature is warm – but for now we will see what insight can be gleaned114

with this assumption.115

a. Model description116

Our first model is driven by two prescribed, independent, Gaussian (normal) distributions: one117

for temperature, N(T ,σT ), where T is the mean temperature and σT is width of the temperature118
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distribution, and another for vertical velocity, N(w,σw), where w is the mean vertical velocity119

(equal to zero when mass is conserved) and σw is the width of the w distribution. The tempera-120

ture distribution, with the assumption of constant relative humidity, in turn gives us the moisture121

distribution. We calculate moisture q,122

q(T ) = q0e0.07T , (1)

where q0 is chosen so that q(T ) is equal to its Clausius-Clapeyron value at T = 287 K. This123

equation is very similar to Clausius-Clapeyron, except that here dq/dT = 7 % K−1 exactly. The124

implied relative humidity is fixed at 100%. The choice of 100% relative humidity is arbitrary, but125

any non-zero choice that is held constant will result in the same behavior.126

We suppose that it rains whenever vertical velocity w is positive (upward), with a rain rate equal127

to the product of the moisture, vertical velocity, and air density ρa (held constant at 1.225 kg m−3,128

its value at sea level and 15◦C),129

r(q,w) =



















ρawq, w > 0

0, w ≤ 0.

(2)

This is analogous to saying that the rain rate is equal to the flux of moisture across the cloud base.130

While this is a gross simplification, it would hold if the column were saturated and the temperature131

structure fixed, and the air was lifted to a level where there the saturation specific humidity is132

effectively zero. In this limit, any moisture advected upward will lead to supersaturation and133

rain from above. Neglecting the impact of condensation on the temperature is a similarly coarse134

approximation as our assumption that the temperature and vertical velocity are independent.135
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The rain frequency distribution is obtained by integrating across the distributions of T (which136

determines q by Eqn. 1) and w,137

p(r) =

∞
∫

0

∞
∫

−∞

∞
∫

−∞

δ (r−ρawq) ρawq p(T ) p(w) dT dw dr, (3)

where p(T ) and p(w) are Gaussian probability density functions and δ is a Dirac delta function.138

The rain amount distribution is then,139

P(r) = r p(r). (4)

Lastly, we must specify the parameters governing the temperature and vertical velocity distribu-140

tions, which are listed in Table 1 for reference. For temperature (shown in Fig. 3a) we take T to141

be 287 K and its standard deviation σT = 16 K, both chosen to match the surface air temperature142

distribution in a climate model. The vertical velocity distribution (shown in Fig. 3b) must have143

a mean w = 0 if mass is to be conserved. Given the temperature distribution above, the standard144

deviation of w will ultimately set the total precipitation. Thus we sought to constrain its value145

so as to capture the total precipitation in climate models and observational datasets like GPCP146

One-Degree Daily (see Pendergrass and Hartmann 2014c), while at the same time being consis-147

tent with the vertical velocity distribution in climate models. Studies such as Emori and Brown148

(2005) show that rain frequency changes are linearly related to changes in moisture and 500 hPa149

vertical velocity in many climate models for most regions. While vertical velocity at cloud base150

rather than 500 hPa would be more closely physically related to our conceptual model, it is not151

archived for these climate model integrations.152

The rain frequency distribution (shown in Fig. 3c) is calculated numerically following the de-153

scription in Appendix A. It is dry exactly 50% of the time, since the vertical velocity distribution154

is symmetric about zero. The peak of the rain frequency distribution occurs at just under 10 mm155

d−1. The rain amount distribution (Fig. 3d) shows how much rain falls in each rain rate bin. The156
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peak of the rain amount distribution occurs at a rain rate about an order of magnitude larger than157

for the rain frequency distribution.158

These distributions resemble distributions in observational datasets and climate models to the159

correct order of magnitude – compare to Fig. 1a,b and Pendergrass and Hartmann (2014c) – despite160

the crude assumptions of our model. The main deficiency of our model compared to climate161

models is a lack of precipitation at light rain rates, and a corresponding overestimation of dry-day162

frequency. However, climate models underestimate the dry-day frequency by about a factor of two163

compared to GPCP 1DD and TRMM 3B42 observational datasets (Pendergrass and Hartmann164

2014c). The implications of this discrepancy on the rain amount distribution are nonetheless small165

because light rain contributes less than heavy rain does to the total precipitation, so that distribution166

of rain amount appears better than rain frequency qualitatively (compare Figs. 1b and 3d).167

The goal in developing this toy model is to explore what happens in response to perturbations:168

warming and moistening, weakening of the circulation, and introducing skewness to the vertical169

velocity distribution.170

b. Response to warming and moistening171

We approximate warming by simply shifting the mean of the temperature distribution T 1 degree172

K higher. We keep σT constant, assuming no change in the variance of temperature. The moisture173

distribution adjusts accordingly. We maintain the same w distribution and calculate the distribution174

of rain in the warmed climate. The difference between the distributions of rain frequency and175

amount in the warmed and initial climates are shown in Fig. 4a-c. There is no change in the total176

frequency of rain, and the total amount of rainfall increases by 7 % K−1, exactly following the177

change in moisture.178
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The rainfall distribution response to warming is equivalent to moving the rain frequency distri-179

bution to the right by exactly 7 % K−1, or having equal shift and increase modes of 7 % K−1 (the180

fitted shift and increase modes are listed in Table 2), as in Fig. 2e,f. In contrast to this warming181

experiment, in climate model simulations of global warming, the shift mode is larger than in the182

increase mode and total precipitation increases more slowly than moisture. This exposes a flaw:183

circulation also adjusts to changes in climate, which is not captured by this first experiment. In184

climate model projections, circulation adjusts to satisfy the energetic constraints of the climate185

system, including the constraint that precipitation (in the global mean) can only increase as much186

as atmospheric radiative cooling and sensible heat flux allow it to (e.g. Allen and Ingram 2002).187

c. Response to weakening circulation188

A weakening of the atmospheric overturning circulation can be effected in our model by reduc-189

ing the width of the vertical velocity distribution, σw. For our second experiment, we decrease190

the standard deviation of w by 4%, using the initial (not warmed) distribution of temperature and191

moisture. The change in the distribution of rain is shown in Fig. 4d-f.192

Again, there is no change in the dry frequency, and the total amount of rainfall decreases by 4%,193

the same amount that we weakened the width of the vertical velocity distribution by. Decreasing194

the width of the vertical velocity distribution results in a shift of the rain frequency distribution to195

lower rain rates. In fact, narrowing the w distribution by 7% would exactly cancel the effect of196

warming by 1 K. We can understand this by considering Eqn. 2 or 3: warming by 1 K increases q197

by 7%, whereas widening the vertical velocity distribution increases w by 7%. The effect of either198

change on r is the same.199

We have just seen that neither warming nor changing the strength of the circulation affects the200

dry frequency, or the symmetry between the rates of change of mean and extreme rainfall. Changes201
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analogous to those we see in climate model simulations thus cannot result from either warming202

at constant relative humidity or weakening circulation alone. But what if the circulation becomes203

more asymmetric?204

d. Response to changing skewness of vertical velocity205

The first moment of the vertical velocity distribution, its mean, must be fixed at zero to maintain206

mass conservation. We have just seen that changing the second moment (standard deviation or207

variance) does not cause the changes in the distribution of rain that we see in climate models.208

We now turn to the third moment, skewness, which measures the asymmetry of a distribution.209

Skewness, a key quantity, is attended to more widely in the parts of atmospheric sciences dealing210

with turbulence, like boundary layer meteorology. It has also received some limited attention in211

climate recently. Sardeshmukh and Sura (2009) examine how skewness in fields like vorticity can212

arise. Luxford and Woollings (2012) discuss how skewness arises in geopotential height from213

kinematic fluctuations of the jet stream. Monahan (2004) discusses skewness of low-level wind214

speed arising from surface drag.215

Skewness can arise in vertical motion from the asymmetric effect of latent heating. To visualize216

this effect, picture a developing thunderstorm. The cumulus cloud grows because an updraft is217

heated when water vapor condenses, sustaining or even strengthening the updraft and eventually218

resulting in rainfall. Over the life of the thunderstorm, some of this rainfall will re-evaporate, but219

there will be a net latent heating of the atmosphere due to the formation of this thunderstorm equal220

to the amount of rainfall that reaches the ground. There is no corresponding effect of latent heating221

on subsiding air; it merely warms adiabatically as it sinks.222

To incorporate skewness into the vertical velocity distribution, we draw w from a skew-normal223

distribution generated following Azzalini and Capitanio (1999), instead of from a normal distri-224
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bution as before. A skew-normal distribution has three degrees of freedom which determine its225

mean, variance, and asymmetry. When the asymmetry is zero, the skew-normal distribution be-226

comes normal. We adjust the skew-normal distribution so that the mean is always zero to maintain227

mass conservation, and we maintain a constant variance of the w distribution to eliminate the ef-228

fects of changing circulation strength. The resulting distribution of w and the response in rain229

frequency and amount distributions to a 0.2 increase in skewness are shown in Fig. 4g-i.230

The responses of the rain frequency and amount distributions to increasing skewness of the231

vertical velocity have some intriguing features. There is a notable decrease in the frequency of232

rain for moderate rain rates (Fig. 4h), but the total amount of rain remains essentially constant due233

to a slight increase in the frequency of higher rain rates (Fig. 4i). This strongly resembles the shift234

mode. The magnitude of the strongest updrafts also changes little. Increasing skewness without235

conserving the mean of w would increase the strength of the strongest updrafts, but the shift of the236

distribution to maintain mass continuity compensates for this.237

To move toward the response of precipitation to global warming in climate models, we simul-238

taneously warm and increase the skewness of the vertical velocity distribution, shown in Fig. 4j-l.239

The response of the rain frequency and amount distributions to warming and skewing has all the240

features seen in climate models: a decrease in the total rain frequency and in the frequency of241

rain falling at moderate rain rates, along with an increase in rain amount focused at the heaviest242

rain rates. Increasing the skewness of the vertical velocity distribution effects crucial components243

of the change. It decreases the total frequency of rain events, breaks the symmetry between the244

changes in mean and extreme rainfall, and allows us to change the magnitude of the shift mode245

without changing the increase mode.246

To fully capture the changes we see in climate model simulations, we weaken the distribution247

of vertical velocity (decrease σw) while simultaneously increasing its skewness and increasing T ,248
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shown in Fig. 4m-o. Here we see many of the same features as before, but now we also have the249

decrease in mean rainfall that arises from the weakening circulation, giving us shift and increase250

modes of roughly the same magnitude as we see in climate models.251

To recap, we have shown that warming (increasing T ) results in shift and increase modes of equal252

magnitude, while increasing the skewness of the vertical velocity distribution produces the shift253

mode alone, allowing us to reproduce some salient features of the response of the rain distribution254

to warming projected by climate models. This motivates us to construct a model that predicts ver-255

tical velocity to understand how atmospheric energetic constraints lead to the increasing skewness256

of the vertical velocity distribution with warming.257

3. The second model: Predicted vertical velocity258

We know that precipitation is energetically constrained by total column heating and cooling.259

Thus, in this model we start with energetics. We prescribe a distribution of non-latent heating260

Qn, which is the sum of radiative and sensible heating and the convergence of dry static energy261

flux in the atmospheric column (see Muller and O’Gorman 2011). In the time mean, Qn balances262

the latent heating, and so relates to the total precipitation. In daily fields from the MPI-ESM-263

LR climate model, the width of the atmospheric radiative cooling is small compared to width264

of the atmospheric column dry static static energy flux convergence distribution, so the standard265

deviation of the non-latent heating distribution, σQn
, comes primarily from the convergence of the266

dry static energy flux. The distribution of Qn thus captures both the impact of radiation and the267

transport of energy by the circulation.268
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a. Model description269

Our goal is to predict the distribution of w, which will in turn give us the rainfall from Eqn. 2,270

as in our first model. We begin with the temperature and moisture distributions (again connected271

by the assumption of saturation, Fig. 5a), except that the tail of the temperature distribution is272

truncated at a maximum temperature, Tmax, which in turn implies a maximum allowable moisture273

content. We then assume that the non-latent atmospheric column heating, Qn (Fig. 5b), can be de-274

scribed by another independent Gaussian distribution. The sum of non-latent atmospheric column275

heating and latent heating from precipitation must be zero in the time mean to maintain energy276

conservation.277

We calculate the distributions of vertical velocity and rain according to a form of the thermody-278

namic equation (inspired by Sobel and Bretherton 2000),279

wS = Qn +Ql, (5)

where the parameter S is a constant that converts energy to vertical motion. In Sobel and Brether-280

ton (2000), S is a stability that varies in time and space, but here we assume it is a constant to281

maintain the mathematical simplicity of the model. Physically, this equation implies that the total282

atmospheric column heating (both latent, Ql , and non-latent Qn) exactly balances the energy re-283

quired to move air (w) against stability S. This balance holds in the time mean in the real world,284

but here we enforce it at all times.285

We calculate the latent heating Ql from the moisture and vertical velocity when it is raining (as286

in the first model),287

Ql = Lρawq, (6)

where L is the latent heat of vaporization of water (which we hold constant at 2.5×10−6 J kg−1, its288

value at 0◦C) and ρa is the air density as in the first model. With substitution, we have an equation289
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for vertical velocity,290

w =



















Qn

S
, Qn ≤ 0

Qn

S−Lρaq
, Qn > 0.

(7)

To conserve mass, the average vertical velocity must equal zero, as in the first model, and to con-291

serve energy, the mean latent heating Ql must be equal and opposite to the mean non-latent heating292

Qn. These balances are effected by integral constraints based on Eqn. 5, derived in Appendix B.293

The parameters we use are listed in Table 3. The mean of the non-latent atmospheric column294

heating is equal but opposite to the CMIP5 multi-model mean precipitation (88 W m−2), and its295

standard deviation is dominated by variability in the dry static energy flux convergence on short296

time scales (following Muller and O’Gorman 2011); we choose a value similar to those we found297

in climate model integrations.298

Truncating the temperature distribution is necessary to ensure that the denominator in Eqn. 7299

never drops to or below zero, which would result in infinite w. Tmax can be interpreted as an upper300

bound on SST, which is enforced by convection in the real world (Sud et al. 1999; Williams et al.301

2009).302

In addition to our choice of Qn, we also choose T , σT , Tmax, and σQn
values that are plausibly303

realistic or comparable to calculations using daily data from the MPI-ESM-LR climate model. The304

other requirement to maintain a positive-definite denominator in Eqn. 7 is that S must be greater305

than Lρaq(Tmax). In this way, the minimum possible choice of the parameter S is tied to Tmax. With306

a realistic temperature and moisture distribution and a constant S, the minimum allowable value307

of S is much larger than observed values of static stability (see e.g., Juckes 2000).308

The distributions of vertical velocity and rain produced by our model with the parameters listed309

in Table 3 are shown in Fig. 5c-e. As with the first model, the distributions of rain frequency and310
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amount are qualitatively similar to observations and climate model simulations in terms of both311

the peak magnitudes and overall structure.312

Most importantly, the model predicts a skewed distribution of w. To ensure that the skewness313

was not an artifact of the non-zero mean of the non-latent heating distribution, we specified Qn = 0314

(thereby neglecting energy and mass balance) in an alternative calculation (not shown), and the315

positive skewness remained. Rather, the skewness arises from the asymmetry introduced by latent316

heating, as can be seen in Eqn. (7). Atmospheric column cooling (Qn < 0) causes downward317

velocity, with a magnitude linearly related to Qn, since S is constant. But atmospheric heating318

(Qn > 0) induces upward motion and also condensation. The resulting latent heating effectively319

weakens the stability. w is thus no longer simply proportional to Qn, but grows super-linearly with320

Qn.321

b. Perturbations about the control climate322

Here we explore the responses to the three parameters other than warming: mean non-latent323

heating Qn, the width of non-latent heating σQn
, and stability S. To maintain mass and energy324

conservation, when one parameter changes, it must be compensated by a change in at least one325

other parameter. The amplitude of the parameter changes described in this section were chosen so326

they can be compared with the next set of experiments, where we warm by 3 K. This is a fairly327

linear regime where the results are not highly sensitive to the amplitude of the perturbations.328

In the first experiment, we increase the magnitude of mean non-latent heating Qn by 24 W m−2
329

to 113 W m−2 and balance it by widening the non-latent heating distribution (allowing σQn
to330

increase by 27.5%, equivalent to increasing the strength of heat transport convergence). Details331

of how we carry out the variation of the parameters are discussed in Appendix A. The resulting332

distribution of vertical velocity and the changes in rain amount and rain frequency are shown in333
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Fig. 6a-c. The vertical velocity distribution has widened, with no change in skewness. The rain334

frequency distribution shifts to heavier rain rates, with no change in the dry frequency, and thus335

no change in total rain frequency. The total amount of rainfall increases (to balance the increase336

in magnitude of non-latent heating), reflected in the response of the rain amount distribution.337

Also included in Fig. 6c is the combined shift-plus-increase mode fitted to the rain amount338

response. The fitted shift-plus-increase response is colored orange (following the color scheme339

shown in Fig. 2), which corresponds to equal magnitudes of shift and increase modes. The magni-340

tudes and error of the fit are listed in Table 2 (and are normalized by 3 K warming to compare with341

warming experiments, discussed next); the error is the magnitude of the response that the fitted342

shift-plus-increase fails to capture. The fitted shift mode is slightly bigger than the fitted increase343

mode, 11 versus 9 % K−1.344

The response of the vertical velocity and rainfall distributions is essentially the same response345

we would get from strengthening w in the first model (the opposite of the weakening w experiment346

in Fig. 4d-f), only here it is achieved in a way that is consistent with energy as well as mass347

balance. In this experiment, the magnitudes of vertical velocity and rain change, but the shape of348

their distributions, including of the fraction of events that are rain-producing updrafts, does not.349

In the second experiment, we again increase the magnitude of mean non-latent heating, but now350

hold the width of the non-latent heating distribution constant and instead decrease stability S. We351

determine the decrease in S required to balance the increase in Qn by linearizing the energy/mass352

balance equation about a perturbation in S, shown in Appendix C. A decrease of S by 19% is353

needed to maintain balance, as shown in Fig. 6d-f. Again we see strengthening of the vertical354

velocity distribution, but here we also see an increase in skewness of 38%. The change in rain355

frequency distribution has a shape that is similar to but not the same as in the previous experiment,356

because the symmetry is broken: there is an increase in the dry-day frequency by 0.4%, and thus357
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a decrease in the total rain frequency. This change in symmetry arises from changing the mean of358

Qn without changing its width, so that the fraction of non-latent heating events that are positive359

decreases (the positive w events and rainfall follow). The fitted shift-plus-increase mode to the360

rain amount response is colored magenta to correspond to a broken symmetry between the shift361

and increase modes.362

In the third experiment, we narrow the distribution of non-latent heating by decreasing σQn
by363

23% and compensate it by decreasing S by 20%, holding Qn constant (Fig. 6g-i). Here, there364

is negligible change in the width, or strength, of the vertical velocity distribution, but there is an365

increase in skewness which arises from strong (though still relatively infrequent) updrafts. The dry366

frequency increases, so there is an overall decrease in rain frequency, occurring mainly at moderate367

rain rates. At the same time, there is a slight increase in frequency at the heaviest rain rates and368

a larger (but still small) increase at light rain rates. The response of the rain amount distribution369

is dominated by the decrease at moderate rain rates and increase at heavy rain rates, which are in370

balance because the total rainfall does not change (Qn is fixed). The shift-plus-increase mode is371

not a good fit for this response (light gray represents a poor fit of the shift-plus-increase mode).372

The response of the vertical velocity distribution is a negligible change in width but an increase373

in skewness, which we can understand as follows. The narrowing Qn distribution would weaken374

the vertical velocity distribution, but this is countered by the decrease in S which strengthens it (see375

Eqn. 7). Meanwhile, decreasing σQn
with no corresponding change in Qn decreases the fraction376

of events that are updrafts. The w distribution must adjust so that the same total latent heating is377

achieved through fewer updrafts, which is accomplished by strengthening the strongest updrafts,378

increasing the skewness of vertical velocity.379

The response of the rain frequency and amount distributions to changing σQn
and S in Fig. 6g-i380

has some similarities to but also differences from the response to increasing skewness of w in the381

18



first model (Fig. 4g-i). The close fit by the shift mode of the rain amount response to increasing382

skewness in the first model indicates that the response is mostly just a movement of the rain amount383

distribution to higher rain rates. In contrast, in this model and experiment, the shift mode poorly384

captures the response. Despite that it is not captured by the shift and increase modes, the rain385

frequency and amount responses have interesting resemblances to the global warming response in386

climate models. One feature present here and in climate models that is not captured by the shift-387

plus-increase is the light rain mode identified in Pendergrass and Hartmann (2014b). The light388

rain mode is the small increase at light rain rates (around 1 mm d−1) visible in Fig. 1c.389

To summarize the effect of perturbing parameters other than temperature in this model: increas-390

ing Qn increases the total amount of rainfall, while increasing σQn
and decreasing S increase the391

magnitude of vertical velocity events and the intensity of rainfall. When the combination of pa-392

rameters changes in such a way that the fraction of events that are updrafts changes, the skewness393

of the vertical velocity distribution also changes.394

c. Response to warming395

Next, we explore the response of the vertical velocity and rainfall distributions to warming. We396

increase T by 3 K (while allowing Tmax to increase by the same amount). To maintain energy and397

mass balance while warming, we will begin by adjusting one other parameter at a time, considering398

three experiments in turn, shown in Fig. 7.399

In the first experiment, we balance warming by increasing S. Stability also changes in climate400

model simulations of global warming; specifically, dry static stability increases with warming in401

the midlatitudes and subtropics (Frierson 2006; Lu et al. 2007). We determine effects of changing402

T on energy and mass balance and the increase in S needed to balance it by linearizing Eqn. B4 for403

energy and mass balance about perturbations in S and T , shown in Appendix C. This linearization404

19



shows that a degree of warming is balanced by a 7% increase in stability, where the factor of 7%405

arises from the moistening associated with the warming. The distributions of vertical velocity and406

moisture that result from warming by 3 K and increasing stability by 21% are shown in Fig. 7a-c.407

The increased stability decreases the magnitude of vertical velocity for a given atmospheric col-408

umn heating, so that the vertical velocity is weakened (its standard deviation decreases, as in Held409

and Soden 2006; Vecchi and Soden 2007) and the distribution of rainfall is exactly unchanged.410

The skewness of vertical velocity is also unchanged. In this model, the dry frequency is just the411

fraction of the time that the atmospheric column heating is negative; since atmospheric column412

heating does not change in this experiment, neither does the dry frequency. The tradeoff between413

warming and stability here is similar to the tradeoff between warming and the width of the vertical414

velocity distribution in our first model.415

In the second experiment, we warm while increasing the magnitude of mean non-latent heating416

Qn and holding all other parameters constant. Recall that Qn controls the total precipitation. The417

resulting distributions of vertical velocity and rainfall are shown in Fig. 7d-f. The resulting vertical418

velocity distribution has no substantial change in width, but it does have increase in skewness.419

Similarly to the “narrow Qn and decrease S” experiment in Fig. 6g-i, the increase in moisture and420

increase in mean Qn have largely compensating effects on the vertical velocity distribution, except421

for a decrease in the total fraction of updrafts compared to downdrafts, resulting in an increase422

in skewness with little change in width of the w distribution. The response of the rain frequency423

distribution, on the other hand, is more similar to the increasing Qn and decrease S experiment.424

There is an increase in the dry frequency, and the rain amount response is captured by a shift mode425

that is slightly larger than the increase mode. Examination of Eqns. 2 and 7 reveals that this is426

possible because both experiments have the same change in Qn, and decreasing S has the same427

effect on the denominator of Eqn. 7 as increasing q.428
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In the third experiment, warming is balanced by narrowing of the non-latent heating distribution429

(decreasing σQn
or weakening the dry static energy flux convergence, Fig. 7g-i). In this exper-430

iment, the vertical velocity distribution weakens while the skewness increases. The skewness431

arises because of the decrease in upward frequency and adjustments to maintain mass as well432

as energy balance, while the weakening results from the weakening of the Qn distribution. The433

rain frequency and amount distributions are very similar to the “narrowing Qn and decreasing S”434

experiment with no warming.435

In two final experiments, we emulate the changes seen in climate models: we warm and also436

increase the magnitude of non-latent atmospheric column heating Qn by 1.1 W m−2 K−1, which437

is the rate at which global-mean precipitation and clear-sky atmospheric radiative cooling increase438

in climate model projections of the response to transient carbon dioxide increase (Pendergrass and439

Hartmann 2014a). This change in atmospheric radiative cooling includes both the temperature-440

mediated and direct effects of carbon dioxide. To maintain mass and energy balance, we allow441

a third parameter to change, and keep the fourth constant (first increasing S, and then decreasing442

σQn
); these experiments are shown in Fig. 8. We examine each parameter change separately, but443

in at least one climate model simulation forced by a transient increase in carbon dioxide (with the444

MPI-ESM-LR model) both of changes occur: S increases (by 1.7 % K−1) and σQn
decreases (by445

0.7 % K−1).446

First, we warm, increase mean Qn, and allow S to increase. According to the linearizations447

about S and T in Appendix C, a change in stability of 6.0 % K−1 is needed to maintain energy448

and mass balance. The result (shown in Fig. 8a-c) is a combination of the experiments where we449

warmed and varied mean Qn and S separately. The vertical velocity distribution weakens and has450

a small increase in skewness. There is a modest increase in dry frequency, and a modest break in451
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symmetry between the shift and increase modes (2.0 versus 1.6 % K−1). This is not as large as the452

break in symmetry we see in climate models.453

Finally, we warm, increase mean Qn, and allow σQn
to decrease by 6.2 % K−1. In Fig. 8d we see454

a weakening of the vertical velocity distribution and a larger increase in skewness than in Fig. 8a.455

Analogously to the warming and skewing experiment with the first model, the rain frequency456

and amount distribution responses (Fig. 8e,f) resemble the superposition of responses in previous457

experiments. The dry frequency increases, and the response of the rain frequency distribution has458

a decrease at moderate rain rates that is partially compensated by an increase at heavy rain rates.459

The rain frequency response strongly resembles the response we see in climate models (Fig. 1c),460

except that the light rain mode is absent. The rain amount distribution response is partially but not461

completely captured by the shift and increase modes, which reflects that it is the sum of a response462

that the shift-plus-increase captures (the response to warming while and increasing |Qn|) and one463

that it does not (the response to changing σQn
). The fitted shift-plus-increase overestimates the464

decrease at moderate rain rates and underestimates the increase at heavy rain rates, reminiscent of465

the extreme mode identified in Pendergrass and Hartmann (2014b).466

To summarize, in our second model, the atmosphere can respond in three ways to warming: (1)467

increasing the stability (S), which weakens the circulation (w) but has no effect on rain, (2) in-468

creasing the total precipitation (Qn), which drives an increase in skewness of w and of the intensity469

of the heaviest rainfall events, and (3) decreasing the width of the non-latent heating distribution470

(σQn
), which leads to both a weakening of the circulation and increase in its skewness, and the471

accompanying increase in intensity of the heaviest rainfall events. In climate model projections of472

warming, energetic constraints require an increase in the total precipitation Qn.473

In this simple model, if we warm and increase mean latent heating Qn, the stability S and/or474

width of the non-latent heating distribution σQn
– which is intimately related to the circulation475
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– must also change to maintain energy and mass balance. Any combination of these parameter476

changes results in: (1) a weakening of the circulations (i.e. of w), the essential conclusion of477

Vecchi and Soden (2007), (2) an increase in the skewness of w, and (3) an increase in intensity of478

the heaviest rain events (e.g., Trenberth 1999).479

4. Comparison with the response to warming in climate models480

The two heuristic models above show that increasing skewness of the vertical velocity distri-481

bution coincides with key characteristics of the changing distribution of rainfall that we see in482

climate models. Does skewness of the vertical velocity distribution increase with warming in483

climate models?484

To address this question, we calculate statistics of daily-average 500 hPa pressure vertical veloc-485

ity and their change in three warming experiments in the CMIP5 archive (Table 4). We calculate486

the area-weighted global-average moments from years 2006-2015 and 2090-2099 in the RCP8.5487

scenario, and years 1-10 and 61-70 in the transient carbon dioxide increase 1pctCO2 scenario;488

these results can be compared with the fitted shift-plus-increase modes of the distribution of rain489

in Pendergrass and Hartmann (2014b). Trends in data can contaminate statistical measures of a dis-490

tribution, so we also analyze the last 10 years of the CO2 quadrupling experiment (abrupt4xco2),491

when the climate is as close to equilibrating as is available in the CMIP5 archive, and trends are492

as small as possible.493

All climate model simulations have increasing skewness of vertical velocity, consistent with494

our expectations from the heuristic models along with the changing distribution of rain in climate495

models. The magnitude of increase in skewness varies widely across models, from less than 1496

to 27 % K−1. Note that the models with the biggest increases in skewness (the GFDL-ESM and497

IPSL-CM5A models) also have a large extreme mode (Pendergrass and Hartmann 2014b). While498
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we have touched on the extreme mode in our second heuristic model, much about it remains to be499

investigated.500

The variance of vertical velocity decreases in all but one of the climate model simulations.501

Decreasing variance of vertical velocity at 500 hPa is consistent with Held and Soden (2006) and502

Vecchi and Soden (2007), though their metrics were slightly different from ours and the magnitude503

of changes shown here is smaller. Additionally, the change in vertical velocity strength at 500 hPa504

is expected to underestimate the weakening of the total vertical overturning circulation because the505

strongest motion is above 500 hPa and shifts upward with warming (Singh and O’Gorman 2012).506

We include the changes in kurtosis in Table 4, the fourth moment of the distribution. Larger507

kurtosis corresponds to a fatter tail and a narrower peak of the distribution; a normal distribution508

has a kurtosis of 3 (e.g., DeCarlo 1997). In all climate models, kurtosis of vertical velocity is509

initially greater than gaussian, and it increases with warming. Our second model predicts an510

increase in kurtosis along with the increases in skewness. Interestingly, the GFDL models have by511

far the largest increases in kurtosis with warming (they also have large extreme modes).512

We are now in a position to reconcile the differing magnitudes of the shift and increase modes513

with warming that we see in climate model simulations. For the multi-model mean, moistening514

occurs at about 6-7 % K−1 and global mean precipitation increases at 1.5 % K−1. The multi-model515

mean rain amount response has an increase mode of 1 % K−1 and a shift mode of 3.3 % K−1. The516

MPI-ESM-LR model, whose response is best captured by the shift and increase modes, has an517

increase mode of 1.3 % K−1 and a shift mode of 5.7 % K−1.518

We relate the shift and increase modes to changes in moisture and circulation as follows (and519

shown in Fig. 4 as well as listed in Table 2): moistening at 7 % K−1 results in equal magnitudes520

of shift and increase modes. This is countered by a narrowing of the vertical velocity distribution521

that is not quite as large, bringing the net magnitudes of both the shift and increase modes down.522
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Finally, an increase in skewness of the vertical velocity distribution results in a shift mode with no523

corresponding increase mode. The combination of these three changes results in a shift mode that524

is larger than the increase mode seen in the climate model response to warming.525

While the heuristic models developed here capture some important aspects of the response of526

rainfall and vertical velocity to warming seen in climate models, the cost of its simplicity is the527

number of assumptions that must be made. Assumptions for our idealized relationship between528

moisture, vertical velocity and rain rate include: that all moisture is removed whenever there is529

upward motion, that the vertical structure of the atmosphere is fixed, and that relative humidity530

does not change. Our models do not accommodate any unresolved processes, parameterized in531

climate models, which can alter the relationship between rainfall and vertical velocity. This ide-532

alized framework also does not address the differing direct and temperature-mediated responses533

of precipitation and circulation to greenhouse gas forcing. Finally, aggregating over all locations534

and seasons convolves many different processes, and the relationships we explore here may not535

hold for all of them. Nonetheless, while we anticipate that our heuristic models do not capture the536

behavior of every relevant process that contributes to the responses of rainfall and vertical velocity537

to global warming, we think these models are useful for understanding a substantial portion of the538

response in many regions of most climate models.539

5. Convective area540

The spatial manifestation of the distribution of rain and vertical velocity is convective area, by541

which we mean the area with upward motion and the cloudiness and rainfall that accompany it.542

The fraction of time that vertical motion is upward and the fraction of time that it is raining in543

the heuristic models presented here is analogous to the fraction of the area in a domain where544

rain is occurring. The literature is currently unsettled about how the change in convective area545
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and frequency of upward motion are expected to change with warming. Johnson and Xie (2010)546

argues that the convectively active fractional area of the tropics changes little relative to the area547

above an absolute SST threshold, which increases by 45% over the 21st century in the experiments548

they analyze. In contrast, Vecchi and Soden (2007) report a decrease in the number of grid points549

with upward motion in GFDL-CM2.1 simulations of global warming in the tropics. Other recent550

studies find a decrease in the area of the ITCZ with warming (Neelin et al. 2003; Huang et al.551

2013). In CMIP5 model simulations, the frequency of dry days has a small but significant increase552

(see Fig. 1a or Pendergrass and Hartmann 2014b).553

The heuristic models shown here reproduce the increase in dry frequency seen in the CMIP5554

models and thus also the decrease in convective area. Figure 9 shows a schematic of the tropical555

overturning circulation to aid in interpreting its response to changes in the distribution of vertical556

velocity. The initial distribution has a region of ascent that is narrower than the region of descent,557

analogous to the circulation in the tropical atmosphere (Fig. 9a). Because the region of ascent is558

narrower and mass is conserved, the ascending motions are stronger than corresponding descend-559

ing ones. Decreasing the standard deviation of the vertical velocity distribution decreases the560

magnitude of both upward and downward motion (weakening the circulation), with no change in561

area of either region (Fig. 9b). Increasing the skewness of vertical velocity increases the magnitude562

of upward motion while decreasing its area, and decreases the speed of descent while increasing563

its area (Fig. 9c). When the decrease in standard deviation and increasing skewness occur to-564

gether, both contribute to weakening the descending motion, but they have competing effects on565

the magnitude of ascent, resulting in little change in updraft strength (Fig. 9d).566
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6. Conclusion567

We have introduced two idealized models relating the distributions of rain and vertical veloc-568

ity. In both models, temperature (and thus moisture, assuming constant relative humidity) is pre-569

scribed, and the distribution of rainfall is predicted. In the first model, the distribution of vertical570

velocity is also prescribed and can be varied; mass conservation is respected. In the second model,571

the distribution of non-latent atmospheric column heating is prescribed, the distribution of vertical572

velocity is predicted, and both mass and energy are conserved. Some key assumptions made by573

both models are that relative humidity is fixed within and between climate states and that stability574

is constant within each climate state.575

Both of these models show that increasing skewness, or asymmetry, of the vertical velocity dis-576

tribution is necessary to recover important characteristics of the changing distribution of rain with577

warming predicted by climate models: dry-day frequency increases, and extreme precipitation in-578

creases at a rate faster than the increase in mean precipitation. In the context of shift and increase579

modes of change of the distribution of rain, an increase in skewness is necessary to achieve the580

larger shift mode than increase mode seen in climate model projections. The second model, where581

the distribution of vertical velocity is predicted, shows how the asymmetric influence of latent582

heating creates skewness in the vertical velocity distribution. Experiments with this model show583

that this skewness increases in response to warming, along with the adjustments needed to main-584

tain mass and energy balance. In addition to an increase in skewness, the standard deviation of585

the vertical velocity distribution also decreases, consistent with the weakening circulation found586

in climate model simulations of global warming.587

The models developed here capture salient aspects of the changing distributions of rain and588

vertical velocity with simple thermodynamic relationships, implying that we do not need to resort589
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to complex dynamical explanations for these aspects of the changing distribution of rain. The590

idealized relationships between the distributions of vertical velocity and precipitation explored591

here hopefully form a basis for understanding the richer and more complex interactions in climate592

models and in the real world.593
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APPENDIX A598

Numerical solutions599

a. Normal and skew-normal distributions600

We calculate the value of the normal distribution at points that are evenly spaced in percentile601

space, 5000 for Model 1 and 10 000 for Model 2. For the temperature distribution, at this point602

any values of T > Tmax are truncated. For making calculations over joint distributions (r over T /q603

and w in Model 1, r and w over Qn and T /q in Model 2), we form a matrix over both distributions604

(5000 x 5000 or 10 000 x 10 0001) and calculate the value at each point in the joint space.605

Calculating the skew normal distribution is similar to a joint distribution because the algorithm606

of Azzalini and Capitanio (1999) calls for operating on two normal distributions. We start with607

two normal distributions u0 and v (5000 samples for each). To get a distribution with a shape608

parameter a (which is related to the skewness; when a is zero the distribution is normal and we use609

a > 0 here), we calculate u1 = du0 +
√

(1−d2)v, where d = a/
√

(1+a2) is a correlation related610

1With the introduction of Tmax, we truncate a few values at the high end of the T /q distribution.
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to the shape parameter. Then, the skewed distribution z is u1 when u0 > 0, and −u1 otherwise.611

Finally, this 5000 x 5000 array is subsampled back to 5000 values by sorting the values them and612

keeping every 5000th value.613

b. Frequency and amount distributions614

We use logarithmically-spaced bins for the rain frequency and amount distributions, and choose615

250 of them to obtain stable fits of the shift-plus-increase modes. Details of the calculation and616

further examples of rain amount and rain frequency distributions can be found in Pendergrass and617

Hartmann (2014c). We use 50 linearly-spaced bins for p(T ), p(Qn), and p(w), which we use for618

display only.619

c. Model 2 parameters620

To calculate the parameters in the second model, there are two steps: the initial set up to find a621

balanced state, and then allowing parameters to vary about this state.622

To set up the model initially, the challenge is meeting energy and mass balance; this happens623

numerically by specifying all parameters other than Qn, and then systematically solving for the624

value of Qn that achieves energy and mass balance. First, we calculate the distribution of T from625

T and σT , truncating anything over Tmax, and the associated q. Then with a choice of S, we626

calculate the LHS of the energy/mass balance equation (B). Finally, use a specified value of σQn
,627

and solve systematically for the value of Qn that most closely results in mass/energy balance. We628

take a vector of 10 000 gaussian values evenly spaced percentile-wise (call them y), and using629

the σQn
value, calculate the RHS of the energy/mass balance equation that would result for each630

choice of Qn = yσQn
. New T , σT , S, and σQn

values can be manually chosen and a new Qn found631

to vary parameters.632
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To find a new balanced state due to small variations in T and S around the initial balanced state,633

we use the linearizations in Appendix C. This is done in three different ways. Whenever possible,634

we use the linearization alone to find new values of T and S, or of the new LHS of the energy/mass635

balance equation. When necessary, we re-solve for a new Qn that best meets energy/mass balance636

as we did to find the initial balanced Qn value. Otherwise (e.g., changing σQn
), we iteratively637

choose parameter values (manually) until the energy/mass balance equation is satisfied again (to638

4 decimal places). Once we have a new set of parameters, r, w, and their frequency and amount639

distributions p(r), P(r), and p(w) are calculated once again.640

APPENDIX B641

Conservation of mass and energy642

In this appendix, we derive the equation for mass and energy conservation of the model described643

in Section 3. In order to conserve mass, we must maintain an integral of vertical velocity over the644

entire distribution equal to zero,645

∞
∫

−∞

qmax
∫

0

w p(q,Qn)dq dQn = 0, (B1)

where p(q,Qn) is the joint probability distribution function (pdf) of q and Qn, and qmax is the646

maximum realized specific humidity, occurring at temperature Tmax. In order to conserve energy,647

we enforce that the total latent heating must be balanced by the total non-latent heating,648

∞
∫

−∞

Qn p(Qn)dQn +

∞
∫

−∞

qmax
∫

0

L r p(q,Qn)dq dQn = 0, (B2)

where p(Qn) is the pdf of non-latent heating Qn.649
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Substituting Eqns. 2 and 5 into B2, separating regions of positive and negative Qn, exploiting650

the independence of q and Qn, and rearranging, we have,651

qmax
∫

0

[

1

1−Lρaq/S

]

p(q)dq =
−
∫ 0
−∞ Qn p(Qn)dQn

∫ ∞
0 Qn p(Qn)dQn

. (B3)

It is also possible to arrive at Eqn. B3 by starting from the mass conservation constraint652

(Eqn. B1), substituting Eqn. 5, exploiting the independence of q and Qn, recognizing that653

∫

p(q)dq = 1, and rearranging.654

Following either path, we find that both the mass and energy constraints are met when,655

Eq

[

1

1−Lρaq/S

]

=
−
∫ 0
−∞ Qn p(Qn)dQn

∫ ∞
0 Qn p(Qn)dQn

, (B4)

where the expectation operator is defined as Ex [ f (x)] =
∫ ∞
−∞ f (x)p(x)dx.656

APPENDIX C657

Linearization of energy and mass balance about T and S658

Here, we linearize the mass and energy conservation equation about its base state (the left hand659

side of Eqn. B4) to obtain its response to small changes in stability S and mean temperature T .660

Along with new values of Qn and σQn
chosen by trial and error, we use this linearization to find new661

sets of parameters that satisfy energy and mass balance in the experiments described in Section662

3c. To be concise, in this appendix we refer to the LHS of Eqn. B4 as B,663

B = ET

[

1

1−Lρaq(T )/S

]

. (C1)

a. Linearization in T664

First, we linearize the LHS of Eqn. B4 to find its response to small changes in T and the asso-665

ciated moistening. We expand T = T +∆T = T (1+ x), where x = ∆T/T ≪ 1. Incorporating our666

31



moisture equation (1), we have,667

B =

Tmax
∫

−∞

1

1−Lρaq0e0.07T (1+x)/S
p(T )dT. (C2)

A first order Taylor expansion around B gives us,668

B ≈ B0 +0.07 ∆T B1, (C3)

where B0 is the value of B evaluated at T = T and,669

B1 ≡

qmax
∫

0

Lρaq/S
(

1−Lρaq/S
)2

p(q)dq. (C4)

This integral is readily evaluated numerically from a base q distribution.670

b. Linearization in S671

Next, we linearize Eqn. B4 to find the response to small changes in stability S. Expanding672

S = S+∆S = S(1+ x), where x = ∆S/S ≪ 1, we have,673

B =

qmax
∫

0

1

1−Lρaq/S(1+ x)
p(q)dq. (C5)

Another Taylor expansion gives us,674

B ≈ B0 −
∆S

S
B1. (C6)

We can combine Eqns. C3 and C6 and solve for ∆S,675

∆S = S

(

0.07 ∆T −
B−B0

B1

)

. (C7)

Given a ∆T and possibly a new value of Qn or σQn
(which requires calculating a new value of B),676

we can solve for the ∆S that satisfies mass and energy balance.677
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TABLE 1. Initial parameter choices for the first model.

Variable Value Description

T 287 K Mean temperature

σT 16 K Width of temperature dist.

w 0 Mean vertical velocity, w

σw 1 mm s−1 Width of w dist.
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TABLE 2. The magnitude of fitted shift and increase modes along with their error (the magnitude of the

response that the fitted shift-plus-increase fails to capture) for each of the experiments shown and discussed

here. The precipitation response to a transient CO2 increase in climate models is shown for the CMIP5 multi-

model mean as well as for one GCM (Global Climate Model), MPI-ESM-LR, which is fit the best of all the

CMIP5 models (see Pendergrass and Hartmann 2014b for details). The Model 1 experiments are shown in

Fig. 4 and discussed in Section 2b. Model 2 experiments are shown in Figs. 6-8 and discussed in Section 3c.

764

765

766

767

768

769

Model Experiment Shift Increase Error

(% K−1) (% K−1) (%)

CMIP5 MMM 2xCO2 3.3 0.9 33

MPI-ESM-LR 2xCO2 5.7 1.3 14

Model 1 Warm 7 7 2

Weaken w -4 -4 1

Skew w 5 -1 27

Warm, skew w 13 6 15

Warm, weaken w, skew w 8 2 21

Model 2 Increase Qn, widen Qn 11 9 11

Increase Qn, decrease S 11 8 23

Narrow Qn, decrease S 0 -1 81

Warm, increase S 0 0 22

Warm, increase Qn 11 8 23

Warm, narrow Qn 0 -1 81

Warm, GCM Qn, increase S 2.0 1.6 12

Warm, GCM Qn, narrow Qn 1.7 0.5 68
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TABLE 3. Initial parameter choices for the second model.

Variable Value Description

T 287 K Mean temperature

σT 10 K Width of temperature dist.

Tmax 317 K Cap on the temperature dist.

Qn −88 W m−2 Mean non-latent heating

σQn 2,500 W m−2 Width of non-latent heating dist.

S 4.75×105 kg m−1 s−2 Stability
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TABLE 4. Standard deviation, skewness, and kurtosis of 500 hPa pressure vertical velocity from CMIP5

models and their response to warming (normalized by global mean surface temperature change).

770

771

Model std ∆std skew ∆skew kurtosis ∆kurtosis

(Pa s−1) (% K−1) (% K−1) (% K−1)

RCP8.5

MIROC-ESM-CHEM 9.0 -2.5 % -0.66 0.57% 5.8 0.85%

FGOALS-g2 12 -2.7 % -1.9 1.4 % 15 1.8 %

NorESM1-M 8.1 -2.0 % -1.2 1.4 % 8.6 3.5 %

BNU-ESM 8.2 -2.1 % -0.80 2.7 % 5.9 3.6 %

CMCC-CESM 8.9 -1.9 % -0.56 3.1 % 5.2 2.0 %

BCC-CSM1.1 11 -0.97% -1.8 4.0 % 15 6.3 %

IPSL-CM5B-LR 11 -2.1 % -3.3 4.4 % 48 5.8 %

MPI-ESM-LR 11 -1.8 % -1.00 4.6 % 7.4 4.8 %

CNRM-CM5 11 -1.1 % -1.9 5.4 % 20 8.3 %

GFDL-CM3 8.5 -1.7 % -1.4 6.2 % 13 10 %

CCSM4 9.0 -1.4 % -1.8 6.2 % 17 10 %

GFDL-ESM2M 8.9 -1.4 % -1.6 16 % 18 28 %

IPSL-CM5A-LR 8.8 -1.2 % -1.1 21 % 14 23 %

GFDL-ESM2G 8.7 -1.1 % -1.3 22 % 12 49 %

Transient CO2 increase

IPSL-CM5B-LR 12 -2.1% -3.2 2.3% 46 4.0%

MIROC5 10 -2.0% -1.4 4.4% 10 6.5%

GFDL-ESM2G 8.8 -1.0% -1.2 11 % 10 22 %

IPSL-CM5A-MR 9.5 -2.1% -1.4 14 % 18 19 %

GFDL-ESM2M 8.9 -1.8% -1.3 19 % 12 38 %

IPSL-CM5A-LR 9.1 -2.7% -0.86 27 % 11 26 %

Abrupt CO2 increase

MIROC-ESM 9.3 -2.6 % -0.65 0.29% 5.6 0.75%

IPSL-CM5B-LR 12 -2.3 % -3.3 3.0 % 48 5.1 %

MIROC5 10 -1.9 % -1.4 4.2 % 10 5.8 %

CanESM2 9.3 -0.64% -1.0 5.2 % 9.6 6.2 %

MPI-ESM-LR 11 -1.4 % -0.91 5.8 % 7.0 4.7 %

MRI-CGCM3 11 0.84 % -2.0 17 % 20 35 %

IPSL-CM5A-MR 9.5 -1.0 % -1.4 20 % 18 31 %

IPSL-CM5A-LR 9.1 -1.4 % -0.87 25 % 11 27 %
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Fig. 9. A schematic showing the effects of changing width and skewness of the vertical velocity815

distribution. An initial skewed distribution of w (a), is perturbed by (b) decreasing its stan-816

dard deviation, (c) increasing its skewness, and (d) both decreasing standard deviation and817

increasing skewness together. . . . . . . . . . . . . . . . . . . 52818
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FIG. 1. The CMIP5 multi-model mean distributions of daily (a) rain frequency (with dry-day frequency at
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dioxide, following Pendergrass and Hartmann (2014b). Change in dry-day frequency (% K−1) is noted in the

top left corner of panel c. Error intervals are the 95% confidence limits according to the student’s t-test.
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in panels h and i.

843

844

845

846

847

848

49



0.0001

0.01

1

100
 ∆skew=0% 

 

 

New w

Initial w -2

0

2

 0%

0

0.2

0.4

 

 

Model 2

0.0001

0.01

1

100
 ∆skew=38% 

-2

0

2

 0.4%

0

0.2

0.4

 

 

Shift>Inc

-20 0 20 40

0.0001

0.01

1

100
 ∆skew=38% 

0.01 1 100
-0.5

0

0.5

 0.4%

0.01 1 100
-0.05

0

0.05

0.1

 

 

Poor fit

Vertical velocity (mm/s) Rain rate (mm/d)

Vertical velocity frequency (%) ∆Rain frequency (%) ∆Rain amount (mm/d)

 (a)  (b)  (c)

 (d)  (e)  (f)

 (g)  (h)  (i)

❲❛r♠

■♥❝r❡❛s❡ ❙

■♥❝r❡❛s❡ ❥◗�❥

◆❛rr♦✇ ◗�

FIG. 7. Experiments warming while varying one other parameter with the second model, following Fig. 6:
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FIG. 8. Experiments warming, increasing the magnitude of the non-latent heating distribution by the value

from climate models, 1.1 W m−2 K−1, while varying one other parameter with the second model, following

Fig. 6: (a-c) increasing stability, and (d-f) narrowing the non-latent heating distribution (decreasing σQn).
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FIG. 9. A schematic showing the effects of changing width and skewness of the vertical velocity distribution.

An initial skewed distribution of w (a), is perturbed by (b) decreasing its standard deviation, (c) increasing its

skewness, and (d) both decreasing standard deviation and increasing skewness together.
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