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ABSTRACT

As the planet warms, climate models predict that rain will become heavier

but less frequent, and that the circulation will weaken. Here, two heuristic

models relating moisture, vertical velocity, and rainfall distributions are de-

veloped, one in which the distribution of vertical velocity is prescribed and

another in which it is predicted. These models are used to explore the re-

sponse to warming and moistening, changes in the circulation, atmospheric

energy budget, and stability. Some key assumptions of the models include that

relative humidity is fixed within and between climate states and that stability

is constant within each climate state. The first model shows that an increase

in skewness of the vertical velocity distribution is crucial for capturing salient

characteristics of the changing distribution of rain, including the muted rate of

mean precipitation increase relative to extremes and the decrease in the total

number or area of rain events. The second model suggests that this increase

in the skewness of the vertical velocity arises from the asymmetric impact of

latent heating on vertical motion.
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1. Introduction27

Changes in rain are inexorably tied to changes in atmospheric circulation. In response to global28

warming, climate model projections show an increase in global-mean precipitation, the rate of29

which is in balance with the change in atmospheric radiative cooling (O’Gorman et al. 2012;30

Pendergrass and Hartmann 2014a). This rate of increase, 1-3% per degree of warming across31

climate models, is smaller than the rate of increase of moisture in the atmosphere, which roughly32

follows saturation vapor pressure at ⇠7%K�1 (Held and Soden 2006). The difference between the33

rates of increase of moisture and precipitation with warming imply a slowing of the atmospheric34

overturning circulation (Betts 1998). The weakening circulation in climate model projections35

manifests as a decrease in spatial variance of convective mass flux (Held and Soden 2006) and the36

Walker circulation (the anti-symmetric component of variance of 500 hPa vertical velocity in the37

tropics, Vecchi and Soden 2007).38

Along with changes in circulation, climate models project substantial changes in the distribution39

of rainfall, as shown in Fig. 1. The rain frequency distribution (Fig. 1a) shows how often it rains at40

any particular rain rate. It is displayed on a logarithmic rain-rate scale in order to accommodate the41

full range of rain rates that can be encountered, which encompasses orders of magnitude. The rain42

amount distribution (Fig. 1b) shows how much rain falls at a particular rain rate. These calculations43

are based on the mean of the Coupled Model Intercomparison Project version 5 (CMIP5, Taylor44

et al. 2012) models and are described in more detail in Pendergrass and Hartmann (2014b). Figures45

1c,d show the multi-model mean changes in the rain frequency and rain amount distributions46

in response to a doubling of carbon dioxide in a scenario where carbon dioxide concentrations47

increase by 1% each year. The rain frequency response to warming (Fig. 1c) is an increase in days48

with heavy rain, a larger decrease in days with moderate rain, a small (statistically insignificant)49
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increase in days with light rain, and a small (statistically significant) increase in the number of dry50

days (noted at the top left of the panel). The rain amount response (Fig. 1d) is an increase in rain51

falling at heavy rain rates and a smaller decrease in rain falling at moderate rain rates, comprising52

an increase in the total amount of precipitation.53

Pendergrass and Hartmann (2014c) found that these changes in the distribution of rainfall in54

response to warming (as well as those arising in response to El Niño and La Nina phases of55

ENSO) in models can be well described by two empirically-derived patterns, denoted the “shift”56

and “increase” modes, which are illustrated in Fig. 2. Each mode describes a simple adjustment57

to the climatological distribution of rain. A combination of the shift and increase modes (chosen58

with an algorithm to optimize the fit to the change in rain amount distribution) captures most of59

the response in most climate model simulations of global warming, and the entire change in some60

models.61

The “increase” mode (Fig. 2a,b) characterizes an increase in the frequency of rain by the same62

fraction at all rain rates. The bell shape of this mode simply follows the climatological distribution63

of rain frequency. While the change in rain amount is characterized by a similar bell-shaped64

pattern, it occurs at higher rain rates (Fig. 2b). The total amount of rain is the product of the rain65

frequency and rain rate, such that an increase in rain frequency at higher rain rates has a larger66

impact on the total precipitation than it does at lower rain rates. An increase in rain frequency67

implies a reduction in the number of dry days. In the global mean, it rains about half of the time,68

such that a one percent increase at all rain rates is associated with a one-half percent reduction in69

dry days.70

The “shift” mode (Fig. 2c,d) characterizes a movement of the distribution of rain to higher rain71

rates, but with no net increase in the total rain amount. It is defined as a shift of the rain amount72

distribution (Fig. 2d); the corresponding change in the rain frequency distribution can also be73
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obtained (Fig. 2c). A larger decrease in the frequency of light rain events is needed to offset the74

smaller increase in the frequency of strong rain events on total precipitation, hence the shift mode75

is associated with an increase in the number of dry days. For a one percent increase in the shift76

mode, the total number of dry days increases by about one-half of a percent.77

Pendergrass and Hartmann (2014b) determined that the shift and increase mode magnitudes that78

optimally capture the change in the multi-model mean rain amount distribution in Fig. 1d is a shift79

mode of 3.3 %K�1 along with an increase mode of 0.9 %K�1. Figure 2e,f show the change in80

rain frequency and amount distributions for this combination of shift and increase modes. The81

response of the shift mode is larger than the increase mode, such that there is a modest increase in82

the frequency of dry days.83

Not all of the change in the distribution of rain in climate models is captured by the shift and84

increase modes. Pendergrass and Hartmann (2014c) identified two additional aspects of the chang-85

ing distribution of rain common to many models: the light rain mode and the extreme mode. The86

light rain mode is the small increase in rain frequency just below 1 mm d�1 visible in Fig. 1c, also87

evident in Lau et al. (2013). The extreme mode represents additional increases in rain at the heav-88

iest rain rates, beyond what is captured by the shift and increase modes. It is crucial for capturing89

the response of extreme precipitation to warming.90

Changes in moisture, circulation, and the distribution of rain in response to warming are related.91

Indeed, the changes in the intensity of extreme rain events in climate model projections of global92

warming can be linearly related to changes in moisture and vertical velocity in most models and93

regions (Emori and Brown 2005; O’Gorman and Schneider 2009; Chou et al. 2012). This moti-94

vates us to consider whether we can understand the changing distribution of rain in terms of the95

changes in moisture and vertical velocity distributions, constituting a physically based, rather than96

empirically derived, approach.97
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One might assume that changes in the distribution of rain are complex. The distribution of rain98

(particularly the global distribution) is generated by a number of different types of precipitating99

systems, each of which is driven by somewhat different mechanisms and might respond differently100

to external forcing. For example, it would not be surprising if midlatitude cyclones and tropical101

convection responded differently to global warming. On the other hand, we expect many aspects of102

the response to warming to be fairly straightforward: warming along with moistening at a relative103

humidity that stays constant on surfaces of constant temperature (Romps 2014).104

In this study, we approach the relationships among changes in moisture, vertical velocity, and105

rain by examining the response to straightforward changes of simple statistical distributions. We106

develop two heuristic models that predict the distribution of rain from moisture and vertical veloc-107

ity distributions. We will see that despite the potential for complexity among these relationships,108

we can recover many aspects of the changes in rainfall and vertical velocity we see in climate109

models in an idealized setting.110

In Section 2, we introduce the first model, in which distributions of moisture and vertical velocity111

are prescribed. We use the model to explore how the distribution of rain responds to warming and112

moistening, and to changes in the strength and asymmetry (or skewness) of the vertical velocity113

distribution. Then, in Section 3, we introduce a second model that predicts the vertical velocity114

distribution in order to understand its changes in concert with those of the distribution of rain.115

In Section 4, we show that climate model simulations also have increasing skewness of vertical116

velocity with warming. Finally, we consider the implications of the increasing skewness of vertical117

velocity on convective area in Section 5 and conclude our study in Section 6.118
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2. The first model: Prescribed vertical velocity119

We know rain is a result of very complex processes, many of which are parameterized rather than120

explicitly modeled in climate models. At the most basic level, rain is regulated by two processes:121

(1) the moisture content, which is tied to the temperature structure, assuming constant relative122

humidity, and (2) the magnitude of upward vertical velocity. Instead of considering variability123

in space, consider a distribution that captures the structure of all regions globally. Furthermore,124

neglect concerns about the vertical structure of the motion or the structure of the atmosphere, and125

consider only the vertical flux of moisture through the cloud base.126

The key – and gross – simplification of this model is that we will assume that the vertical velocity127

is independent of the temperature and moisture content, so we can model these as two independent128

distributions. We know this is not the case – upward velocity is often driven by convection, which129

occurs where surface temperature is warm – but for now we will see what insight can be gleaned130

with this assumption.131

a. Model description132

Our first model is driven by two prescribed, independent, Gaussian (normal) distributions: one133

for temperature, N(T ,sT ), where T is the mean temperature and sT is width of the temperature134

distribution, and another for vertical velocity, N(w,sw), where w is the mean vertical velocity135

(equal to zero when mass is conserved) and sw is the width of the w distribution. The tempera-136

ture distribution, with the assumption of constant relative humidity, in turn gives us the moisture137

distribution. We calculate moisture q,138

q(T ) = q0e0.07T , (1)
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where q0 is chosen so that q(T ) is equal to its Clausius-Clapeyron value at T = 287 K. This139

equation is very similar to Clausius-Clapeyron, except that here dq/dT = 7 %K�1 exactly. The140

implied relative humidity is fixed at 100%. The choice of 100% relative humidity is arbitrary, but141

any non-zero choice that is held constant will result in the same behavior.142

We suppose that it rains whenever vertical velocity w is positive (upward), with a rain rate equal143

to the product of the moisture, vertical velocity, and air density ra (held constant at 1.225 kg m�3,144

its value at sea level and 15�C),145

r(q,w) =

8
>>><

>>>:

rawq, w > 0

0, w  0.

(2)

This is analogous to saying that the rain rate is equal to the flux of moisture across the cloud base.146

While this is a gross simplification, it would hold if the column were saturated and the temperature147

structure fixed, and the air was lifted to a level where the saturation specific humidity is effectively148

zero. In this limit, any moisture advected upward will lead to supersaturation and rain from above.149

Neglecting the impact of condensation on the temperature is a similarly coarse approximation as150

our assumption that the temperature and vertical velocity are independent.151

The rain frequency distribution is obtained by integrating across the distributions of T (which152

determines q by Eqn. 1) and w,153

p(r) =
•Z

0

•Z

�•

•Z

�•

d (r�rawq) p(T ) p(w) dT dw dr, (3)
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where p(T ) and p(w) are Gaussian probability density functions and d is a Dirac delta function.154

The rain amount distribution is then,155

P(r) = r p(r). (4)

In practice, p(r) and P(r) are computed over a discrete set of bins. Because the rain rate varies over156

several orders of magnitude, the bins are spaced evenly on a logarithmic scale for proper sampling;157

the bin width defined in logarithmic space is Dlnr = Dri/ri, where ri is the rain rate and Dri is the158

linear bin width for the ith bin. We then work with the frequency of rain events corresponding to159

each bin, p(ri)Dri. To maintain the property that the area under the displayed distribution curves160

accurately represents the contribution of each rain rate to the total integral when displayed on a161

logarithmic scale, our plots show ri p(ri) = p(ri)Dri/Dlnr.162

Lastly, we must specify the parameters governing the temperature and vertical velocity distribu-163

tions, which are listed in Table 1 for reference. For temperature (shown in Fig. 3a) we take T to164

be 287 K and its standard deviation sT = 16 K, both chosen to match the surface air temperature165

distribution in a climate model. The vertical velocity distribution (shown in Fig. 3b) must have166

a mean w = 0 if mass is to be conserved. Given the temperature distribution above, the standard167

deviation of w will ultimately set the total precipitation. Thus we sought to constrain its value so as168

to capture the total precipitation in climate models and observational datasets (see Pendergrass and169

Hartmann 2014c), while at the same time being consistent with the vertical velocity distribution170

in climate models. Studies such as Emori and Brown (2005) show that rain frequency changes are171

linearly related to changes in moisture and 500 hPa vertical velocity in many climate models for172

most regions. While vertical velocity at cloud base rather than 500 hPa would be more closely173

physically related to our conceptual model, it is not archived for these climate model integrations.174
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The rain frequency distribution (shown in Fig. 3c) is calculated numerically following the de-175

scription in Appendix A. It is dry exactly 50% of the time, since the vertical velocity distribution176

is symmetric about zero. The peak of the rain frequency distribution occurs at just under 10 mm177

d�1. The rain amount distribution (Fig. 3d) shows how much rain falls in each rain rate bin. The178

peak of the rain amount distribution occurs at a rain rate about an order of magnitude larger than179

for the rain frequency distribution.180

These distributions resemble those in observational datasets and climate models to the correct181

order of magnitude – compare to Fig. 1a,b and Pendergrass and Hartmann (2014c) – despite the182

crude assumptions of our model. The main deficiency of our model compared to climate models183

is a lack of precipitation at light rain rates, and a corresponding overestimation of dry-day fre-184

quency. However, climate models underestimate the dry-day frequency by about a factor of two185

compared to GPCP 1DD and TRMM 3B42 merged satellite-gauge gridded daily observational186

datasets (Pendergrass and Hartmann 2014c). The implications of this discrepancy on the rain187

amount distribution are nonetheless small because light rain contributes less than heavy rain does188

to the total precipitation, so that distribution of rain amount appears better than rain frequency189

qualitatively (compare Figs. 1b and 3d).190

The goal in developing this toy model is to explore what happens in response to perturbations:191

warming and moistening, weakening of the circulation, and introducing skewness to the vertical192

velocity distribution. We consider these next.193

b. Response to warming and moistening194

We approximate warming by simply shifting the mean of the temperature distribution T 1 K195

higher. We keep sT constant, assuming no change in the variance of temperature. The moisture196

distribution adjusts accordingly. We maintain the same w distribution and calculate the distribution197
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of rain in the warmed climate. The difference between the distributions of rain frequency and198

amount in the warmed and initial climates are shown in Fig. 4a-c. There is no change in the total199

frequency of rain, and the total amount of rainfall increases by 7 %K�1, exactly following the200

change in moisture.201

The rainfall distribution response to warming is equivalent to moving the rain frequency distri-202

bution to the right by exactly 7 %K�1, or having equal shift and increase modes of 7 %K�1 (the203

fitted shift and increase modes are listed in Table 2), as in Fig. 2g,h. In contrast to this warm-204

ing experiment, in climate model simulations of global warming the shift mode response is larger205

than that of the increase mode, and total precipitation increases more slowly than moisture. This206

exposes a flaw: circulation also adjusts to changes in climate, which is not captured by this first207

experiment. In climate model projections, circulation adjusts to satisfy the energetic constraints208

of the climate system, including the constraint that precipitation (in the global mean) can only209

increase as much as atmospheric radiative cooling and sensible heat flux allow (e.g. Allen and210

Ingram 2002).211

c. Response to weakening circulation212

A weakening of the atmospheric overturning circulation can be effected in our model by reduc-213

ing the width of the vertical velocity distribution, sw. For our second experiment, we decrease214

the standard deviation of w by 4%, using the initial (not warmed) distribution of temperature and215

moisture. The change in the distribution of rain is shown in Fig. 4d-f.216

Again, there is no change in the dry frequency, and the total amount of rainfall decreases by 4%,217

the same amount that we weakened the width of the vertical velocity distribution by. Decreasing218

the width of the vertical velocity distribution results in a shift of the rain frequency distribution to219

lower rain rates. In fact, narrowing the w distribution by 7% would exactly cancel the effect of220
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warming by 1 K. We can understand this by considering Eqn. 2 or 3: warming by 1 K increases q221

by 7%, whereas widening the vertical velocity distribution increases w by 7%. The effect of either222

change on r is the same.223

We have just seen that neither warming nor changing the strength of the circulation affects the224

dry frequency, or the symmetry between the rates of change of mean and extreme rainfall. Changes225

analogous to those we see in climate model simulations thus cannot result from either warming226

at constant relative humidity or weakening circulation alone. But what if the circulation becomes227

more asymmetric?228

d. Response to changing skewness of vertical velocity229

The first moment of the vertical velocity distribution, its mean, must be fixed at zero to maintain230

mass conservation. We have just seen that changing the second moment (standard deviation or231

variance) does not cause the changes in the distribution of rain that we see in climate models.232

We now turn to the third moment, skewness, which measures the asymmetry of a distribution.233

Skewness, a key quantity, is attended to more widely in the parts of atmospheric sciences dealing234

with turbulence, like boundary layer meteorology. It has also received some limited attention235

in climate recently. Monahan (2004) discusses skewness of low-level wind speed arising from236

surface drag. Luxford and Woollings (2012) discuss how skewness arises in geopotential height237

from kinematic fluctuations of the jet stream. Sardeshmukh et al. (2015) incorporate skewness238

into a non-linear model for atmospheric fields including precipitation. In particular, they highlight239

the skewness in the vertical velocity field.240

Skewness can arise in vertical motion from the asymmetric effect of latent heating. To visualize241

this effect, picture a developing thunderstorm. The cumulus cloud grows because an updraft is242

heated when water vapor condenses, sustaining or even strengthening the updraft and eventually243
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resulting in rainfall. Over the life of the thunderstorm, some of this rainfall will re-evaporate, but244

there will be a net latent heating of the atmosphere due to the formation of this thunderstorm equal245

to the amount of rainfall that reaches the ground. There is no corresponding effect of latent heating246

on subsiding air; it merely warms adiabatically as it sinks.247

To incorporate skewness into the vertical velocity distribution, we draw w from a skew-normal248

distribution generated following Azzalini and Capitanio (1999), instead of from a normal distri-249

bution as before. A skew-normal distribution has three degrees of freedom which determine its250

mean, variance, and asymmetry. When the asymmetry is zero, the skew-normal distribution be-251

comes normal. We adjust the skew-normal distribution so that the mean is always zero to maintain252

mass conservation, and we maintain a constant variance of the w distribution to eliminate the ef-253

fects of changing circulation strength. The resulting distribution of w and the response in rain254

frequency and amount distributions to a 0.2 increase in skewness are shown in Fig. 4g-i.255

The responses of the rain frequency and amount distributions to increasing skewness of the256

vertical velocity have some intriguing features. There is a notable decrease in the frequency of257

rain for moderate rain rates (Fig. 4h), but the total amount of rain remains essentially constant due258

to a slight increase in the frequency of higher rain rates (Fig. 4i). This strongly resembles the shift259

mode. The magnitude of the strongest updrafts also changes little. Increasing skewness without260

conserving the mean of w would increase the strength of the strongest updrafts, but the shift of the261

distribution to maintain mass continuity compensates for this.262

To move toward the response of precipitation to global warming in climate models, we simul-263

taneously warm and increase the skewness of the vertical velocity distribution, shown in Fig. 4j-l.264

The response of the rain frequency and amount distributions to warming and skewing has all the265

features seen in climate models: a decrease in the total rain frequency and in the frequency of266

rain falling at moderate rain rates, along with an increase in rain amount focused at the heaviest267
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rain rates. Increasing the skewness of the vertical velocity distribution effects crucial components268

of the change. It decreases the total frequency of rain events, breaks the symmetry between the269

changes in mean and extreme rainfall, and allows us to change the magnitude of the shift mode270

without changing the increase mode.271

To fully capture the changes we see in climate model simulations, we weaken the distribution272

of vertical velocity (decrease sw) while simultaneously increasing its skewness and increasing T ,273

shown in Fig. 4m-o. Here we see many of the same features as before, but now we also have the274

decrease in mean rainfall that arises from the weakening circulation, giving us shift and increase275

modes of roughly the same magnitude as we see in climate models.276

To recap, we have shown that warming (increasing T ) results in shift and increase modes of equal277

magnitude, while increasing the skewness of the vertical velocity distribution produces the shift278

mode alone, allowing us to reproduce some salient features of the response of the rain distribution279

to warming projected by climate models. This motivates us to construct a model that predicts ver-280

tical velocity to understand how atmospheric energetic constraints lead to the increasing skewness281

of the vertical velocity distribution with warming.282

3. The second model: Predicted vertical velocity283

We know that precipitation is energetically constrained by total column heating and cooling.284

Thus, in this model we start with energetics. We prescribe a distribution of non-latent heating285

Qn, which is the sum of radiative and sensible heating and the convergence of dry static energy286

flux in the atmospheric column (see Muller and O’Gorman 2011). In the time mean, Qn balances287

the latent heating, and so relates to the total precipitation. In daily fields from the MPI-ESM-LR288

climate model, the width of the atmospheric radiative cooling distribution is small compared with289

that of the atmospheric column dry static energy flux convergence, so the standard deviation of290
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the non-latent heating distribution, sQn , comes primarily from the convergence of the dry static291

energy flux. The distribution of Qn thus captures both the impact of radiation and the transport of292

energy by the circulation.293

a. Model description294

Our goal is to predict the distribution of w, which will in turn give us the rainfall from Eqn. 2,295

as in our first model. We begin with the temperature and moisture distributions (again connected296

by the assumption of saturation, Fig. 5a), except that the tail of the temperature distribution is297

truncated at a maximum temperature, Tmax, which in turn implies a maximum allowable moisture298

content. We then assume that the non-latent atmospheric column heating, Qn (Fig. 5b), can be de-299

scribed by another independent Gaussian distribution. The sum of non-latent atmospheric column300

heating and latent heating from precipitation must be zero in the time mean to maintain energy301

conservation.302

We calculate the distributions of vertical velocity and rain according to a form of the thermody-303

namic equation (inspired by Sobel and Bretherton 2000),304

wS = Qn +Ql, (5)

where the parameter S is a constant that converts energy to vertical motion. In Sobel and Brether-305

ton (2000), S is a stability that varies in time and space, but here we assume it is a constant to306

maintain the mathematical simplicity of the model. Physically, this equation implies that the total307

atmospheric column heating (both latent, Ql , and non-latent Qn) exactly balances the energy re-308

quired to move air (w) against stability S. This balance holds in the time mean in the real world,309

but here we enforce it at all times.310
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We calculate the latent heating Ql from the moisture and vertical velocity when it is raining (as311

in the first model),312

Ql = Lrawq, (6)

where L is the latent heat of vaporization of water (which we hold constant at 2.5⇥10�6 J kg�1, its313

value at 0�C) and ra is the air density as in the first model. With substitution, we have an equation314

for vertical velocity,315

w =

8
>>><

>>>:

Qn
S , Qn  0

Qn
S�Lraq , Qn > 0.

(7)

To conserve mass, the average vertical velocity must equal zero, as in the first model, and to con-316

serve energy, the mean latent heating Ql must be equal and opposite to the mean non-latent heating317

Qn. These balances are effected by integral constraints based on Eqn. 5, derived in Appendix B.318

The parameters we use are listed in Table 3. The mean of the non-latent atmospheric column319

heating is equal but opposite to the CMIP5 multi-model mean precipitation (88 W m�2), and its320

standard deviation is dominated by variability in the dry static energy flux convergence on short321

time scales (following Muller and O’Gorman 2011); we choose a value similar to those we found322

in climate model integrations.323

Truncating the temperature distribution is necessary to ensure that the denominator in Eqn. 7324

never drops to or below zero, which would result in infinite w. Tmax can be interpreted as an upper325

bound on SST, which is enforced by convection in the real world (Sud et al. 1999; Williams et al.326

2009).327
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In addition to our choice of Qn, we also choose T , sT , Tmax, and sQn values that are plausibly328

realistic or comparable to calculations using daily data from the MPI-ESM-LR climate model. The329

other requirement to maintain a positive-definite denominator in Eqn. 7 is that S must be greater330

than Lraq(Tmax). In this way, the minimum possible choice of the parameter S is tied to Tmax. With331

a realistic temperature and moisture distribution and a constant S, the minimum allowable value332

of S is much larger than observed values of static stability (see e.g., Juckes 2000).333

The distributions of vertical velocity and rain produced by our model with the parameters listed334

in Table 3 are shown in Fig. 5c-e. As with the first model, the distributions of rain frequency and335

amount are qualitatively similar to observations and climate model simulations in terms of both336

the peak magnitudes and overall structure.337

Most importantly, the model predicts a skewed distribution of w. To ensure that the skewness338

was not an artifact of the non-zero mean of the non-latent heating distribution, we specified Qn =339

0 (thereby neglecting energy and mass balance) in an alternative calculation (not shown), and340

the positive skewness remained. Rather, the skewness arises from the asymmetry introduced by341

latent heating, as can be seen in Eqn. 7. Atmospheric column cooling (Qn < 0) causes downward342

velocity, with a magnitude linearly related to Qn, since S is constant. But atmospheric heating343

(Qn > 0) induces upward motion and also condensation. The resulting latent heating effectively344

weakens the stability, and w is thus no longer simply proportional to Qn, but grows super-linearly345

with Qn.346

b. Perturbations about the control climate347

Here we explore the responses to the three parameters other than warming: mean non-latent348

heating Qn, the width of non-latent heating sQn , and stability S. To maintain mass and energy349

conservation, when one parameter changes, it must be compensated by a change in at least one350
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other parameter. The amplitude of the parameter changes described in this section were chosen so351

they can be compared with the next set of experiments, where we warm by 3 K. This is a fairly352

linear regime where the results are not highly sensitive to the amplitude of the perturbations.353

In the first experiment, we increase the magnitude of mean non-latent heating Qn by 24 W m�2
354

to 113 W m�2 and balance it by widening the non-latent heating distribution (allowing sQn to355

increase by 27.5%, equivalent to increasing the strength of heat transport convergence). Details356

of how we carry out the variation of the parameters are discussed in Appendix A. The resulting357

distribution of vertical velocity and the changes in rain amount and rain frequency are shown in358

Fig. 6a-c. The vertical velocity distribution has widened, with no change in skewness. The rain359

frequency distribution shifts to heavier rain rates, with no change in the dry frequency, and thus360

no change in total rain frequency. The total amount of rainfall increases (to balance the increase361

in magnitude of non-latent heating), reflected in the response of the rain amount distribution.362

Also included in Fig. 6c is the combined shift-plus-increase mode fitted to the rain amount363

response. The fitted shift-plus-increase response is colored orange (following the color scheme364

shown in Fig. 2), which corresponds to equal magnitudes of shift and increase modes. The magni-365

tudes and error of the fit are listed in Table 2 (and are normalized by 3 K warming to compare with366

warming experiments, discussed next); the error is the magnitude of the response that the fitted367

shift-plus-increase fails to capture. The fitted shift mode is slightly bigger than the fitted increase368

mode, 11 versus 9 %K�1.369

The response of the vertical velocity and rainfall distributions is essentially the same response370

we would get from strengthening w in the first model (the opposite of the weakening w experiment371

in Fig. 4d-f), only here it is achieved in a way that is consistent with energy as well as mass372

balance. In this experiment, the magnitudes of vertical velocity and rain change, but the shape of373

their distributions, including of the fraction of events that are rain-producing updrafts, does not.374
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In the second experiment, we again increase the magnitude of mean non-latent heating, but now375

hold the width of the non-latent heating distribution constant and instead decrease stability S. We376

determine the decrease in S required to balance the increase in Qn by linearizing the energy/mass377

balance equation about a perturbation in S, shown in Appendix C. A decrease of S by 19% is378

needed to maintain balance; the result is shown in Fig. 6d-f. Again we see strengthening of the379

vertical velocity distribution, but here we also see an increase in skewness of 38%. The change380

in rain frequency distribution has a shape that is similar to but not the same as in the previous ex-381

periment, because the symmetry is broken: there is an increase in the dry-day frequency by 0.4%,382

and thus a decrease in the total rain frequency. This change in symmetry arises from changing the383

mean of Qn without changing its width, so that the fraction of non-latent heating events that are384

positive decreases (the positive w events and rainfall follow). The fitted shift-plus-increase mode385

to the rain amount response is colored magenta to correspond to a broken symmetry between the386

shift and increase modes.387

In the third experiment, we narrow the distribution of non-latent heating by decreasing sQn by388

23% and compensate it by decreasing S by 20%, holding Qn constant (Fig. 6g-i). Here, there389

is negligible change in the width, or strength, of the vertical velocity distribution, but there is an390

increase in skewness which arises from strong (though still relatively infrequent) updrafts. The dry391

frequency increases, so there is an overall decrease in rain frequency, occurring mainly at moderate392

rain rates. At the same time, there is a slight increase in frequency at the heaviest rain rates and393

a larger (but still small) increase at light rain rates. The response of the rain amount distribution394

is dominated by the decrease at moderate rain rates and increase at heavy rain rates, which are in395

balance because the total rainfall does not change (Qn is fixed). The shift-plus-increase mode is396

not a good fit for this response (light gray represents a poor fit of the shift-plus-increase mode).397
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The response of the vertical velocity distribution is a negligible change in width but an increase398

in skewness, which we can understand as follows. The narrowing Qn distribution would weaken399

the vertical velocity distribution, but this is countered by the decrease in S, which strengthens400

it (see Eqn. 7). Meanwhile, decreasing sQn with no corresponding change in Qn decreases the401

fraction of events that are updrafts. The w distribution must adjust so that the same total latent402

heating is achieved through fewer updrafts, which is accomplished by strengthening the strongest403

updrafts, increasing the skewness of vertical velocity.404

The response of the rain frequency and amount distributions to changing sQn and S in Fig. 6g-i405

has some similarities to but also differences from the response to increasing skewness of w in the406

first model (Fig. 4g-i). The close fit by the shift mode of the rain amount response to increasing407

skewness in the first model indicates that the response is mostly just a movement of the rain amount408

distribution to higher rain rates. In contrast, in this model and experiment, the shift mode poorly409

captures the response. Despite that it is not captured by the shift and increase modes, the rain410

frequency and amount responses have interesting resemblances to the global warming response in411

climate models. One feature present here and in climate models that is not captured by the shift-412

plus-increase is the light rain mode identified in Pendergrass and Hartmann (2014b). The light413

rain mode is the small increase at light rain rates (around 1 mm d�1) visible in Fig. 1c.414

To summarize the effect of perturbing parameters other than temperature in this model: increas-415

ing Qn increases the total amount of rainfall, while increasing sQn and decreasing S increase the416

magnitude of vertical velocity events and the intensity of rainfall. When the combination of pa-417

rameters changes in such a way that the fraction of events that are updrafts changes, the skewness418

of the vertical velocity distribution also changes.419
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c. Response to warming420

Next, we explore the response of the vertical velocity and rainfall distributions to warming. We421

increase T by 3 K (while allowing Tmax to increase by the same amount). To maintain energy and422

mass balance while warming, we will begin by adjusting one other parameter at a time, consid-423

ering three experiments in turn, shown in Fig. 7. These first experiments are designed to help us424

understand the model, and we will consider more realistic scenarios below.425

In the first experiment, we balance warming by increasing S. Stability also changes in climate426

model simulations of global warming; specifically, dry static stability increases with warming in427

the tropics (e.g. Knutson and Manabe 1995) and subtropics and midlatitudes (e.g., Frierson 2006;428

Lu et al. 2007). We determine effects of changing T on energy and mass balance and the increase429

in S needed to balance it by linearizing Eqn. B4 for energy and mass balance about perturbations430

in S and T , shown in Appendix C. This linearization shows that one degree of warming is balanced431

by a 7% increase in stability, where the factor of 7% arises from the moistening associated with432

the warming. The distributions of vertical velocity and moisture that result from warming by 3433

K and increasing stability by 21% are shown in Fig. 7a-c. The increased stability decreases the434

magnitude of vertical velocity for a given atmospheric column heating, so that the vertical velocity435

is weakened (its standard deviation decreases, as in Held and Soden 2006; Vecchi and Soden 2007)436

and the distribution of rainfall is exactly unchanged. The skewness of vertical velocity is also437

unchanged. In this model, the dry frequency is just the fraction of the time that the atmospheric438

column heating is negative; since atmospheric column heating does not change in this experiment,439

neither does the dry frequency. The tradeoff between warming and stability here is similar to the440

tradeoff between warming and the width of the vertical velocity distribution in our first model.441

21



In the second experiment, we warm while increasing the magnitude of mean non-latent heating442

Qn and holding all other parameters constant. Recall that Qn controls the total precipitation. The443

resulting distributions of vertical velocity and rainfall are shown in Fig. 7d-f. The resulting vertical444

velocity distribution has no substantial change in width, but it does have increase in skewness.445

Similarly to the “narrow Qn and decrease S” experiment in Fig. 6g-i, the increase in moisture and446

increase in mean Qn have largely compensating effects on the vertical velocity distribution, except447

for a decrease in the total fraction of updrafts compared to downdrafts, resulting in an increase448

in skewness with little change in width of the w distribution. The response of the rain frequency449

distribution, on the other hand, is more similar to the increasing Qn and decreasing S experiment.450

There is an increase in the dry frequency, and the rain amount response is captured by a shift mode451

that is slightly larger than the increase mode. Examination of Eqns. 2 and 7 reveals that this is452

possible because both experiments have the same change in Qn, and decreasing S has the same453

effect on the denominator of Eqn. 7 as increasing q.454

In the third experiment, warming is balanced by narrowing of the non-latent heating distribution455

(decreasing sQn or weakening the dry static energy flux convergence, Fig. 7g-i). In this exper-456

iment, the vertical velocity distribution weakens while the skewness increases. The skewness457

arises because of the decrease in upward frequency and adjustments to maintain mass as well458

as energy balance, while the weakening results from the weakening of the Qn distribution. The459

rain frequency and amount distributions are very similar to the “narrowing Qn and decreasing S”460

experiment with no warming.461

In two final experiments, we emulate the changes seen in climate models: we warm and also462

increase the magnitude of non-latent atmospheric column heating Qn by 1.1 W m�2 K�1, which463

is the rate at which global-mean precipitation and clear-sky atmospheric radiative cooling increase464

in climate model projections of the response to transient carbon dioxide increase (Pendergrass and465
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Hartmann 2014a). This change in atmospheric radiative cooling includes both the temperature-466

mediated and direct effects of carbon dioxide. To maintain mass and energy balance, we allow467

a third parameter to change, and keep the fourth constant (first increasing S, and then decreasing468

sQn); these experiments are shown in Fig. 8. We examine each parameter change separately, but469

in at least one climate model simulation forced by a transient increase in carbon dioxide (with470

the MPI-ESM-LR model) both changes occur: S increases (by 1.7 %K�1 in the tropics) and sQn471

decreases (by 0.7 %K�1).472

First, we warm, increase mean Qn, and allow S to increase. According to the linearizations about473

S and T in Appendix C, a change in stability of 6.0 %K�1 is needed to maintain energy and mass474

balance. This change in stability is slightly smaller than what was needed to balance warming475

alone (7 %K�1, discussed in the first experiment above), due to the accompanying change in Qn.476

The result (shown in Fig. 8a-c) is a combination of the experiments where we warmed and varied477

mean Qn and S separately. The vertical velocity distribution weakens and has a small increase in478

skewness. There is a modest increase in dry frequency, and a modest break in symmetry between479

the shift and increase modes (2.0 versus 1.6 %K�1). This is not as large as the break in symmetry480

we see in climate models.481

Finally, we warm, increase mean Qn, and allow sQn to decrease by 6.2 %K�1. This value of482

sQn change is need to restore energy and mass balance given the warming of 1 K and the increase483

in Qn of 1.1 Wm2K�1, chosen following Appendix Ac. In Fig. 8d we see a weakening of the484

vertical velocity distribution and a larger increase in skewness than in Fig. 8a. Analogously to the485

warming and skewing experiment with the first model, the rain frequency and amount distribution486

responses (Fig. 8e,f) resemble the superposition of responses in previous experiments. The dry487

frequency increases, and the response of the rain frequency distribution has a decrease at moderate488

rain rates that is partially compensated by an increase at heavy rain rates. The rain frequency489
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response strongly resembles the response we see in climate models (Fig. 1c), except that the light490

rain mode is absent. The rain amount distribution response is partially but not completely captured491

by the shift and increase modes, which reflects that it is the sum of a response that the shift-plus-492

increase captures (the response to warming while and increasing |Qn|) and one that it does not (the493

response to changing sQn). The fitted shift-plus-increase overestimates the decrease at moderate494

rain rates and underestimates the increase at heavy rain rates, reminiscent of the extreme mode495

identified in Pendergrass and Hartmann (2014b).496

To summarize, in our second model, the atmosphere can respond in three ways to warming: (1)497

increasing the stability (S), which weakens the circulation (w) but has no effect on rain, (2) in-498

creasing the total precipitation (Qn), which drives an increase in skewness of w and of the intensity499

of the heaviest rainfall events, and (3) decreasing the width of the non-latent heating distribution500

(sQn), which leads to both a weakening of the circulation and increase in its skewness, and the501

accompanying increase in intensity of the heaviest rainfall events. In climate model projections of502

warming, energetic constraints require an increase in the total precipitation Qn.503

In this simple model, if we warm and increase mean latent heating Qn, the stability S and/or504

width of the non-latent heating distribution sQn – which is intimately related to the circulation505

– must also change to maintain energy and mass balance. Any combination of these parameter506

changes results in: (1) a weakening of the circulations (i.e. of w), the essential conclusion of507

Vecchi and Soden (2007), (2) an increase in the skewness of w, and (3) an increase in intensity of508

the heaviest rain events (e.g., Trenberth 1999).509

4. Comparison with the response to warming in climate models510

The two heuristic models above show that increasing skewness of the vertical velocity distri-511

bution coincides with key characteristics of the changing distribution of rainfall that we see in512
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climate models. Does skewness of the vertical velocity distribution increase with warming in513

climate models?514

To address this question, we calculate statistics of daily-average 500 hPa pressure vertical veloc-515

ity and their change in three warming experiments in the CMIP5 archive (Table 4). We calculate516

the area-weighted global-average moments from years 2006-2015 and 2090-2099 in the RCP8.5517

scenario, and years 1-10 and 61-70 in the transient carbon dioxide increase 1pctCO2 scenario;518

these results can be compared with the fitted shift-plus-increase modes of the distribution of rain519

in Pendergrass and Hartmann (2014b). Trends in data can contaminate statistical measures of a dis-520

tribution, so we also analyze the last 10 years of the CO2 quadrupling experiment (abrupt4xco2),521

when the climate is as close to equilibrating as is available in the CMIP5 archive, and trends are522

as small as possible.523

All climate model simulations have increasing skewness of vertical velocity, consistent with524

our expectations from the heuristic models along with the changing distribution of rain in climate525

models. The magnitude of increase in skewness varies widely across models, from less than 1526

to 27 %K�1. Note that the models with the biggest increases in skewness (the GFDL-ESM and527

IPSL-CM5A models) also have a large extreme mode (Pendergrass and Hartmann 2014b). While528

we have touched on the extreme mode in our second heuristic model, much about it remains to be529

investigated.530

The variance of vertical velocity decreases in all but one of the climate model simulations.531

Decreasing variance of vertical velocity at 500 hPa is consistent with Held and Soden (2006) and532

Vecchi and Soden (2007), though their metrics were slightly different from ours and the magnitude533

of changes shown here is smaller. Additionally, the change in vertical velocity strength at 500 hPa534

is expected to underestimate the weakening of the total vertical overturning circulation because the535

strongest motion is above 500 hPa and shifts upward with warming (Singh and O’Gorman 2012).536
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We include the changes in kurtosis in Table 4, the fourth moment of the distribution. Larger537

kurtosis corresponds to a fatter tail and a narrower peak of the distribution; a normal distribution538

has a kurtosis of 3 (e.g., DeCarlo 1997). In all climate models, kurtosis of vertical velocity is539

initially greater than Gaussian, and it increases with warming. Our second model predicts an540

increase in kurtosis along with the increases in skewness. Interestingly, the GFDL models have by541

far the largest increases in kurtosis with warming (they also have large extreme modes).542

We are now in a position to reconcile the differing magnitudes of the shift and increase modes543

with warming that we see in climate model simulations. For the multi-model mean, moistening544

occurs at about 6-7 %K�1 and global mean precipitation increases at 1.5 %K�1. The multi-model545

mean rain amount response has an increase mode of 1 %K�1 and a shift mode of 3.3 %K�1. The546

MPI-ESM-LR model, whose response is best captured by the shift and increase modes, has an547

increase mode of 1.3 %K�1 and a shift mode of 5.7 %K�1.548

We relate the shift and increase modes to changes in moisture and circulation as follows (and549

shown in Fig. 4 as well as listed in Table 2): moistening at 7 %K�1 results in equal magnitudes550

of shift and increase modes. This is countered by a narrowing of the vertical velocity distribution551

that is not quite as large, bringing the net magnitudes of both the shift and increase modes down.552

Finally, an increase in skewness of the vertical velocity distribution results in a shift mode with no553

corresponding increase mode. The combination of these three changes results in a shift mode that554

is larger than the increase mode seen in the climate model response to warming.555

While the heuristic models developed here capture some important aspects of the response of556

rainfall and vertical velocity to warming seen in climate models, the cost of its simplicity is the557

number of assumptions that must be made. Assumptions for our idealized relationship between558

moisture, vertical velocity and rain rate include: that all moisture is removed whenever there is559

upward motion, that the vertical structure of the atmosphere is fixed, and that relative humidity560
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does not change. Our models do not accommodate any unresolved processes, parameterized in561

climate models, which can alter the relationship between rainfall and vertical velocity. This ide-562

alized framework also does not address the differing direct and temperature-mediated responses563

of precipitation and circulation to greenhouse gas forcing. Finally, aggregating over all locations564

and seasons convolves many different processes, and the relationships we explore here may not565

hold for all of them. Nonetheless, while we anticipate that our heuristic models do not capture the566

behavior of every relevant process that contributes to the responses of rainfall and vertical velocity567

to global warming, we think these models are useful for understanding a substantial portion of the568

response in many regions of most climate models.569

5. Convective area570

The spatial manifestation of the distribution of rain and vertical velocity is convective area, by571

which we mean the area with upward motion and the cloudiness and rainfall that accompany it.572

The fraction of time that vertical motion is upward and the fraction of time that it is raining in573

the heuristic models presented here is analogous to the fraction of the area in a domain where574

rain is occurring. The literature is currently unsettled about how the change in convective area575

and frequency of upward motion are expected to change with warming. Johnson and Xie (2010)576

argues that the convectively active fractional area of the tropics changes little relative to the area577

above an absolute SST threshold, which increases by 45% over the 21st century in the experiments578

they analyze, though this study focused on monthly mean precipitation, rather than daily data. In579

contrast, Vecchi and Soden (2007) report a decrease in the number of grid points with upward mo-580

tion in GFDL-CM2.1 simulations of global warming in the tropics. Other recent studies focusing581

on monthly to seasonal mean precipitation find a decrease in the area of the ITCZ with warming582

(Neelin et al. 2003; Huang et al. 2013; Wodzicki and Rapp 2016). Byrne and Schneider (2016)583
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examine the width of the ITCZ over a wide range of climates in a gray-radiation climate model and584

find different responses in different climate states. In CMIP5 model simulations, the frequency of585

dry days has a small but significant increase (see Fig. 1a or Pendergrass and Hartmann 2014b).586

The heuristic models shown here reproduce the increase in dry frequency seen in the CMIP5587

models and thus also the decrease in convective area. Figure 9 shows a schematic of the tropical588

overturning circulation to aid in interpreting its response to changes in the distribution of vertical589

velocity. The initial distribution has a region of ascent that is narrower than the region of descent,590

analogous to the circulation in the tropical atmosphere (Fig. 9a). Because the region of ascent is591

narrower and mass is conserved, the ascending motions are stronger than corresponding descend-592

ing ones. Decreasing the standard deviation of the vertical velocity distribution decreases the593

magnitude of both upward and downward motion (weakening the circulation), with no change in594

area of either region (Fig. 9b). Increasing the skewness of vertical velocity increases the magnitude595

of upward motion while decreasing its area, and decreases the speed of descent while increasing596

its area (Fig. 9c). When the decrease in standard deviation and increasing skewness occur to-597

gether, both contribute to weakening the descending motion, but they have competing effects on598

the magnitude of ascent, resulting in little change in updraft strength (Fig. 9d).599

6. Conclusion600

We have introduced two idealized models relating the distributions of rain and vertical veloc-601

ity. In both models, temperature (and thus moisture, assuming constant relative humidity) is pre-602

scribed, and the distribution of rainfall is predicted. In the first model, the distribution of vertical603

velocity is also prescribed and can be varied; mass conservation is respected. In the second model,604

the distribution of non-latent atmospheric column heating is prescribed, the distribution of vertical605

velocity is predicted, and both mass and energy are conserved. Some key assumptions made by606
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both models are that relative humidity is fixed within and between climate states and that stability607

is constant within each climate state.608

Both of these models show that increasing skewness, or asymmetry, of the vertical velocity dis-609

tribution is necessary to recover important characteristics of the changing distribution of rain with610

warming predicted by climate models: dry-day frequency increases, and extreme precipitation in-611

creases at a rate faster than the increase in mean precipitation. In the context of shift and increase612

modes of change of the distribution of rain, an increase in skewness is necessary to achieve the613

larger shift mode than increase mode seen in climate model projections. The second model, where614

the distribution of vertical velocity is predicted, shows how the asymmetric influence of latent615

heating creates skewness in the vertical velocity distribution. Experiments with this model show616

that this skewness increases in response to warming, along with the adjustments needed to main-617

tain mass and energy balance. In addition to an increase in skewness, the standard deviation of618

the vertical velocity distribution also decreases, consistent with the weakening circulation found619

in climate model simulations of global warming.620

The models developed here capture salient aspects of the changing distributions of rain and621

vertical velocity with simple thermodynamic relationships, implying that we do not need to resort622

to complex dynamical explanations for these aspects of the changing distribution of rain. The623

idealized relationships between the distributions of vertical velocity and precipitation explored624

here hopefully form a basis for understanding the richer and more complex interactions in climate625

models and in the real world.626
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APPENDIX A631

Numerical solutions632

a. Normal and skew-normal distributions633

We calculate the value of the normal distribution at points that are evenly spaced in percentile634

space, 5000 points for Model 1 and 10 000 for Model 2. For the temperature distribution, any635

values of T > Tmax are truncated. For making calculations over joint distributions (r over T /q and636

w in Model 1, r and w over Qn and T /q in Model 2), we form a matrix over both distributions (of637

size 5000 x 5000 or 10 000 x 10 0001) and calculate the value at each point in the joint space.638

Calculating the skew normal distribution is similar to a joint distribution because the algorithm639

of Azzalini and Capitanio (1999) calls for operating on two normal distributions. We start with640

normal distributions u0 and v (5000 samples for each). To get a distribution with a shape parameter641

a (which is related to the skewness; when a is zero the distribution is normal, and we use a > 0642

here), we calculate u1 = du0 +
p

(1�d2)v, where d = a/
p
(1+a2) is a correlation related to the643

shape parameter. Then, the skewed distribution z is u1 when u0 > 0 and �u1 otherwise. Finally,644

this 5000 x 5000 array is subsampled back to 5000 values by sorting them and keeping every645

5000th one.646

b. Frequency and amount distributions647

We use logarithmically-spaced bins for the rain frequency and amount distributions, and choose648

250 of them to obtain stable fits of the shift-plus-increase modes. Details of the calculation and649

1With the introduction of Tmax, we truncate a few values at the high end of the T /q distribution.
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further examples of rain amount and rain frequency distributions can be found in Pendergrass and650

Hartmann (2014c). We use 50 linearly-spaced bins for p(T ), p(Qn), and p(w), which are for651

display only.652

c. Model 2 parameters653

To calculate the parameters in the second model, there are two steps: the initial set up to find a654

balanced state and variation of parameters about this state.655

To set up the model initially, the challenge is meeting energy and mass balance. We accomplish656

this numerically by specifying all parameters other than Qn, and then systematically solving for the657

value of Qn that achieves energy and mass balance (Eqn. B4). First, we calculate the distribution658

of T from T and sT , truncating anything over Tmax, and we calculate the associated q. Then659

with a choice of S, we calculate the LHS of the energy/mass balance equation (B in Appendix C).660

Finally, we use a specified value of sQn , and solve systematically for the value of Qn that most661

closely results in mass/energy balance. We take a vector of 10 000 Gaussian values evenly spaced662

percentile-wise (call them y), and using the sQn value, calculate the RHS of the energy/mass663

balance equation that would result for each choice of Qn = ysQn . To vary parameters, new T , sT ,664

S, and sQn values can be manually chosen and a new Qn found.665

To find a new balanced state due to small variations in T and S around the initial balanced state,666

we use the linearizations in Appendix C. This is done in three different ways. Whenever possible,667

we use the linearization alone to find new values of T and S, or of the new LHS of the energy/mass668

balance equation. When necessary, we re-solve for a new Qn that best meets energy/mass balance669

as we did to find the initial balanced Qn value. Otherwise (e.g., when changing sQn), we iteratively670

choose parameter values (manually) until the energy/mass balance equation is satisfied again (to671
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4 decimal places). Once we have a new set of parameters, r, w, and their frequency and amount672

distributions p(r), P(r), and p(w) are calculated once again.673

APPENDIX B674

Conservation of mass and energy675

In this appendix, we derive the equation for mass and energy conservation of the model described676

in Section 3. In order to conserve mass, we must maintain an integral of vertical velocity over the677

entire distribution equal to zero,678

•Z

�•

qmaxZ

0

w p(q,Qn)dq dQn = 0, (B1)

where p(q,Qn) is the joint probability distribution function (pdf) of q and Qn, and qmax is the679

maximum realized specific humidity, occurring at temperature Tmax. In order to conserve energy,680

we enforce that the total latent heating must be balanced by the total non-latent heating,681

•Z

�•

Qn p(Qn)dQn +

•Z

�•

qmaxZ

0

L r p(q,Qn)dq dQn = 0, (B2)

where p(Qn) is the pdf of non-latent heating Qn.682

Substituting Eqns. 2 and 5 into B2, separating regions of positive and negative Qn, exploiting683

the independence of q and Qn, and rearranging, we have,684

qmaxZ

0


1

1�Lraq/S

�
p(q)dq =

�
R 0
�• Qn p(Qn)dQnR •

0 Qn p(Qn)dQn
. (B3)
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It is also possible to arrive at Eqn. B3 by starting from the mass conservation constraint685

(Eqn. B1), substituting Eqn. 5, exploiting the independence of q and Qn, recognizing that686

R
p(q)dq = 1, and rearranging.687

Following either path, we find that both the mass and energy constraints are met when,688

Eq


1

1�Lraq/S

�
=

�
R 0
�• Qn p(Qn)dQnR •

0 Qn p(Qn)dQn
, (B4)

where the expectation operator is defined as Ex [ f (x)] =
R •
�• f (x)p(x)dx.689

APPENDIX C690

Linearization of energy and mass balance about T and S691

Here, we linearize the mass and energy conservation equation about its base state (the left hand692

side of Eqn. B4) to obtain its response to small changes in stability S and mean temperature T .693

Along with new values of Qn and sQn chosen by trial and error, we use this linearization to find new694

sets of parameters that satisfy energy and mass balance in the experiments described in Section 3b695

and c. To be concise, in this appendix we refer to the LHS of Eqn. B4 as B,696

B = ET


1

1�Lraq(T )/S

�
. (C1)

a. Linearization in T697

First, we linearize the LHS of Eqn. B4 to find its response to small changes in T and the asso-698

ciated moistening. We expand T = T +DT = T (1+ x), where x = DT/T ⌧ 1. Incorporating our699
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moisture equation (1), we have,700

B =

TmaxZ

�•

1
1�Lraq0e0.07T (1+x)/S

p(T )dT. (C2)

A first order Taylor expansion around B gives us,701

B ⇡ B0 +0.07 DT B1, (C3)

where B0 is the value of B evaluated at T = T and,702

B1 ⌘
qmaxZ

0

Lraq/S
�
1�Lraq/S

�2 p(q)dq. (C4)

This integral is readily evaluated numerically from a base q distribution.703

b. Linearization in S704

Next, we linearize Eqn. B4 to find the response to small changes in stability S. Expanding705

S = S+DS = S(1+ x), where x = DS/S ⌧ 1, we have,706

B =

qmaxZ

0

1
1�Lraq/S(1+ x)

p(q)dq. (C5)

Another Taylor expansion gives us,707

B ⇡ B0 �
DS
S

B1. (C6)
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We can combine Eqns. C3 and C6 and solve for DS,708

DS = S
✓

0.07 DT � B�B0

B1

◆
. (C7)

Given a DT and possibly a new value of Qn or sQn (which requires calculating a new value of B),709

we can solve for the DS that satisfies mass and energy balance.710
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TABLE 1. Initial parameter choices for the first model.

Variable Value Description

T 287 K Mean temperature

sT 16 K Width of temperature dist.

w 0 Mean vertical velocity, w

sw 1 mm s�1 Width of w dist.
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TABLE 2. The magnitude of fitted shift and increase modes along with their error (the magnitude of the

response that the fitted shift-plus-increase fails to capture) for each of the experiments shown and discussed here.

The precipitation response to a transient CO2 increase in climate models is shown for the CMIP5 multi-model

mean as well as for one GCM, MPI-ESM-LR, which is fit the best of all the CMIP5 models (see Pendergrass

and Hartmann 2014b for details). The Model 1 experiments are shown in Fig. 4 and discussed in Section 2b-d.

Model 2 experiments are shown in Figs. 6-8 and discussed in Section 3c.

802

803

804

805

806

807

Model Experiment Shift Increase Error

(%K�1) (%K�1) (%)

CMIP5 MMM 2xCO2 3.3 0.9 33

MPI-ESM-LR 2xCO2 5.7 1.3 14

Model 1 Warm 7 7 2

Weaken w -4 -4 1

Skew w 5 -1 27

Warm, skew w 13 6 15

Warm, weaken w, skew w 8 2 21

Model 2 Increase Qn, widen Qn 11 9 11

Increase Qn, decrease S 11 8 23

Narrow Qn, decrease S 0 -1 81

Warm, increase S 0 0 22

Warm, increase Qn 11 8 23

Warm, narrow Qn 0 -1 81

Warm, GCM Qn, increase S 2.0 1.6 12

Warm, GCM Qn, narrow Qn 1.7 0.5 68
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TABLE 3. Initial parameter choices for the second model.

Variable Value Description

T 287 K Mean temperature

sT 10 K Width of temperature dist.

Tmax 317 K Cap on the temperature dist.

Qn �88 W m�2 Mean non-latent heating

sQn 2,500 W m�2 Width of non-latent heating dist.

S 4.75⇥105 kg m�1 s�2 Stability

42



TABLE 4. Standard deviation, skewness, and kurtosis of 500 hPa pressure vertical velocity from CMIP5

models and their response to warming (normalized by global mean surface temperature change).

808

809

Scenario Model std Dstd skew Dskew kurtosis Dkurtosis

(Pa s�1) (%K�1) (%K�1) (%K�1)

RCP8.5 MIROC-ESM-CHEM 9.0 -2.5 % -0.66 0.57% 5.8 0.85%

FGOALS-g2 12 -2.7 % -1.9 1.4 % 15 1.8 %

NorESM1-M 8.1 -2.0 % -1.2 1.4 % 8.6 3.5 %

BNU-ESM 8.2 -2.1 % -0.80 2.7 % 5.9 3.6 %

CMCC-CESM 8.9 -1.9 % -0.56 3.1 % 5.2 2.0 %

BCC-CSM1.1 11 -0.97% -1.8 4.0 % 15 6.3 %

IPSL-CM5B-LR 11 -2.1 % -3.3 4.4 % 48 5.8 %

MPI-ESM-LR 11 -1.8 % -1.00 4.6 % 7.4 4.8 %

CNRM-CM5 11 -1.1 % -1.9 5.4 % 20 8.3 %

GFDL-CM3 8.5 -1.7 % -1.4 6.2 % 13 10 %

CCSM4 9.0 -1.4 % -1.8 6.2 % 17 10 %

GFDL-ESM2M 8.9 -1.4 % -1.6 16 % 18 28 %

IPSL-CM5A-LR 8.8 -1.2 % -1.1 21 % 14 23 %

GFDL-ESM2G 8.7 -1.1 % -1.3 22 % 12 49 %

Transient CO2 IPSL-CM5B-LR 12 -2.1% -3.2 2.3% 46 4.0%

increase MIROC5 10 -2.0% -1.4 4.4% 10 6.5%

GFDL-ESM2G 8.8 -1.0% -1.2 11 % 10 22 %

IPSL-CM5A-MR 9.5 -2.1% -1.4 14 % 18 19 %

GFDL-ESM2M 8.9 -1.8% -1.3 19 % 12 38 %

IPSL-CM5A-LR 9.1 -2.7% -0.86 27 % 11 26 %

Abrupt CO2 MIROC-ESM 9.3 -2.6 % -0.65 0.29% 5.6 0.75%

increase IPSL-CM5B-LR 12 -2.3 % -3.3 3.0 % 48 5.1 %

MIROC5 10 -1.9 % -1.4 4.2 % 10 5.8 %

CanESM2 9.3 -0.64% -1.0 5.2 % 9.6 6.2 %

MPI-ESM-LR 11 -1.4 % -0.91 5.8 % 7.0 4.7 %

MRI-CGCM3 11 0.84 % -2.0 17 % 20 35 %

IPSL-CM5A-MR 9.5 -1.0 % -1.4 20 % 18 31 %

IPSL-CM5A-LR 9.1 -1.4 % -0.87 25 % 11 27 %
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LIST OF FIGURES810

Fig. 1. The CMIP5 multi-model mean distributions of daily (a) rain frequency (with dry-day fre-811

quency at top left) and (b) rain amount, during the first ten years of the transient carbon812

dioxide increase emissions scenario, 1pctco2. The response of (c) rain frequency and (d)813

rain amount to increasing carbon dioxide, calculated as the difference between the ten years814

at the time of carbon dioxide doubling and the first ten years and normalized by the change815

in global-mean surface temperature. Change in dry-day frequency (%K�1) is noted in the816

top left corner of panel c. Error intervals are the 95% confidence limits according to a Stu-817

dent’s t-test. As the distributions are plotted on a logarithmic scale, they are weighted by818

the rain rate r so that the area under the curve accurately represents the contribution of each819

rain rate to the total integral. Following Pendergrass and Hartmann (2014b and c), though820

the r-weighting is implicit to the procedure described there. . . . . . . . . . . 46821

Fig. 2. The rain frequency (left) and amount (right) responses to (a-b, purple) an increase mode822

of 0.9%, (c-d, turquoise) a shift mode of 3.3%, (e-f, magenta) a shift mode of 3.3% and823

increase mode of 0.9%, and (g-h, orange) equal magnitude shift and increase of 3.3%. The824

color scheme corresponds to these modes throughout the paper. The initial distribution is825

shown in Fig 3. . . . . . . . . . . . . . . . . . . . . . . 47826

Fig. 3. The distributions driving the first model, where vertical velocity is prescribed: (a) tempera-827

ture and moisture, and (b) vertical velocity (skewness is noted in the top right corner). The828

resulting distributions of (c) rain frequency (dry frequency, when rain rate is equal to zero,829

is noted in the bottom left corner) and (d) rain amount. . . . . . . . . . . . 48830

Fig. 4. Experiments with the first model. (left) Prescribed vertical velocity distribution, with the831

initial distribution in the gray-dashed line and each experiment’s distribution in solid black832

(skewness noted at top right of each panel). (center) Predicted rain frequency response833

(change in dry frequency noted at center-left). (right) Predicted rain amount response in834

black, with the fitted shift-plus-increase response in color. Colors correspond to Fig. 2; the835

magnitude of the fitted shift and increase modes and their errors are listed in Table 2. Each836

row is one experiment: (a-c) warm, (d-f) weaken the vertical velocity distribution, (g-i) skew837

the vertical velocity distribution, (j-l) warm and skew, and (m-o) warm while weakening and838

skewing the vertical velocity distribution. . . . . . . . . . . . . . . . 49839

Fig. 5. The prescribed (top) distributions driving the second model, where vertical velocity is pre-840

dicted: (a) temperature and moisture, and (b) non-latent heating (mean is noted in the top-841

right corner). The resulting predicted (bottom) distributions of (c) vertical velocity, (d) rain842

frequency (dry frequency noted in the bottom left corner) and (e) rain amount. . . . . . 50843

Fig. 6. Experiments varying parameters other than the mean temperature with the second model,844

following Fig. 4 but here the vertical velocity distribution (left) is predicted. (a-c) Increasing845

the magnitude of mean non-latent heating and increasing the width of the non-latent heating846

distributions, while holding all other parameters constant. (d-f) Increasing the magnitude847

of mean non-latent heating and decreasing stability. (g-i) Narrowing the non-latent heating848

distribution (decreasing sQn) and decreasing stability. Note the smaller y axis magnitudes in849

panels h and i. Changes are normalized by a 3 K warming for comparison with Figs. 7 and 8. . 51850

Fig. 7. Experiments warming while varying one other parameter with the second model, following851

Fig. 6: (a-c) increasing stability, (d-f) increasing the magnitude of mean non-latent heating,852

and (g-i) narrowing the non-latent heating distribution (decreasing sQn , note the smaller y853

axis magnitudes in panels h and i). . . . . . . . . . . . . . . . . . 52854
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Fig. 8. Experiments warming, increasing the magnitude of the non-latent heating distribution by855

the value from climate models, 1.1 W m�2 K�1, while varying one other parameter with the856

second model, following Fig. 6: (a-c) increasing stability, and (d-f) narrowing the non-latent857

heating distribution (decreasing sQn). . . . . . . . . . . . . . . . . 53858

Fig. 9. A schematic showing the effects of changing width and skewness of the vertical velocity859

distribution. An initial skewed distribution of w (a), is perturbed by (b) decreasing its stan-860

dard deviation, (c) increasing its skewness, and (d) both decreasing standard deviation and861

increasing skewness together. . . . . . . . . . . . . . . . . . . 54862
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difference between the ten years at the time of carbon dioxide doubling and the first ten years and normalized
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latent heating and increasing the width of the non-latent heating distributions, while holding all other parameters

constant. (d-f) Increasing the magnitude of mean non-latent heating and decreasing stability. (g-i) Narrowing

the non-latent heating distribution (decreasing sQn) and decreasing stability. Note the smaller y axis magnitudes

in panels h and i. Changes are normalized by a 3 K warming for comparison with Figs. 7 and 8.
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FIG. 7. Experiments warming while varying one other parameter with the second model, following Fig. 6:

(a-c) increasing stability, (d-f) increasing the magnitude of mean non-latent heating, and (g-i) narrowing the

non-latent heating distribution (decreasing sQn , note the smaller y axis magnitudes in panels h and i).
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FIG. 8. Experiments warming, increasing the magnitude of the non-latent heating distribution by the value

from climate models, 1.1 W m�2 K�1, while varying one other parameter with the second model, following

Fig. 6: (a-c) increasing stability, and (d-f) narrowing the non-latent heating distribution (decreasing sQn).
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FIG. 9. A schematic showing the effects of changing width and skewness of the vertical velocity distribution.

An initial skewed distribution of w (a), is perturbed by (b) decreasing its standard deviation, (c) increasing its

skewness, and (d) both decreasing standard deviation and increasing skewness together.
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