
STRONG NOISE SENSITIVITY AND RANDOM GRAPHS

EYAL LUBETZKY AND JEFFREY E. STEIF

Abstract. The noise sensitivity of a Boolean function describes its

likelihood to flip under small perturbations of its input. Introduced in

the seminal work of Benjamini, Kalai and Schramm (1999), it was there

shown to be governed by the first level of Fourier coefficients in the

central case of monotone functions at a constant critical probability pc.

Here we study noise sensitivity and a natural stronger version of it,

addressing the effect of noise given a specific witness in the original input.

Our main context is the Erdős-Rényi random graph, where already the

property of containing a given graph is sufficiently rich to separate these

notions. In particular, our analysis implies (strong) noise sensitivity in

settings where the BKS criterion involving the first Fourier level does not

apply, e.g., when pc → 0 polynomially fast in the number of variables.

1. Introduction

The concept of noise sensitivity, introduced by Benjamini, Kalai and

Schramm [4], captures the notion that the value of a Boolean function of

many i.i.d. variables would change under small perturbations of its input.

Roughly put, it corresponds to the case where a small perturbation of the

input variables via i.i.d. noise suffices to make the new value of the function

asymptotically independent of its original value.

Formally, consider a sequence of functions fn : Ωn → {0, 1} paired with a

sequence of probabilities pn, where each domain Ωn = {0, 1}Λn is a product

space of Bernoulli(pn) variables, and the sets Λn are finite and increasing

with n. Further assume that the sequence (pn) is non-degenerate in the sense

that P(fn = 1) is uniformly bounded away from 0 and 1. Given ω ∈ Ωn

and some ε ∈ (0, 1), let ωε denote the result of resampling the Bernoulli(pn)

variable ωx independently with probability ε for each x ∈ Λn. The sequence

(fn) is said to be noise sensitive (Sens) w.r.t. pn if for any ε > 0,

lim
n→∞

P (fn(ωε) = 1 | fn(ω) = 1)− P (fn = 1) = 0 , (1.1)

or equivalently (recall that (fn) is non-degenerate), Cov (fn(ω), fn(ωε))→ 0.

When a function (fn) is Sens it is natural to further discuss quantitative

noise sensitivity, i.e., how fast can ε→ 0 with n such that (1.1) still holds.
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In the setting where pn ≡ 1/2 and the functions fn are monotone w.r.t.

the natural partial order on the hypercube Ωn (as is notably the case for

critical 2d percolation), a beautiful argument of [4] gave a criterion for noise

sensitivity in terms of the first level of Fourier coefficients of fn. Namely, (fn)

is noise sensitive if and only if limn→∞
∑

x∈Λn
f̂n(x)2 = 0, where f̂n(x) is the

Fourier coefficient corresponding to the singleton {x}, and is also one half the

probability that x is pivotal, i.e., flipping its value would flip the value of fn.

For more on noise sensitivity in this case, see [8] and the references therein.

Unfortunately, this criterion becomes invalid when pn → 0 (e.g., formal

definitions postponed, the indicator of a random graph being triangle-free

satisfies the above condition and yet it is not noise sensitive; see [4, §6.4]),

and determining noise sensitivity without it can prove to be a challenging

task already for fairly simple monotone functions enjoying many symmetries.

1.1. Strong noise sensitivity. Going back to (1.1), this is known (see §2.2)

to be equivalent to having the average of
∣∣P (fn(ωε) = 1 | ω) − P (fn = 1)

∣∣
over {ω : fn(ω) = 1} tend to 0 as n→∞. That is, if (fn) is noise sensitive

then most inputs ω ∈ Ωn with fn(ω) = 1 are such that conditioning on ω

will not give any substantial information on the probability that fn(ωε) = 1.

When dealing with monotone functions, however, it is in many cases more

natural and useful to condition on a witness for fn(ω) = 1 (for instance, a

particular crossing in 2d percolation) instead of the entire configuration ω.

Definition 1.1. A 1-witness for a monotone function f : {0, 1}Λ → {0, 1}
is a minimal subset W ⊂ Λ such that ωW ≡ 1 implies f(ω) = 1.

Let W1 = W1(f) denote the set of 1-witnesses of a monotone Boolean

function f , and let W0 =W0(f) denote its analogously defined 0-witnesses.

Perhaps surprisingly, it can be the case that (fn) is noise sensitive and yet

the probability that fn(ωε) = 1 substantially increases when we condition

on any particular 1-witness in ω. This motivates the following definition.

Definition 1.2. A sequence (fn) of monotone increasing Boolean functions

is said to be 1-strongly noise sensitive (StrSens1) if for any ε > 0,

lim
n→∞

max
W∈W1

P(fn(ωε) = 1 | ωW ≡ 1)− P(fn = 1) = 0 . (1.2)

The notion of 0-strong noise sensitivity (StrSens0) is defined analogously.

(Note that a sequence of increasing functions (fn) is StrSens0 if and only

if its complement (fn) is StrSens1, where fn(ω) = fn(ω) with x = 1− x.)

As we will later see (and as suggested by its name), the notion of strong

noise sensitivity, which addresses the subtler effect of conditioning on any

particular witness (cf. (1.1) vs. (1.2)), indeed implies (even when ε→ 0) the

standard noise sensitivity but not vice versa.
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We now demonstrate this concept through two examples of monotone

noise sensitive functions discussed by Benjamini, Kalai and Schramm in [4],

both of which trace back to Ben-Or and Linial in the related work [5].

(i) Tribes: partition Λn = {x1, . . . , xn} into blocks of log2 n − log2 log2 n

variables, let pn ≡ 1/2 and set fn to be 1 if there is an all-1 block.

It is known [4, §6.1] that this function is non-degenerate and Sens.

A 1-witness W in ω is a full block, which the noise will destroy with

probability approaching 1, and the probability of encountering another

in ωε should be asymptotically P(fn = 1). Indeed, tribes is StrSens1.

(ii) Recursive 3-Majority : Index n = 3k variables by the leaves of a ternary

tree, and iteratively set the value of each node to be the majority of

its children. Take pn ≡ 1/2 and define fn to be the value at the root.

Clearly non-degenerate, this function is known [4, §6.2] to be Sens,

i.e., P (fn(ωε) = 1 | fn(ω) = 1) → 1/2 as n → ∞. A 1-witness W is a

set of 2k leaves (positioned in the obvious way to force the majority).

It is then easy to verify that P (fn(ωε) = 1 | ωW ≡ 1) = 1 − ε/2, and

therefore this function is not StrSens1 (nor StrSens0 by symmetry).

It is important to emphasize the potentially different behaviors of 0-witnesses

and 1-witnesses w.r.t. strong noise sensitivity, vs. standard noise sensitivity

which is closed under taking complements. Indeed, by a general principle,

the tribes function, mentioned above as being StrSens1, is not StrSens0

(conditioning on a particular 0-witness in ω does affect fn(ωε) in the limit).

The above examples all featured pn ≡ 1/2. Indeed, as noted in [4, §6.4],

“When p tends to zero with n, new phenomena occur. Consider, for

example, random graphs on n vertices with edge probability p = n−a...”

Many key features of the Erdős-Rényi random graph are non-degenerate at

such p and yet the BKS criterion for Sens is then no longer applicable.

1.2. Properties of random graphs. The Erdős-Rényi random graph,

G(n, p), is a probability distribution over graphs on n labeled vertices, where

each undirected edge appears independently with probability p = p(n). A

monotone increasing graph property is a collection of graphs closed under

isomorphism and the addition of edges, and we will often identify it with its

indicator function (a monotone Boolean function on the
(
n
2

)
edge variables).

As a first example, consider G(n, p) at its famous critical window centered

at p = 1/n, where the longest cycle is typically of order n1/3 (see, e.g., [9]).

Theorem 1.3. Fix 0 < a < b and let fn be the property that the critical

random graph G(n, 1/n) contains a cycle of length ` ∈ (an1/3, bn1/3). Then

(fn) is non-degenerate and noise sensitive, and furthermore, it is StrSens1.

Moreover, the analogue of this conclusion for quantitative noise sensitivity

holds if and only if the noise parameter ε = ε(n) satisfies ε� n−1/3.
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Theorem 1.3 in fact holds throughout the critical window p = 1±ξ
n with

ξ = O(n−1/3), around which the longest cycle grows from constant to linear

(e.g., taking ξ3n→∞ still with ξ = o(1), the maximum length of a cycle is

Θp(1/ξ) at p = 1−ξ
n and Θp(ξ2n) at p = 1+ξ

n ; see [9, Theorems 5.17, 5.18]).

Revisiting the quantitative conclusion of Theorem 1.3 now highlights an

interesting phenomenon, where the ε� n−1/3 threshold for noise sensitivity

coincides with the boundary of the critical window (p = 1±ξ
n for ξ � n−1/3).

This phenomenon is best explained through the following equivalent process:

• Let ω be a uniform set of N ∼ Bin(
(
n
2

)
, p) edges.

• Obtain ω̄ by deleting a uniform set of Bin(N, ε(1− p)) edges from ω.

• Add a uniform set of Bin(
(
n
2

)
−N, εp) edges missing from ω to get ωε.

As the edge probability in ω̄ is p(1− ε) + εp2, on a heuristic level we have:

(a) If ε . n−1/3 then ω̄ remains in the critical window, where (fn) is non-

degenerate, so fn(ω), fn(ω̄) (thus fn(ω), fn(ωε)) should be correlated.

(b) If ε� n−1/3 then ω̄ is subcritical whence fn(ω̄) is degenerate, effectively

decorrelating fn(ω̄) from fn(ω) (thus also fn(ω), fn(ωε)) yielding Sens.

Although plausible, it is unclear that in general the degeneracy of fn(ω̄) will

indeed result in the decorrelation of fn(ω) and fn(ωε).

Intuitively, we expect a random graph property to be noise sensitive when

it has no bounded-size witnesses (thus none will survive the noise in tact)

and distinct witnesses are essentially independent (so surviving fragments of

a witness will have negligible impact), as is the case in the theorem above.

However, for various important graph properties the witnesses happen

to be highly correlated, foiling this intuition. For instance, containing a

Hamilton cycle is non-degenerate at p ∼ logn
n yet the expected number

of witnesses becomes exponentially large in n already at p = O(1/n), and

similarly for perfect matchings. Nevertheless, both are in fact noise sensitive:

Theorem 1.4. Let fn be the property that the minimum degree of G(n, p)

is at least k for some fixed k ≥ 1, and suppose p = p(n) is such that (fn) is

non-degenerate. Then (fn) is noise sensitive, and moreover, it is StrSens0.

Consequently, the following properties of G(n, p) are noise sensitive:

(i) containing a Hamilton cycle,

(ii) containing a perfect matching (in general, an r-factor1 for r fixed),

(iii) connectivity (in general, k-vertex and k-edge connectivity for k fixed),

(iv) having an isoperimetric constant2 of at least γ for some fixed γ > 0.

Furthermore, each of these is quantitatively noise sensitive iff ε� 1
logn .

1An r-factor of a graph is a spanning r-regular subgraph
2The isoperimetric constant of a graph is the minimum of e(S,Sc)

|S|∧|Sc| over all subsets S of

the vertices, where e(S, Sc) is the number of edges between S and its complement.
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It is worthwhile noting that not even the (non-strong) noise sensitivity in

Theorems 1.3 or 1.4 can be obtained from the best known generalizations of

the BKS criterion for varying p (see [11]), as these all require 1/p = no(1).

We turn our attention to the well-studied family of properties of the form

“G(n, p) contains a copy of a given graph Hn”. Obviously, if the size of Hn

is uniformly bounded then this property is not noise sensitive, since a copy

of Hn will survive the noise with positive probability (as noted in [4, §6.4],

it is noise stable, a notion basically the opposite of being noise sensitive).

Note that having the number of edges in Hn grow with n is a necessary but

not sufficient condition for noise sensitivity (e.g., take log n disjoint edges).

The case where Hn is a clique concerns the maximum clique size in G(n, p).

It is well-known (see, e.g., [1]) that at p = 1/2 this concentrates on a single

point kn ∼ 2 log2 n for most values of n, while for exceptional values of

n it is either kn or kn + 1 with high probability. In the latter case, one

can ask whether the property that kn is the maximum clique size is noise

sensitive. Indeed it is, as implied by the BKS criterion (see §2.5). However,

one would expect there to be a direct proof of this fact that does not employ

the machinery of Fourier analysis and hyper-contractive estimates.

Here we provide a direct proof of strong noise sensitivity for this property.

Theorem 1.5. Let fn be the property that G(n, p) has a clique of size kn for

kn = no(1) such that kn →∞ with n, and suppose p = p(n) is such that (fn)

is non-degenerate. Then (fn) is noise sensitive. Moreover, it is StrSens1.

Consider the above theorem for 1 � kn . log n. When Hn is a clique

of size kn, containing Hn in G(n, p) is Sens. However, if Hn consists of

kn disjoint edges for the same sequence kn then the property is noise stable

(essentially as a majority function). In light of these two opposite behaviors,

one wishes to understand which features of the given graph Hn dictate Sens.

While determining noise sensitivity for graphsHn whose size grows rapidly

with n can be delicate, the picture is fairly well-understood when the graph

sizes are at most a certain poly-log of n. In that case, it turns out that a

single feature of Hn — being strictly balanced — governs noise sensitivity.

A graph is balanced if its average degree is at least that of any of its proper

subgraphs, and it is strictly balanced if these inequalities are all strict (e.g., a

clique is strictly balanced whereas a collection of disjoint edges is balanced).

Theorem 1.6. Let Hn be a sequence of graphs and let fn be the property

that the random graph G(n, p) contains a copy of Hn. The following holds:

1. If Hn is strictly balanced with 1 � `n ≤
( logn

log logn

)1/2
edges then (fn) is

noise sensitive, and furthermore, it is StrSens1.

2. There exists a sequence of strictly balanced graphs Hn with `n � log n

edges for which (fn) is not noise sensitive.
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We stress that the assumption that Hn is strictly balanced is necessary

in the sense that, without it, one could take Hn to be `n disjoint copies of

any fixed strictly balanced graph (e.g., a clique or a tree) for any `n �
√
n,

whence containing Hn is not Sens (in fact it is noise stable). However, it is

not that having Hn be strictly balanced is a necessary condition for Sens,

e.g., we will see that containing a disjoint union of two cliques is StrSens1.

The last two theorems will be obtained as a consequence of a general tool

(Proposition 4.1) which deduces StrSens1 from an appropriate Poisson

approximation of the number of copies of Hn in G.

It should be noted that each of the properties shown in Theorems 1.3–1.6

to be StrSens1 is not StrSens0, and vice versa. Indeed, a general principle

(Lemma 5.1) will yield that, if we let Xn denote the number of 1-witnesses

W for which ωW ≡ 1, then having E[Xn] = O(1) precludes StrSens0 (and

similarly for 0-witnesses). At the same time, there can be monotone Boolean

functions that are both StrSens0 and StrSens1, as we demonstrate in §5.

1.3. Organization. The rest of the paper is outlined as follows. In §2 we

provide prerequisites on noise sensitivity. Section 3 demonstrates the use

of strong noise sensitivity towards establishing noise sensitivity, including

the proof of Theorems 1.3 and 1.4. Section 4 looks into the dependencies

between witnesses for a sufficient condition for strong noise sensitivity. This

condition is then applied in the context of containing a given graph in G(n, p)

and in particular towards the proofs of Theorems 1.5 and 1.6. Finally, §5
compares the 0-strong and 1-strong noise sensitivity of a function, as well

as the validity of these properties under varying levels of noise.

2. Preliminaries

This section includes background on noise sensitivity, both for constant

p and when the probabilities p are allowed to vary with n (see, e.g., [11] for

additional information on this topic). We first set some standard notation.

2.1. Notation. Throughout the paper, a sequence of events An is said to

hold with high probability (w.h.p.) if P(An) → 1 as n → ∞. We use the

notation f = Op(g) to denote that the ratio f/g is bounded in probability,

and the analogous f = Θp(g) to denote that f = Op(g) and g = Op(f). At

times we use f � g and f . g to abbreviate f = o(g) and f = O(g), resp.,

as well as the converse form of these. We will often omit the subscript n

from the probabilities pn under consideration in this paper (though these

will typically tend to 0 as n→∞) for simplicity.

2.2. Influences and the pivotal set. The notion of influence, defined

next, is fundamental in the study of noise sensitivity of functions.
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Definition 2.1. Given a Boolean function f from Ω = {0, 1}Λ into {0, 1},
p ∈ (0, 1) and i ∈ Λ, the influence of i at level p is defined to be

Ii(f) = P(f(ω) 6= f(ωi)) (2.1)

where ωi is ω flipped in the i-th coordinate.

(As usual, the above definition implicitly depends on p through P.) The

following theorem of [4] is one of the central results on noise sensitivity.

Theorem 2.2 ([4]). Let pn ≡ p for some fixed 0 < p < 1. If

lim
n→∞

∑
i

Ii(fn)2 = 0 (2.2)

for a sequence of Boolean functions (fn), then (fn) is Sens.

As we will see below, for monotone functions and constant p the converse

is also true, while what occurs when pn → 0 is more subtle.

Consider the random set of pivotal variables defined as

P(ω) := Pf (ω) := {i ∈ Λ : f(ω) 6= f(ωi)}

(Notice P(i ∈ P) = Ii.) The following easy lemma will be used in this paper.

Lemma 2.3. Every monotone Boolean function f satisfies

E[|P| | f = 1] =
p

P(f = 1)
E|P|

Proof. Note that {f(ω) 6= f(ωi)} and {ωi = 1} are independent and so the

left-hand-side of the desired equality is easily seen to be equal to∑
i

P(f(ω) 6= f(ωi) | f = 1) =
∑
i

P(f(ω) 6= f(ωi), ωi = 1)

P(f = 1)
=

p

P(f = 1)
E|P|

where the first equality uses monotonicity and the second equality uses the

earlier stated independence. �

Remark. The above also holds for non-monotone functions when p = 1/2.

We now indicate that the equivalence holding for monotone functions and

constant p between
∑

i Ii(fn)2 = o(1) and Sens in fact fails for varying p

in either direction. Let fn be the indicator function of a random graph

containing a copy of K4 with p = n−2/3. Clearly E[|P| | f = 1] ≤ 6

which by Lemma 2.3 implies that E|P| = O(n2/3). By symmetry, this yields

Ii = O(n−4/3) for each i, which easily yields (2.2), and yet this sequence

is clearly stable. On the other hand, if fn is the indicator function of a

random graph with p = logn
n having minimal degree 1, then {fn} is Sens

(see Theorem 1.4). However, it is easy to verify that E[|P| | f = 0] & n,

which by Lemma 2.3 yields E|P| & n and so
∑

i Ii(fn)2 & 1.
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We will see in the next subsection that asking about the equivalence of∑
i Ii(fn)2 = o(1) and Sens is not really in fact the right question.

2.3. Fourier analysis. Fourier analysis is usually a crucial tool in studying

noise sensitivity. We give a quick presentation of this. From it, one readily

sees some of the basic properties of noise sensitivity.

For a set Λ, ω ∈ {0, 1}Λ and i ∈ Λ, we define

χi(ω) =

{ √
(1− p)/p if ωi = 1 ,

−
√
p/(1− p) if ωi = 0 .

Furthermore, for S ⊆ Λ, let χS(ω) :=
∏
i∈S χi(ω). (In particular, χ∅ is the

constant function 1.) The set {χS}S⊆Λ forms an orthonormal basis for the

set of functions f : {0, 1}Λ 7→ R when the latter is equipped with the inner

product 〈f, g〉 := E[fg] (recall there is always an implicit p when we write

P or E). We can therefore expand such functions f(ω) =
∑

S⊆Λ f̂(S)χS(ω),

where f̂(S) := E[fχS ] is the Fourier-Walsh coefficient of f . Note that f̂(∅)
is the average Ef and by Parseval’s formula E[f2] =

∑
S⊆Λ f̂(S)2. This

orthogonal basis turns out to be an extremely useful one for studying noise

sensitivity, as the following easily verified formula demonstrates:

E[f(ω)f(ωε)] =
∑
S

f̂(S)2(1− ε)|S| . (2.3)

This yields

Cov (fn(ω), fn(ωε)) =
∑
S 6=∅

f̂(S)2(1− ε)|S| .

The following theorem now follows immediately; note importantly how it

shows that if the appropriate covariance goes to 0 for one value of ε, then it

does so for all ε. Note that there is no condition on the sequence (pn).

Theorem 2.4. Let (fn) be a sequence of Boolean functions. Then (fn) is

Sens if and only if any one of the following conditions holds:

(1) For some 0 < ε < 1 we have limn→∞
∑

S 6=∅ f̂n(S)2(1− ε)|S| = 0.

(2) For every 0 < ε < 1 we have limn→∞
∑

S 6=∅ f̂n(S)2(1− ε)|S| = 0.

(3) For every k we have limn→∞
∑

0<|S|<k f̂n(S)2 = 0.

A very useful mnemonic device is the so-called spectral sample S = Sf of

a Boolean function f , defined distributionally by

P(S = S) := f̂(S)2 (S ⊂ Λ) .

The total weight of this distribution is less than 1 (unless f ≡ 1). Note that

the terms in Items (1) and (3) in Theorem 2.4 respectively become

E
[
(1− ε)|Sn|1{S6=∅}

]
and P(0 < |Sn| < k) .
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It turns out that Sens is equivalent to another condition — appearing

perhaps stronger at first glance — according to which for most ω with

fn(ω) = 1, the conditional probability that fn(ωε) = 1 given ω is close

to the unconditional probability.

Proposition 2.5. Let (fn) be a sequence of Boolean functions. Then (fn)

is Sens if and only if any one of the following conditions holds:

(1) [P(fn(ωε) = 1 | ω)− P(fn(ω) = 1)]
p→ 0.

(2) [P(fn(ωε) = 1 | ω)− P(fn(ω) = 1)]1{fn(ω)=1}
p→ 0.

Proof. It is immediate that (1) implies (2). To see that (2) implies Sens as

per (1.1), simply write the expression appearing in the latter equation as∑
ω:fn(ω)=1

[P (fn(ωε) = 1 | ω)− P (fn = 1)]
P(ω)

P (fn = 1)
.

It remains to show that Sens implies (1). It is easy to verify that

Var (P (fn(ωε) = 1 | ω)) =
∑
S 6=∅

f̂n(S)2(1− ε)2|S| .

Therefore, by Theorem 2.4, if (fn) is Sens we can infer that

lim
n→∞

Var(P (fn(ωε) = 1 | ω)) = 0 .

Since E[P (fn(ωε) = 1 | ω)] = P(f(ω) = 1), this immediately gives (1). �

While Theorem 2.4 is quite easy, Theorem 2.2 is much deeper. It turns

out that the converse of Theorem 2.2 with constant p is true for monotone

functions as we now explain. First, for a monotone Boolean function f

mapping into {0, 1}, one can easily check that

f̂({i}) =
√
p(1− p)Ii(f) . (2.4)

This formula together with Theorem 2.4 immediately yields the converse of

Theorem 2.2 for fixed p. This formula also allows us to restate Theorem 2.2

as saying that, for constant p, if the “sum of the squares of the level 1 Fourier

coefficients”
∑
|S|=1 f̂n(S)2 approaches 0, then the sequence in Sens.

We now consider Theorem 2.2 in the context of varying p, in particular

for p tending to 0 with n. As above, for monotone functions, (2.4) and

Theorem 2.4 yield the fact that, for arbitrary (pn), Sens implies

lim
n→∞

p(1− p)
∑
i

Ii(fn)2 = 0 . (2.5)

From this discussion, it follows that the version of Theorem 2.2 that one

might hope for, for arbitrary (pn), is that (2.5) implies Sens; equivalently,

for monotone functions, convergence of the level 1 Fourier coefficients implies

Sens. Unfortunately, this is not true as we saw in the previous subsection
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for the event “containing a K4”. Alternatively, if we let pn = 1/n and

consider the indicator function of containing a triangle, then it is easy to see

that this sequence is not Sens (and in fact noise stable, see this definition

below) although (2.5) is of order 1/n. The stability of the indicator function

fn for containing a triangle implies that limk→∞ supn
∑
|S|≥k f̂n(S)2 = 0. In

addition, in [7] it is shown that for any k 6≡ 0 (mod 3) this fn satisfies

lim
n→∞

∑
|S|=k

f̂n(S)2 = 0 ,

i.e., the Fourier weights are concentrated on levels 0, 3, 6, . . . but stay near

0. (Such a thing cannot occur for monotone functions with constant p.)

We end this subsection by defining the closely related (but opposite) con-

cept to Sens, namely noise stability.

Definition 2.6. The sequence of functions fn : {0, 1}Λn → {0, 1} is noise

stable (Stab) if for any δ > 0 there exists an ε > 0 such that

sup
n

P(fn(ω) 6= fn(ωε)) ≤ δ .

If εn → 0 with n, one can talk about Stab with respect to {εn} in the

obvious way. Note that while StrSens1 and Sens with respect to a sequence

{εn} going to 0 is stronger than ordinary StrSens1 and Sens, Stab with

respect to such a sequence is weaker than ordinary Stab.

2.4. Relation to coarse and sharp thresholds. It is natural to wonder

where the important results in [7] concerning sharp thresholds fall into the

context of this paper. In short, they occur in a very different regime. To

explain this, consider for the moment p = 1/2. There are three common

scenarios that can occur (as well as various combinations).

(1) E|Sn| = O(1).

(2) E|Sn| → ∞ and yet |Sn| is bounded in probability.

(3) For every fixed k we have P(0 < |Sn| < k)→ 0, i.e., (fn) is Sens.

The first scenario occurs for example if fn only depends on a fixed finite

number of variables independent of n. An example where the second sce-

nario occurs is the sequence of majority functions. Similar to (2.5), there is

another relationship between influences and the Fourier picture which does

not require monotonicity. This states that
∑

S f̂(S)2|S| = p(1−p)
∑

i Ii(f),

or equivalently,

E|S| = p(1− p)E|P| (2.6)

(as was established for p = 1/2 in [10]; the case of general p follows similarly).

In [7], results of the form that, if you are in the first scenario, then for

graph properties, the function can be well approximated by functions which
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depend on a fixed number of graphs. Since the context of [7] was p = o(1),

in view of (2.6), the assumptions in [7] are of the form p
∑

i Ii(f) ≤ C.

2.5. Maximum cliques in random graphs. As mentioned above, the

maximum clique of G(n, p) for p = 1/2 concentrates on 1 point for most

values of n, yet for infinitely many values of n it is concentrated on 2 points.

It is for the latter values of n that we have a non-degenerate indicator

function corresponding to the event that we contain a clique of size about

kn ∼ 2 log2 n. We describe here how Theorem 2.2 yields Sens, as was

indicated by Jeff Kahn. Consider the expected size of Pn (the set of pivotal

edges). Since p = 1/2, Lemma 2.3 gives

E|Pn| = 2P(fn = 1)E[|Pn| | fn = 1] .

Hence, for the non-degenerate n we focus on, E|Pn| and E[|Pn| | fn = 1] are

of the same order. Clearly whenever fn = 1 necessarily |Pn| = O(log2 n)

since if there is at least one clique, one can choose such a clique arbitrarily

and then observe that any pivotal edge must belong to it. This shows that

E|Pn| = O(log2 n) and hence the influence of each edge is of order at most

( logn
n )2. Squaring this and multiplying by the number of edges, one obtains

that
∑

i Ii(fn)2 . (log n)4/n2. Since this approaches 0 with n, Theorem 2.2

yields noise sensitivity.

3. From witnesses to noise sensitivity

In this section we relate noise sensitivity to strong noise sensitivity. Via

this connection we prove quantitative versions of Theorems 1.3 and 1.4.

3.1. Strong noise sensitivity. We begin with a straightforward lemma

showing that strong noise sensitivity indeed implies the standard one.

Lemma 3.1. Let (fn) be a non-degenerate sequence of monotone Boolean

functions. If (fn) is StrSens1 then it is noise sensitive. Furthermore,

StrSens1 w.r.t. ε = ε(n)→ 0 implies quantitative Sens w.r.t. the same ε.

Proof. By the definition of noise sensitivity in (1.1), we aim to show that

P (fn(ωε) = 1 | fn(ω) = 1)− P(fn = 1)→ 0

as n → ∞, where ε = ε(n) is allowed to tend to 0 with n. By the FKG

inequality we have P (fn(ωε) = 1 | fn(ω) = 1) ≥ P(fn = 1) and it remains to

provide the corresponding upper bound. Let W1 = {W1, . . . ,Wmn} be the

1-witnesses for fn (arbitrarily ordered), and define the variable J to be

J = min{1 ≤ j ≤ mn : ωWj ≡ 1}
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or ∞ in case fn(ω) = 0. With this notation,

P(fn(ωε) = 1 | fn(ω) = 1) =

mn∑
j=1

P(fn(ωε) = 1 | J = j)P(J = j | fn(ω) = 1)

(3.1)

and again by FKG we see that

P (fn(ωε) = 1 | J = j) ≤ P
(
fn(ωε) = 1 | ωWj ≡ 1

)
since we can condition on {J = j} by first conditioning on {ωWj ≡ 1}
(obtaining a positively associated measure which enjoys the FKG inequality)

and then further conditioning on the decreasing event
⋂
j′<j{ωWj′ 6≡ 1}. The

latter can only decrease the probability of the increasing event {fn(ωε) = 1},
thus the last display is established, and altogether we obtain that

P (fn(ωε) = 1 | fn(ω) = 1) ≤ max
W∈W1

P (fn(ωε) = 1 | ωW ≡ 1) . (3.2)

Subtracting P(fn = 1) and taking n → ∞ now completes the proof by the

definition of StrSens1 in (1.2). �

Remark 3.2. The proof that strong noise sensitivity implies the standard

one in fact required a slightly weaker condition than the one stated in (1.2).

Instead of having maxW [P (fn(ωε) = 1 | ωW ≡ 1)−P(fn = 1)]→ 0, we only

need an expectation over this quantity w.r.t. a certain distribution over the

witnesses (the first W to appear according to some ordering) to vanish.

In particular, Lemma 3.1 remains valid under the analogue of (1.2) for all

witnesses W except some subset W∗1 ⊂ W1 with P(∪W∈W∗1 {ωW ≡ 1})→ 0.

Example (Tribes). Recalling the definition of the tribes function from the

introduction, a 1-witness W ∈ W1 is a full block. Writing

P (fn(ωε) = 1 | ωW ≡ 1) ≤ P
( ⋃
W ′ 6=W

{ωεW ′ ≡ 1}
∣∣∣ ωW ≡ 1

)
+ P (ωεW ≡ 1 | ωW ≡ 1) ,

the last term is equal to (1 − ε/2)|W | → 0 as we have |W | ∼ log2 n → ∞
with n, while the first term on the right hand side is equal to

P
( ⋃
W ′ 6=W

{ωW ′ ≡ 1}
)
≤ P(fn = 1)

since any two distinct witnesses W,W ′ are disjoint and thus {ωW ≡ 1} and

{ωW ′ ≡ 1} are independent. This establishes that

lim sup
n→∞

max
W

[P (fn(ωε) = 1 | ωW ≡ 1)− P(fn = 1)] ≤ 0 ,

and since it is always nonnegative (by a monotonicity argument) we conclude

that the tribes function is StrSens1.
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Example (Recursive majority). Consider first the canonical 1-witness W

for the recursive 3-majority of n = 3k variables (i.e., W repeatedly reveals

the first 2 of the 3 children of a vertex). Recalling that p = 1/2, the quantity

ζεk = P (fn(ωε) = 1 | ωW ≡ 1) (3.3)

is easily seen (by the nature of this recursive definition) to satisfy

ζεk = (ζεk−1)2 + 2ζεk−1(1− ζεk−1)p = ζεk−1 ,

thus ζεk = ζε0 = 1− ε/2 for any k. In particular, recursive 3-majority is not

StrSens1 despite the fact that it is noise sensitive (indeed, it is easy to see

that the influence of a variable is 2−k and so the sum of squared influences

is (3/4)k which vanishes as k →∞, satisfying the BKS criterion for Sens).

We emphasize that for this function not only is P(fn(ωε) = 1 | ωW ≡ 1)

bounded away from P(fn = 1) = 1/2 (enough in itself to preclude StrSens1)

but rather it is 1 − δ(ε) where δ(ε) → 0 with ε. This resembles the notion

of noise stability (where P(fn(ωε) = 1 | fn(ω) = 1) approaches 1 as ε→ 0).

Interestingly, further increasing the size of the majority yields an even

stronger witness dependency. As before P(fn(ωε) = 1 | ωW ≡ 1) ≥ 1− δ(ε),
but instead of δ(ε) = ε/2 (the case for 3-majority) we now have δ(ε) = o(1).

Claim 3.3. Let fn be the recursive 5-majority function on n = 5k levels.

Then for every 0 < ε < 1,

lim
n→∞

inf
W∈W1

P(fn(ωε) = 1 | ωW ≡ 1) = 1 .

Proof. As before, consider the canonical 1-witness W which repeatedly spec-

ifies 3 of 5 children of a vertex, and define ζεk as in (3.3). In this way, condi-

tioned on W the root has 3 children each of which is a Bernoulli(ζk−1) and

2 other children which are Bernoulli(1/2). It is then easy to check that

ζεk = −1

2
(ζεk−1)3 +

3

4
(ζεk−1)2 +

3

4
ζεk−1 ,

and as before ζε0 = 1− ε
2 . Letting

h(x) = −1

2
x3 +

3

4
x2 +

3

4
x (3.4)

we thus have ζεk = h(ζεk−1), and the proof follows from the easily verifiable

facts that h maps [0, 1] to itself with fixed points at {0, 1/2, 1}, out of which

1/2 is a repelling fixed point since h′(1/2) = 9/8 > 1. Hence, ζεk → 1 as long

as ζε0 > 1/2, which is indeed the case by the hypothesis 0 < ε < 1. �

We note in passing that the analogue of Claim 3.3 for noise sensitivity

(rather than strong noise sensitivity) is not possible for any non-degenerate

sequence (fn), since Cov(fn(ω), fn(ωε)) ≤ 1− g(ε) for g(ε) & ε.
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3.2. Quantitative noise sensitivity for cycles at criticality. In this

section we prove the following stronger form of Theorem 1.3, offering a more

detailed examination of the phase transition for noise sensitivity around the

point where the noise parameter ε is of order n−1/3.

Theorem 3.4. Fix 0 < a < b and let fn be the property that G(n, p) with

p = (1 + O(n−1/3))/n contains a cycle of length ` ∈ (an1/3, bn1/3). Then

(fn) is non-degenerate and according to the noise parameter ε(n) we have:

(i) If ε� n−1/3 then (fn) is Sens and furthermore StrSens1 w.r.t. ε.

(ii) If ε� n−1/3 then (fn) is Stab w.r.t. ε.

(iii) If ε � n−1/3 then (fn) is neither Sens w.r.t. ε nor Stab w.r.t. ε.

Proof. Let G ∼ G(n, p) and let ω denote its edge configuration (i.e., ωuv is

set to 1 if the edge uv is present in G and it is 0 otherwise). Let λ1, λ2 > 0

be such that 1− λ1n
−1/3 ≤ np ≤ 1 + λ2n

−1/3 for all n and let X` count the

number of cycles of length ` in G. Put I = (an1/3, bn1/3) and define

X =
∑
`∈I

X` = #{W ∈ W1 : ωW ≡ 1} .

As the number of potential cycles notwithstanding automorphisms in G

(that is, the cardinality of W1) is 1
2

(
n
`

)
(`− 1)! we see that EX` ∼ (np)`/(2`)

uniformly over ` ∈ I and so

(1− o(1))e−λ1b ≤ EX
1
2 log(b/a)

≤ (1 + o(1))eλ2b . (3.5)

At this point, the FKG inequality immediately implies that

P(X = 0) ≥
∏
`∈I

(
1− p`

) 1
2(n`)(`−1)! ≥ e−(1−o(1))EX , (3.6)

(where the second inequality used the fact that 1−x = e−(1+o(1))x as x→ 0)

which is bounded away from 0 thanks to (3.5).

Next, we examine Var(X). For any two cycles W 6= W ′, let κ(W,W ′)

count the number of nontrivial connected components in the intersection of

the edges of W and W ′ (each of which is a simple path), and define

ζm :=
∑

W,W ′∈W1

κ(W,W ′)=m

P (ωW ≡ 1 , ωW ′ ≡ 1)

for each m ≥ 1. With this notation,

Var(X) ≤ EX +
∑
m≥1

ζm ,

prompting the task of estimating the ζm’s. In what follows, let `, `′ run over

the potential lengths of W,W ′, resp., while s will run over the total number
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of edges in the intersection of W and W ′. We then have

ζm ≤
∑
`∈I

∑
`′∈I

∑
m≤s<`

(
s

m− 1

)
(2``′)m

n`p`

2`

n`
′−(s+m)p`

′−s

2`′
,

where the first term accounts for the partitioning of the s total edges into

the m intersection paths (with room to spare), the second one accounts for

selecting the paths within W (starting point and direction per path) as well

as their position within W ′, and the final two terms correspond to selecting

W and W ′ with this intersection pattern. The fact that np ≤ 1 + λ2n
−1/3

translates into having (np)`+`
′−s < C for C = e2bλ2 , thus

ζm ≤
C

2n

∑
`

∑
`′

∑
s

(2``′s/n)m−1

(m− 1)!
≤ C

2
(b− a)2b

(2b3)m−1

(m− 1)!
.

and ∑
m≥1

ζm ≤
C

2
(b− a)2be2b3 = O(1) .

In particular we get that E[X2] = O(1).

An immediate consequence of Cauchy-Schwarz is that any non-negative

random variable X satisfies P(X > 0) ≥ (EX)2/E[X2], thus in particular

P(X > 0) is bounded away from 0. Combining this with (3.6), it now follows

that (fn) is non-degenerate.

We note in passing that already ζ1 is uniformly bounded away from 0 (as

it is apparent from the above that ζ1 ≥ (1
2 − o(1))(b−a)2a for instance) and

consequently the limiting distribution of X is not Poisson.

• Noise sensitivity iff ε� n−1/3:

The strong noise sensitivity of (fn) when ε � n−1/3 will be derived from a

calculation akin to the second moment analysis given above, yet this time it

will incorporate the noise in the following prominent way. For any W ∈ W1

of some length `, define

ζ ′m :=
∑

W ′∈W1
κ(W,W ′)=m

P (ωεW ′ ≡ 1 | ωW ≡ 1) .

By the same line of arguments presented above for ζm we have

ζ ′m ≤
∑
`′

∑
s

(
s

m− 1

)
(2``′)m

n`
′−(s+m)p`

′−s

2`′
(1− ε(1− p))s

≤ C`

n

∑
`′

∑
s

(2``′s/n)m−1

(m− 1)!
(1− ε(1− p))s ,

again using the fact that (np)`
′−s < C for C = eλ2b. Thanks to the crucial

last term, accounting for the probability of retaining the s edges in the
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intersection paths, it follows that

ζ ′m ≤
Cb(b− a)

n1/3

(2b3)m−1

(m− 1)!

∑
s

(1− ε(1− p))s

≤ Cb(b− a)

n1/3ε(1− p)
(2b3)m−1

(m− 1)!
,

and so ∑
m≥1

ζ ′m ≤
Cb(b− a)e2b3

n1/3ε(1− p)
= O

(
1

εn1/3

)
. (3.7)

In particular, when ε� n−1/3 (Part (i)) we can infer that
∑

m≥1 ζ
′
m = o(1).

To deduce that (fn) is StrSens1 in this case, argue as follows. Partitioning

W1 = {W}∪W ′1∪W ′′1 whereW ′1 := {W ′ : κ(W,W ′) > 0} (andW ′′1 contains

cycles that are edge-disjoint from W , thus independent) gives

P(fn(ωε) = 1 | ωW ≡ 1) ≤ P
( ⋃
W ′∈W ′1

{ωεW ′ ≡ 1}
∣∣∣ ωW ≡ 1

)

+ P
( ⋃
W ′′∈W ′′1

{ωεW ′′ ≡ 1}
∣∣∣ ωW ≡ 1

)
+ P (ωεW ≡ 1 | ωW ≡ 1) .

By the definition of ζ ′m and Eq. (3.7) in the case of ε� n−1/3,

P
( ⋃
W ′∈W ′1

{ωεW ′ ≡ 1}
∣∣∣ ωW ≡ 1

)
≤
∑
m≥1

ζ ′m = o(1) ,

while clearly

P
( ⋃
W ′′∈W ′′1

{ωεW ′′ ≡ 1}
∣∣∣ ωW ≡ 1

)
= P

( ⋃
W ′′∈W ′′1

{ωW ′′ ≡ 1}
)
≤ P(fn = 1)

and

P (ωεW ≡ 1 | ωW ≡ 1) = (1− ε(1− p))` ≤ e−ε(1−p)an1/3
= o(1)

again thanks to the assumption that ε� n−1/3. Altogether, this yields

P(fn(ωε) = 1 | ωW ≡ 1) ≤ P(fn = 1) + o(1) ,

thus establishing that (fn) is StrSens1 when ε� n−1/3.

We will now show that (fn) is not Sens w.r.t. ε whenever ε = O(n−1/3),

to which end we will appeal to the Fourier representation described in §2.

The first observation, using Lemma 2.3, is that the set of pivotals Pn satisfies

E|Pn| = p−1P(fn = 1)E[|Pn| | fn = 1] ≤ p−1bn1/3 ,

where the last inequality relied on the fact that given that there exists some

cycle C` with ` ∈ I in G, every pivotal edge must in particular belong to
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C` and so there can be at most ` ≤ bn1/3 such edges. By (2.6), the spectral

sample Sn satisfies

E|Sn| = p(1− p)E|Pn| ≤ bn1/3 ,

which will rule out noise sensitivity for (fn) w.r.t. ε by a standard argument.

As we have established above that (fn) is non-degenerate, let θ < 1 be some

constant such that P(fn = 1) < θ for any sufficiently large n, and set

M = 2b/(1− θ) .

Since P(Sn = ∅) = P(fn = 1) < θ while P(|Sn| > Mn1/3) ≤ (1 − θ)/2 by

Markov’s inequality, we deduce that

P
(

0 < |Sn| < Mn1/3
)
> 1− θ − 1− θ

2
=

1− θ
2

,

and in particular this probability is bounded away from 0. Due to the

hypothesis ε = O(n−1/3), we further have

(1− ε)|Sn|1{0<|Sn|<Mn1/3} ≥ e
−(1−o(1))εMn1/3 ≥ c

for some fixed c > 0, and altogether we obtain that

lim inf
n→∞

Cov (fn(ω), fn(ωε)) = lim inf
n→∞

E
[
(1− ε)|Sn|1{Sn 6=∅}

]
> 0 ,

i.e., (fn) is not Sens w.r.t. ε in this regime.

• Noise stability iff ε = o(n−1/3):

Let ω be any configuration corresponding to a graph for which fn = 1, where

by definition there exists some cycle W of length ` ∈ (an1/3, bn1/3) such that

ωW ≡ 1. Under the assumption ε � n−1/3 we have that P(ωεW ≡ 1 | ω) ≥
1 − εbn1/3 = 1 − o(1). In other words, for any ω such that fn(ω) = 1 we

have P (fn(ωε) = 1 | ω) = 1− o(1), implying that (fn) is Stab w.r.t. ε.

To see that (fn) is not Stab w.r.t. ε whenever ε & n−1/3, observe first

that if W corresponds to a cycle of length ` ∈ I then

P (ωεW 6≡ 1 | ωW ≡ 1) = 1− (1− ε(1− p))` ≥ c0

for some fixed c0 > 0 which depends on a as well as the implicit constant

in the assumption ε & n−1/3. At the same time, with the same notation as

above,

P
( ⋂
W ′′∈W ′′1

{ωεW ′′ 6≡ 1}
∣∣∣ ωW ≡ 1

)
≥ P(fn = 0) > c1
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for some fixed c1 > 0 thanks to the above established fact that (fn) is

non-degenerate, whereas by FKG

P
( ⋂
W ′∈W ′1

{ωεW ′ 6≡ 1}
∣∣∣ ωW ≡ 1

)
≥

∏
W ′∈W ′1

P
(
ωεW ′ 6≡ 1

∣∣∣ ωW ≡ 1
)

≥ e−(1−o(1))
∑
m≥1 ζ

′
m ≥ c2

for some fixed c2 > 0 which depends on a, b and the constant in the hypoth-

esis ε & n−1/3 as specified in (3.7). Combining the last three inequalities,

again by virtue of FKG, we deduce that

P (fn(ωε) = 1 | ωW ≡ 1) ≤ 1− c0c1c2 ,

which by Eq. (3.2) implies that P (fn(ωε) = 1 | fn(ω) = 1) is bounded away

from 1, precluding noise stability.

This completes the proof. �

Remark 3.5. One can construct a function which exhibits a phase transi-

tion at the critical window of G(n, p), and yet not only is a noise of ε� n−1/3

(effectively moving ωε to the subcritical degenerate regime and then back

into the critical window) insufficient for decorrelating fn(ω), fn(ωε), neither

does any fixed ε > 0. The following example demonstrates this.

For some constants 0 < a < b to be determined below, let fn the property

that the largest component of G, denoted by C1, either satisfies |C1| > bn2/3,

or alternatively an2/3 < |C1| ≤ bn2/3 while G further contains a triangle.

Clearly, P(fn = 1) = o(1) when G ∼ G(n, p) for p = (1 − ξ)/n with

ξ � n−1/3 as in that case |C1| = o(n2/3), whereas P(fn = 1) = 1−o(1) when

p = (1+ ξ)/n for the same ξ since |C1| then concentrates around 2ξn� n2/3

(see, e.g., [6, Chapter 6] and [9, Chapter 5]).

At p = (1 ± ξ)/n for ξ = O(n−1/3) the sequence (fn) is non-degenerate.

An immediate way to ensure this would be to select a sufficiently small

and b sufficiently large. Indeed, it is well-known that |C1|/n2/3 converges

in probability to a nontrivial distribution with full support on R+, and

in particular for any small δ > 0 we can select a sufficiently small and b

sufficiently large so that P(a < |C1|n−2/3 < b) > 1 − δ. On this event, fn
identifies with the property gn of containing a triangle, which is known to

be noise stable. In particular,

P (fn(ωε) = fn(ω)) ≥ P (gn(ωε) = gn(ω))− 2δ ≥ 1− δ′

for some δ′(ε, a, b) which can be made arbitrarily small for suitable ε, a, b.

This precludes the noise sensitivity of fn for any fixed ε > 0, as claimed.

We note in passing that fn satisfies
∑

x f̂n(x)2 = O(n−2/3) = o(1), i.e.,

the BKS criterion for Sens is met, and nevertheless (fn) is not Sens.
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3.3. Quantitative noise sensitivity for minimum degree. Analogously

to the previous section, here we prove a stronger version of Theorem 1.4,

which addresses the noise stability vs. sensitivity at the critical noise level.

Theorem 3.6. Let fn be the property that the minimum degree of G(n, p)

is at least k for some fixed k ≥ 1, and suppose p = p(n) is such that (fn) is

non-degenerate. The following holds depending on the noise parameter ε(n):

(i) If ε� 1
logn then (fn) is Sens and furthermore StrSens0 w.r.t. ε.

(ii) If ε� 1
logn then (fn) is Stab w.r.t. ε.

(iii) If ε � 1
logn then (fn) is neither Sens w.r.t. ε nor Stab w.r.t. ε.

Moreover, the classification into Sens w.r.t. ε in (i), Stab w.r.t. ε in (ii)

or neither in (iii) holds for all graph properties listed in Theorem 1.4.

Proof. Let G ∼ G(n, p) and let ω denote its edge configuration. Fix k ≥ 1

and let Dn be the graphs (or corresponding configurations ω) with minimum

degree at least k, so that fn(ω) = 1{ω∈Dn}. The assumption that (fn) is

non-degenerate is well-known (see, e.g., [6, 9]) to correspond to

p =
log n+ (k − 1) log log n+O(1)

n
. (3.8)

Consider first the range 1
logn � ε < 1. In this regime, we wish to compare

P(ωε ∈ Dc
n | ωW ≡ 0) to P(ω ∈ Dc

n) for any 0-witness W for Dn. Clearly,

such a 0-witness W is precisely a set of n − k edges incident to a vertex.

Denoting the vertices by v1, v2, . . . , vn, assume without loss of generality

that this W consists of the edges {v1vi : i = 2, . . . , n − k + 1}. By the

symmetry of witnesses, it is enough to show that for each ε > 0,

lim inf
n→∞

P (ωε ∈ Dn | ωW ≡ 0)− P (ω ∈ Dn) ≥ 0 . (3.9)

Let An be the event that the induced subgraph on the vertices {v2, . . . , vn}
has minimum degree at least k. We claim that

lim inf
n→∞

P(ω ∈ An)− P(ω ∈ Dn) ≥ 0 . (3.10)

(The limit is in fact 0 but that will not be needed.) It suffices to show that

lim
n→∞

P(ω ∈ Acn ∩Dn) = 0 .

Any graph in Acn∩Dn has some vertex vi with 2 ≤ i ≤ n such that the degree

of vi is precisely k and v1vi is an edge. By a union bound, the probability

that ω satisfies the latter is at most

(n− 1)

(
n− 2

k − 1

)
pk(1− p)n−1−k ≤ (np)ke−p(n−1−k) .

log n

n
= o(1) ,

having plugged in the expression for p from (3.8). This establishes (3.10).
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Next, let Bn be the set of graphs where the degree of v1 is at least k. We

claim that

lim
n→∞

P (ωε ∈ Bn | ωW ≡ 0) = 1 . (3.11)

Indeed, if Cn is the set of graphs where v1 is isolated then P(ω ∈ · | ωW ≡ 0)

stochastically dominates P(ω ∈ · | ω ∈ Cn). Thus, as Bn is increasing, by

FKG we have

P (ωε ∈ Bn | ωW ≡ 0) ≥ P (ωε ∈ Bn | ω ∈ Cn) = P (Bin(n− 1, εp) ≥ k) .

(3.12)

Since p ∼ logn
n and ε � 1

logn , the above binomial variable concentrates on

(n−1)εp� k, hence the last expression is 1−o(1). This demonstrates (3.11).

To put it all together, observe that

P (ωε ∈ Dn | ωW ≡ 0) ≥ P (ωε ∈ An ∩Bn | ωW ≡ 0)

= P (ωε ∈ An | ωW ≡ 0)P (ωε ∈ Bn | ωW ≡ 0) ,

since the events An and Bn are (conditionally) independent. Plugging

in (3.11) and using the independence of {ωε ∈ An} and {ωW ≡ 0} we

conclude that

P (ωε ∈ Dn | ωW ≡ 0) ≥ P (ωε ∈ An)− o(1) ,

and the required inequality (3.9) now follows from (3.10) and completes the

proof of Part (i).

For Part (ii) consider any ω ∈ Dc
n, whereby the corresponding graph

G contains some vertex vi of degree less than k. Since ε = o(1/ log n),

the probability that the degree of vi increases due to the noise is at most

(n−1)εp = o(1), and so P (ωε ∈ Dc
n | ω) = 1−o(1). Translating this in terms

of fn, for any ω such that fn(ω) = 0 we have P (fn(ωε) = 0 | ω) = 1− o(1),

which establishes noise stability w.r.t. ε.

We next proceed to Part (iii), addressing the critical regime of ε � 1
logn .

To show (fn) is not Stab w.r.t. ε, note first that the binomial variable in the

right-hand-side of (3.12) is now approximately Poisson with mean bounded

away from 0 and∞, implying (by the same line of arguments as above) that

P (ωε ∈ Dn | ωW ≡ 0) ≥ δP(ω ∈ Dn)

for some fixed δ > 0 and all n, or equivalently,

P (ωε ∈ Dc
n | ωW ≡ 0) ≤ 1− δP(ω ∈ Dc

n) .

Appealing to Eq. (3.2) from the proof of Lemma 3.1, and using the symmetry

of 0-witnesses, we now deduce that

P (fn(ωε) = 0 | fn(ω) = 0) ≤ 1− δP(fn = 0) ,

which precludes noise stability w.r.t. ε as (fn) is non-degenerate.
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To rule out noise sensitivity for ε � 1
logn , as in the proof of Theorem 3.4

we appeal to the Fourier representation of fn(ωε). For any ω such that

fn(ω) = 0, an edge uv can only be pivotal if every w 6= u, v has degree

at least k in ω. Moreover, if both u, v have degree k − 1 in ω then this

would be the unique pivotal edge, and otherwise |Pn| = n−k. In particular,

using (2.6) and Lemma 2.3, we see that

E|Sn| = p(1− p)E|Pn| = pP(fn = 0)E[|Pn| | fn = 0] ≤ (1 + o(1)) log n .

As (fn) is non-degenerate by hypothesis, let θ < 1 be some constant such

that P(fn = 1) < θ for large enough n, and set M = 2/(1 − θ). Since the

spectral sample Sn satisfies P(Sn = ∅) = P(fn = 1), Markov’s inequality

implies that

P (0 < |Sn| < M log n) > 1− θ − 1− θ
2
− o(1) =

1− θ
2
− o(1) .

Consequently, when ε = O(1/ log n) there exists some c > 0 such that

(1− ε)|Sn|1{0<|Sn|<M logn} ≥ e−(1−o(1))εM logn ≥ c > 0 ,

and so

lim inf
n→∞

Cov (fn(ω), fn(ωε)) = lim inf
n→∞

E
[
(1− ε)|Sn|1{Sn 6=∅}

]
> 0 ,

i.e., (fn) is not Sens w.r.t. ε in this regime.

Finally, it remains to extend the classification of either Sens or Stab

w.r.t. ε to the graph properties listed in Theorem 1.4. To this end, recall the

well-known facts (see [3,6,9]) that each such property (gn) is asymptotically

equal to the property (fn) of having minimum degree at least k (for an

appropriate k), in the sense that limn→∞ P(fn 6= gn) = 0. It is elementary

that if (fn) is noise sensitive (noise stable) and (gn) is asymptotically equal

to (fn) then (gn) is noise sensitive (noise stable), since

|E[fn(ωε)fn(ω)]− E[gn(ωε)gn(ω)]| ≤ 2P(fn 6= gn) ,

thus translating the quantitative statements on (fn) to (gn), as required. �

Remark 3.7. As an alternative way to obtain Theorem 1.4, one could

appeal to [15, Theorem 1.8] and present a randomized algorithm for the

event “minimum degree at least k” whose probability of querying any given

edge tends to 0. This would imply a quantitative noise sensitivity result,

albeit weaker than the sharp one obtained above.

4. Noise sensitivity of witness-transitive functions

Let f be a monotone Boolean function on a domain Ω. We say that f is

1-witness-transitive if the set of automorphisms of f (the set of permutations

π on Ω under which f is invariant, i.e., f ≡ f ◦ π) is such that for any two
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witnesses W,W ′ ∈ W1(f) there exists an automorphism of f mapping W to

W ′. That is to say, any two 1-witnesses for f are equivalent.

For instance, the classical examples for noise sensitive functions which

were mentioned in the introduction, tribes and recursive majority, are both

1-witness-transitive, as is the property of containing an unlabeled copy of a

certain graph H in a random graph G ∼ G(n, p).

4.1. A Poissonization tool for strong noise sensitivity. Our goal in

this section is the prove a sufficient condition for strong noise sensitivity

of 1-witness-transitive functions. This condition will be in the form of a

Poisson approximation of the total number of such copies, as stated next.

Proposition 4.1. Let (fn) be a sequence of 1-witness-transitive monotone

Boolean functions. Let W? = W?(n) be a canonical 1-witness for fn, and

suppose that (1−pn)|W?| → ∞ with n. Let Xn =
∑

W∈W1(fn) 1{ωW≡1} count

the occurring 1-witnesses, and assume that for some λ ∈ R+ we have:

lim
n→∞

E[Xn] = λ and lim
n→∞

Var(Xn) = λ , (4.1)

lim
n→∞

E [Xn | ωW? ≡ 0] = λ . (4.2)

Then Xn
d→ Po(λ) as n → ∞ and (fn) is Sens and moreover StrSens1.

Furthermore, quantitative Sens (as well as StrSens1) holds w.r.t. ε(n) iff

ε� [(1− pn)|W?|]−1 . (4.3)

Proof. The fact that the Xn converges in distribution to a Poisson random

variable under the given assumptions follows from a standard application of

the Chen-Stein method (see, e.g., [2, Theorem 1] and [9, Theorem 6.24]).

Indeed, writing IW = 1{ωW≡1} for W ∈ W1 we see that P(IW ) = p|W | = o(1)

thanks to the assumption (1−p)|W?| → ∞. As these indicators are positively

related by FKG, we can invoke a simplified form of the Chen-Stein method

(see [9, Theorem 6.24]), at which point the assumptions (4.1) imply that

‖Xn − Po(λ)‖tv ≤
Var(Xn)

E[Xn]
− 1 + 2 max

W∈W1

P(IW ) = o(1) .

Linking the above to strong noise sensitivity will be achieved by the next

key definition, which we phrase for general monotone Boolean functions (not

necessarily witness-transitive) as it may be of independent interest.

Definition 4.2. A sequence (fn) of monotone increasing Boolean functions

is said to be 1-witness-disjoint if

lim
n→∞

max
W∈W1

P
( ⋃
W ′∈W1\{W}
W ′∩W 6=∅

{ωW ′ ≡ 1}
∣∣∣ ωW ≡ 1

)
= 0 .
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Note that the above condition would trivially hold if every pair of distinct

1-witnesses were disjoint (as is the case for instance for the tribes function,

where the 1-witnesses are full blocks). In a sense, Definition 4.2 provides

an approximation to such a situation, which, as we show next, is powerful

enough to imply (quantitative) strong noise sensitivity.

Lemma 4.3. Let (fn) be a sequence of monotone Boolean functions that is

1-witness-disjoint. Let ε(n) be such that ε(1− pn)`n →∞ with n, where `n
is the minimum size of a 1-witness for fn. Then (fn) is StrSens1 w.r.t. ε.

Proof. Thanks to our assumption on ε we have that for any 1-witness W ,

P (ωεW ≡ 1 | ωW ≡ 1) = (1− ε(1− p))|W | ≤ e−ε(1−pn)`n = o(1) ,

and therefore

P(fn(ωε) = 1 | ωW ≡ 1) = P
( ⋃
W ′∈W1

{ωεW ′ ≡ 1}
∣∣∣ ωW ≡ 1

)

≤ P
( ⋃
W ′∈W1\{W}

{ωεW ′ ≡ 1}
∣∣∣ ωW ≡ 1

)
+ o(1) .

(4.4)

Define the events An and Bn by

An =
⋃

W ′∈W1
W ′∩W=∅

{ωεW ′ ≡ 1} , Bn =
⋃

W ′∈W1\{W}
W ′∩W 6=∅

{ωεW ′ ≡ 1} .

Of course, P(An | ωW ≡ 1) ≤ P(fn = 1) as the events An and {ωW ≡ 1} are

mutually independent, and together with (4.4) this yields

P(fn(ωε) = 1 | ωW ≡ 1)− P (fn = 1) ≤ P (Bn | ωW ≡ 1) + o(1) . (4.5)

Next, since the distribution of ωε conditioned on ωW ≡ 1 is stochastically

dominated by the distribution of ω conditioned on ωW ≡ 1,

P (Bn | ωW ≡ 1) ≤ P
( ⋃
W ′∈W1\{W}
W∩W ′ 6=∅

{ωW ′ ≡ 1}
∣∣∣ ωW ≡ 1

)
.

Now take a supremum over W ∈ W1, under which the final expression goes

to 0 by Definition 4.2. Combined with (4.5), this concludes the proof. �

Returning to the setting of Proposition 4.1, we claim that under the

hypotheses EXn → λ and E[Xn | ωW? ≡ 0] → λ given there, the extra

assumption Var(Xn)→ λ in (4.1) is equivalent to having

lim
n→∞

∑
W∈W1\{W?}
W∩W? 6=∅

P (ωW ≡ 1 | ωW? ≡ 1) = 0 . (4.6)
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As per Definition (4.2), this would imply (thanks to the witness-transitivity)

that (fn) is 1-witness-disjoint, and in light of Lemma 4.3 we will thereafter

arrive at strong noise sensitivity w.r.t. ε assuming ε � [(1 − pn)|W?|]−1.

Indeed, this equivalence is seen by expanding EX2
n = EXn + Γ + ∆ where

Γ =
∑

W,W ′∈W1

W ′∩W=∅

P (ωW ≡ 1 , ωW ′ ≡ 1) , ∆ =
∑

W 6=W ′∈W1

W ′∩W 6=∅

P (ωW ≡ 1 , ωW ′ ≡ 1) .

The expression for Γ, which is clearly at most (EXn)2, can be rewritten by

virtue of the independence of W,W ′ and the witness-transitivity as∑
W∈W1

P(ωW ≡ 1)
∑

W ′∈W1
W∩W ′=∅

P(ωW ′ ≡ 1) = E[Xn]E[Xn | ωW? ≡ 0] ,

which is at least (1 − o(1))λ2 by the aforementioned hypotheses. At this

point, Var(Xn)→ λ if and only if ∆→ 0, and yet by the witness-transitivity,

∆ = E[Xn]
∑

W∈W1\{W?}
W∩W? 6=∅

P (ωW ≡ 1 | ωW? ≡ 1) .

This completes the argument for StrSens1 whenever ε� [(1− pn)|W?|]−1.

In the regime ε . (1 − pn)|W?|, the sequence (fn) will not be Sens,

by the same Fourier argument given in the previous section: As before,

E[|Pn| | fn = 1] ≤ |W?| since we can take an arbitrary witness W that

occurs in a configuration for which fn = 1 and note that every pivotal edge

must then belong to W . It then follows that E|Sn| ≤ (1− pn)|W?|, thus for

ε . [(1− pn)|W?|]−1 we have lim infn→∞Cov(fn(ω), fn(ωε)) > 0 due to the

Fourier levels 0 < |Sn| < M(1− pn)|W?| for a suitable constant M > 0. �

Example (Tribes). We have seen in the previous section that the tribes

function is StrSens1 by a direct analysis of P(fn(ωε) | ωW ≡ 1)−P(fn = 1).

We will now derive this fact via an immediate application of Proposition 4.1.

Let m = log2 n− log2 log2 n denote the block size in fn (as usual, divisibility

issues can be solved by ignoring one exceptional block; we omit floors and

ceilings for brevity), and note that a canonical 1-witness W? consists of

a full block and so (1 − pn)|W?| � m → ∞. Moreover, Xn is simply a

Bin(n/m, 2−m) random variable, thus both E[Xn]→ 1 and Var(Xn)→ 1 as

n → ∞, while under the conditioning ωW? ≡ 0, the variable Xn becomes a

Bin(n/m−1, 2−m) variable, whose mean again converges to 1 as n→∞. The

conditions of Proposition 4.1 are thus met, yielding that (fn) is StrSens1.

Furthermore, it is such iff ε� 1/m while it is not Sens for ε = O(1/m).

Remark 4.4. It is easily seen from the proof of the above proposition that

in order to conclude (quantitative) strong noise sensitivity without making
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any claim on the limiting distribution of Xn, the conditions (4.1) and (4.2)

may be replaced by

0 < lim inf
n→∞

E[Xn] ≤ lim sup
n→∞

E[Xn] <∞ , (4.7)

lim
n→∞

∣∣Var(Xn)− E[Xn]
∣∣ = 0 , (4.8)

lim
n→∞

∣∣E[Xn]− E [Xn | ωW? ≡ 0]
∣∣ = 0 . (4.9)

Under these assumptions, (fn) is non-degenerate thanks to FKG (bounding

P(X = 0) away from 0) and Cauchy-Schwarz (bounding P(X > 0) away from

0) as in the proof of Theorem 3.4. Following the proof of Proposition 4.1

we see that, as E[Xn] = O(1), conditions (4.8) and (4.9) yield ∆→ 0, from

which point the original argument completes the proof.

As an immediate corollary of the results proved above, we get the following

sufficient condition for strong noise sensitivity of containing an unlabeled

copy of a graph in the Erdős-Rényi random graph.

Corollary 4.5. Let G ∼ G(n, p) and let Hn be a graph with k �
√
n vertices

and `� 1/(1− p) edges. Let fn = 1{Xn>0} where Xn counts the number of

unlabeled copies of Hn in G, and suppose that

0 < lim inf
n→∞

E[Xn] ≤ lim sup
n→∞

E[Xn] <∞ ,

lim
n→∞

∣∣Var(Xn)− E[Xn]
∣∣ = 0 .

Then (fn) is Sens and moreover StrSens1. Furthermore, quantitative

StrSens1 holds if ε� [(1− p)`]−1 and otherwise (fn) is not Sens w.r.t. ε.

Proof. Appealing to Proposition 4.1, with the canonical witness W? being a

copy of Hn, we see that (4.7),(4.8) and the fact that (1− pn)|W?| → ∞ are

explicitly assumed. For the final condition (4.9) in Remark 4.4, note that

E[Xn] =
(
n
k

)
p`k!/ aut(Hn) where aut(Hn) is the size of the automorphism

group of Hn, while E[Xn | ωW? ≡ 0] ≥
(
n−k
k

)
p`k!/ aut(Hn) ∼ E[Xn] thanks

to the hypothesis that k �
√
n, as desired. �

4.2. Noise sensitivity for cliques. This section is devoted to the noise

sensitivity of cliques of any size 1� kn = no(1) in the random graph G(n, p),

corresponding to the maximum cliques for n−o(1) ≤ p ≤ 1− n−o(1).

Proof of Theorem 1.5. The statement of the theorem will follow from

Corollary 4.5 via the standard second moment analysis which implies the

2-point concentration of the clique number kn of G(n, 1/2), generalized to

the case of 1 � kn = no(1). An outline of this second moment calculation

for p = 1/2 is given in [1,6], and here we provide the full details for the sake

of completeness.
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Let Xk = Xk(n) count the number of cliques of size k = kn in G ∼ G(n, p),

and note that EXk =
(
n
k

)
p(
k
2) can be assumed to be bounded away from 0, as

otherwise P(Xk = 0) = 1−o(1) and so the sequences kn, pn would correspond

to a degenerate sequence (fn) countering the hypothesis of the theorem.

In order to estimate the variance of Xk, as usual write Var(Xk) ≤ EXk+∆

for ∆ =
∑

H1,H2
P(H1 ⊂ G, H2 ⊂ G), where the summation runs over all

pairs of potential k-cliques H1 6= H2 that have some edges in common. We

claim that the required result would follow from showing that

∆ = o
(
(EXk)

2
)
. (4.10)

Indeed, suppose that EXk → ∞ with n. In this case (4.10) implies that

Var(Xk)� (EXk)
2, thus by Chebyshev’s inequality Xk concentrates about

its mean and in particular P(Xk > 0) = 1−o(1), contradicting the hypothesis

that (fn) is non-degenerate. We thus have that EXk is bounded away from 0

and∞ for any sufficiently large n, and a closer look at EXk ∼ (np(k−1)/2)k/k!

reveals that this can only occur if

p = n−(2+o(1))/k . (4.11)

Hence, either k = O(log n), in which case p is bounded away from 1 and

in particular the number of edges ` =
(
k
2

)
satisfies ` � 1/(1 − p), or we

have k � log n and then (1 − p)−1 = O(k/ log n) = o(k2), again satisfying

the condition `� 1/(1− p) in Corollary 4.5. Finally, it follows from (4.10)

that |E[Xk]−Var(Xk)| → 0 and the mentioned corollary now provides the

required statement on the strong noise sensitivity of (fn). Furthermore, we

obtain that quantitative (strong) noise sensitivity holds iff ε� [(1−p)k2]−1.

A classical fact worth reiterating is that for p as given in (4.11), and

writing ψj = E[Xj+1]/E[Xj ], one has ψj = pj(n− j)/(j + 1), thus the map

j 7→ EXj (starting at EX1 = n) is unimodal and for j ∼ k it satisfies that

ψj = n−1+o(1). By the discussion above, this yields the 2-point concentration

of the clique number, and moreover a 1-point concentration except for those

rare values of n when, e.g., the first EXj to drop below 1 (say) is still

bounded away from 0. These are precisely the non-degenerate cases.

To obtain (4.10), one breaks ∆ down into ∆ =
∑k−1

i=2 ∆i according to i,

the number of common vertices between H1, H2 (at least 2 to accommodate

a common edge and less than k to keep the cliques distinct), obtaining that

∆i =

(
n

k

)(
k

i

)(
n− k
k − i

)
p2(k2)−(i2) .

Fix any arbitrary 0 < δ < 1
2 and let

α := (1 + δ)
log n

log(1/p)
, β := (2− δ) log(n/k2)

log(1/p)
,
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noting that α < β for large enough n since k = no(1). It is now easy to see

that for any i ≤ β we have

∆i

(EXk)2
=

(
k
i

)(
n−k
k−i
)(

n
k

)
p(

i
2)
≤ 1 + o(1)

i!

[
k2

np(i−1)/2

]i
≤ 1 + o(1)

i!

(
k2

n

)δi/2
,

where the first inequality holds for k �
√
n and the second one for i ≤ β.

It then follows that ∑
2≤i≤β

∆i

(EXk)2
≤ n−δ+o(1) = o(1) ,

and we now proceed to handle the remaining ∆i’s (with some overlap). Since

EXk is bounded away from 0 we see that for any α ≤ i < k,

∆i

(EXk)2
.

∆i

EXk
=

(
k

i

)(
n− k
k − i

)
p(
k
2)−(i2) ≤

(
k(n− k)pi

)k−i
((k − i)!)2 ≤

(
kn−δ

)k−i
,

with the last inequality stemming from the fact that i ≥ α. In particular,∑
α≤i≤k−1

∆i

(EXk)2
≤ n−δ+o(1) = o(1) ,

and as α < β this establishes (4.10), completing the proof. �

In the special case where the sequence of probabilities p(n) is such that

E[Xk] → λ for some fixed λ > 0, (i.e.,
(
n
k

)
p(
k
2) converges), the above proof

further gives (via the Chen-Stein method, as in the proof of Proposition 4.1)

that Xk
d→ Po(λ). However, a Poisson limit for the number of copies of a

graph is not a necessary condition for StrSens1, as the next remark shows.

Remark 4.6 (Disjoint union of two cliques). Consider the property fn of

containing a disjoint union of two cliques Kk ∪ Kk when the clique size

1 � k � no(1) is exactly such that the probability of witnessing a single

such clique in G ∼ G(n, p) is non-degenerate. We claim that containing

this graph, which we note is balanced by not strictly balanced, is StrSens1

despite the fact that the corresponding number of copies of this graph is not

asymptotically Poisson, nor is this property 1-witness-disjoint. Indeed, one

easily sees that the condition in Definition 4.2 fails since upon conditioning

on two disjoint cliques H ′ and H ′′ (which together form a 1-witness for

fn), there exists a third clique H̃, disjoint from H ′ and H ′′, with probability

bounded away from 0 (in which case H̃∪H ′ for instance would be a 1-witness

nontrivially intersecting H ′ ∪H ′′).
In order to establish StrSens1 for this property, we modify the second

moment calculation in the proof of Theorem 1.5 as follows. Letting F denote
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all potential copies of a single clique Kk in G, take H ′, H ′′ ∈ F to be two

disjoint such copies, arbitrarily chosen, and define

∆i,j :=
∑
H∈F

|V (H)∩V (H′)|=i
|V (H)∩V (H′′)|=j

P
(
H ⊂ G | H ′, H ′′ ⊂ G

)
,

whence

∆i,j =

(
n− 2k

k − (i+ j)

)(
k

i

)(
k

j

)
p(
k
2)−(i2)−(j2) .

As usual, the probability of encountering a copy of Kk ∪Kk that does not

intersect neither H ′ nor H ′′ is at most P(fn = 1), while the probability of

encountering even a single Kk that intersects H ′ but not H ′′, conditioned

on H ′, H ′′ ⊂ G, was shown in the proof of Theorem 1.5 to tend to 0. Hence,

it remains to show that
∑

2≤i,j<k ∆i,j = o(1). The case where

i+ j ≤ (2− δ) log n

log(1/p)
(4.12)

for some small δ > 0 is treated as in the proof of Theorem 1.5 by writing

∆i,j(
n
k

)
p(
k
2)
.

[
k2

np((i2)+(j2))/(i+j)

]i+j
≤
[

k2

np(i+j)/2

]i+j
≤
(
k4/δ

n

)δ(i+j)/2
,

which is at most n−2δ+o(1) by the assumption i, j ≥ 2. (Note the usage

of (4.12) for the last inequality.) The complement range for (4.12) is handled

in the following way. Without loss of generality, assume i ≥ j, and using

the fact that
(
k
2

)
−
(
i
2

)
−
(
j
2

)
≥ (k − (i+ j))(i+ j) + ij we can infer that

∆i,j ≤
(

e(n− 2k)

(k − (i+ j)) ∨ 1
kpi+j

)k−(i+j) (
k2pi

)j
.

The first term on the right-hand-side is at most n(−1+δ+o(1))(k−(i+j)) by the

assumption on i + j, whereas the second term is at most n(−1+δ/2+o(1))j ,

which in turn is at most n−2+δ+o(1) thanks to the fact that j ≥ 2. Summing

these over 2 ≤ i, j < k now leads to the conclusion that (fn) is StrSens1.

4.3. Proof of Theorem 1.6, Part 1. This part of the theorem is a simple

consequence of Corollary 4.5 via an elegant Poisson approximation argument

of Bollobás [6, Theorems 4.1 and 4.3]. We include the proof for completeness.

Lemma 4.7. Let Hn be a strictly balanced graph with `n ≤
√

logn
log logn edges,

and let Xn count its number of copies in G ∼ G(n, p) for p = p(n) such that

0 < lim inf
n→∞

E[Xn] ≤ lim sup
n→∞

E[Xn] <∞ .

Then

lim
n→∞

(Var(Xn)− E[Xn]) = 0 . (4.13)
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Proof. Denote the number of vertices and edges of Hn by k and `, and let

F denote the set of all potential copies of Hn in G ∼ G(n, p). As before, we

break up the second moment of Xn into

E[X2
n] = E[Xn] +

∑
H′ 6=H′′∈F
H′∩H′′=∅

P
(
H ′, H ′′ ⊂ G

)
+

∑
H′ 6=H′′∈F
H∩H′′ 6=∅

P
(
H ′, H ′′ ⊂ G

)
≤ E[Xn] + (1− o(1))(E[Xn])2 +

∑
H′ 6=H′′∈F
H∩H′′ 6=∅

P
(
H ′, H ′′ ⊂ G

)
,

where the inequality between the lines used the fact that k �
√
n as well

as the assumption that E[Xn] is bounded away from 0 and ∞, as in the

proof of Proposition 4.1. We will show below that the summation in the

right-hand-side is o(1), which will then imply (4.13).

Given H ′ and H ′′ whose vertices overlap, put t = |{v ∈ V (H ′′) \V (H ′)}|,
whence 0 ≤ t < k. (Observe that t = 0 is possible since H ′ and H ′′ can

correspond to different copies of Hn even if their vertex sets are the same.)

The number of vertices in H ′ ∩H ′′ is therefore k − t.
Assume for the moment that t > 0. Since Hn is strictly balanced, it

follows that the number of edges of H ′′ between vertices in V (H ′) ∩ V (H ′′)

is strictly less than (k−t)`/k. Thus, the number of edges in H ′′ with at least

one endpoint not in V (H ′)∩V (H ′′) is strictly more than `−(k−t)`/k = t`/k.

Since the number of such edges is an integer, there are in fact at least

t`/k + 1/k such edges, hence the number of edges in H ′ ∪ H ′′ is at least

` + t`+1
k . Now, if t = 0, the number of edges in H ′ ∪ H ′′ is at least ` + 1

(since H ′ 6= H ′′). Altogether, this number is always at least `+ (t`+ 1)/k.

It is easy to see that the third summand is at most

2k−1∑
s=k

(
n

s

)((
s

k

)
k!

a

)2

p(s`+1)/k

where a denotes the size of the automorphism group of Hn. The last sum is

at most
2k−1∑
s=k

ns

s!

(
s!

a

)2

p(s`+1)/k . (4.14)

Note now that

E[Xn] =

(
n

k

)
k!

a
p` = (1 + o(1))

nkp`

a

since k �
√
n. It follows that

p =
(aE[Xn])1/`

nk/`
(1 + o(1))1/` .
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Substituting this back into (4.14) yields that the third sum that we are

interested in is at most

(1 + o(1))
2k−1∑
s=k

1

s!

(
s!

a

)2

(aE[Xn])(s+`
−1)/k 1

n1/`
.

Since a ≥ 1 and s/k + (`k)−1 ≤ 2, the above sum is at most

(1 + o(1))k
(
E[Xn]2 ∨ 1

)
(2k)!

1

n1/`
.

Since k ≤ `+ 1, this is at most

(1 + o(1))(`+ 1)
(
E[Xn]2 ∨ 1

) (2`+ 2)!

n1/`
.

It is easy to verify, using the fact that E[Xn] is bounded away from 0 and

∞ and that ` ≤
√

logn
log logn , that this last term is o(1), as desired. �

4.4. Proof of Theorem 1.6, Part 2. Consider G ∼ G(n, λ/n) for some

large enough fixed λ > 1, and let Hn be the graph comprised of two triangles

connected by a path of length

rn = b3
2 logλ nc . (4.15)

(Any choice of (1+δ) logλ n ≤ rn ≤ (2−δ) logλ n would be valid, as will later

become evident; we consider this particular rn to simplify the presentation.)

It is easy to see that Hn is strictly balanced. That 1{Hn⊂G} is not Sens will

follow from the next two propositions which may be of independent interest.

Proposition 4.8. Let G ∼ G(n, p) for p = λ/n with λ ≥ 4 fixed, and let C1

be the largest component of G. Define the event

∆k = {C1 contains at least k triangles} . (4.16)

For any fixed k ≥ 1, the function 1∆k
is non-degenerate and not Sens.

Proposition 4.9. Let G ∼ G(n, p) for p = λ/n where λ > 1 is some large

enough constant, and let C1 denote the largest component of G. W.h.p., every

pair of triangles in C1 is connected by a simple path of length rn = b3
2 logλ nc.

Consequently, P(Hn ⊂ G) = P(∆2) + o(1) where ∆2 is as in (4.16).

Indeed, Proposition 4.8 will follow from showing that the giant component

is, in a sense, robust under the noise operator, hence, for instance, triangles

in C1 are likely to remain in the new largest component. The conclusion

of Proposition 4.9 that the properties {Hn ⊂ G} and ∆2 are equivalent up

to a negligible probability (together with their non-degeneracy at the given

p = λ/n) will then preclude the noise sensitivity of 1{Hn⊂G}.

Our proofs will exploit the well-known fact that the breadth-first-search

exploration process of the component of a given vertex is well-approximated
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(up to depth c log n for a suitable c(λ)) by a Po(λ)-Galton-Watson tree

(a supercritical branching process in our setting), whence belonging to the

giant component would correspond to the survival of this branching process.

Further set λ? < 1 to be the reciprocal of λ in that

λe−λ = λ?e
−λ? .

It is known that λ? equals the probability that, conditioned on the survival

of the branching process, the number of surviving children of the root is 1.

Proof of Proposition 4.8. Let {v1, . . . , vn} be the vertices ofG arbitrarily

ordered, let V ′ = {vi : i ≤ dn/10e} and let G′ be the induced subgraph of

G on V ′. Denoting by Y the number of triangles in G′, we note that, as

G′ ∼ G(n′, p′) with p′ = λ/n ∼ λ/(10n′) for n′ = |V ′|, it is well-known

(and also follows from the second moment analysis in the proof of Part 1 of

Theorem 1.6) that Y
d→ Po(λ̂) for some λ̂ > 0 fixed (namely, λ̂ = λ3/6000).

Next, write V ′′ = {vi : i > dn/10e} and for each vertex x ∈ V ′ let G′′x be

the induced subgraph on V ′′∪{x}. Further let Γt(x) denote the exploration

process from x in G′′x, that is, for each t ≥ 1

Γt(x) = {y ∈ V ′′ : distG′′x(x, y) = t} .

This breadth-first-search exploration process up to some time R yields a tree

Tx(R) which is stochastically dominated by a Bin(0.9n, λ/n)-Galton-Watson

tree with R levels (since |V ′′| ≤ 0.9n), and as long as the number of exposed

vertices is o(n) it stochastically dominates a Bin(7n/8, λ/n)-Galton-Watson

tree (for instance) with the same number of levels.

Reveal the graph G′, and pick an arbitrary vertex from each triangle in

it, denoting these vertices by {x1, . . . , xY }. Set

R := 10 log2 log n ,

and expose Txi(R) for all i = 1, . . . , Y level by level as described above. An

important observation is that, should any of these trees intersect, it would

imply that G contains a subgraph F` consisting of two triangles and a path of

length ` = O(log log n) between them. However, if κ = κ(n) is any sequence

going to ∞ with n, then w.h.p. no two triangles in G have distance less

than logλ(n) − κ between them. Indeed, the expected number of copies of

all graphs {F` : ` ≤ logλ(n) − κ}, where F` consists of two triangles and a

path of length ` edges between them, is at most∑
`≤logλ(n)−κ

(np)6n`−1p` .
∑

`≤logλ(n)−κ

λ`

n
. λ−κ = o(1) .

In particular, w.h.p. the Y trees exposed above are pairwise disjoint. In

addition, standard large deviation estimates for the binomial distribution
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(cf., [9, Corollary 2.3]) imply that there for any given x

P
(
|∪t≤RΓt(x)| ≥ λR

)
≤ e−c(logn)2 ,

where c > 0 is an absolute constant. (This can be argued, for instance, by

noting that for small enough δ, the event {| ∪t≤R Γt(x)| ≥ λR} implies that

for some t ≤ R we must have either {Lt ≥ Lt−1µ+ log2 n, Lt−1 ≤ log2 n} or

{Lt ≥ (1 + δ)Lt−1µ, Lt−1 ≥ log2 n}, where µ := 7λ/8.) Therefore, w.h.p. no

vertex sees more than λR = no(1) vertices by time R, and hence we can define

on the same probability space
(
Y, Tx1(R), . . . , TxY (R), T ′1 (R), . . . , T ′xY (R)

)
so that

(
T ′1 (R), , . . . , T ′xY (R)

)
are i.i.d. Bin(7n/8, λ/n)-Galton-Watson trees

with R levels and such that P(∩Yi=1{T ′i (R) ⊂ Txi(R)}) = 1− o(1).

Let τL(d) be the probability that a Galton-Watson tree with offspring

distribution L contains a d-regular subtree (sharing the same root). This

quantity was expressed in [13] as a solution to an equation involving the p.g.f.

of L. When L ∼ Po(µ), it was shown that τL(d) is the largest solution of

(1−s) exp(µs) =
∑d−1

j=0(µs)j/j!, which is positive whenever d = (1−εµ)µ for

some εµ → 0 as µ→∞ (see §4 of that work). For d = 2, the analysis of [13]

(and Eqs. (4.3),(4.4) in particular) shows that τL > 0 provided µ > exp(y)/y

where y is the unique positive solution to y2 +y+1 = exp(y), e.g., µ > 3.351

would suffice for a positive probability of containing a binary subtree. In case

of L ∼ Bin(n, p) (explicitly stated in [12, §5]), τL(d) is the largest solution

s ∈ (0, 1] of 1− s = P(Bin(n, ps) ≤ d− 1). For p = µ/n, since L
d→ Po(µs)

and the intersection of the functions (1− s) and exp(−µs)(1 + µs) is not a

tangent point for any µ larger than the critical one, τL(d) coincides with the

Poisson case, thus in our setting indeed µ = 7λ/8 ≥ 3.5 (by the assumption

on λ) suffices for the tree T ′i (R) to contain a binary subtree of height R at

its root with positive probability; let θ > 0 denote this probability.

Altogether, it follows that we can define on a common probability space

our random graph and a Po(λ′θ) variable Z so that w.h.p. the number

of triangles in G′, for which the exploration process into V ′′ from one of

the endpoints contains a binary subtree of height R rooted at that vertex,

is at least Z. Hence, for any fixed k ≥ 1 there will be at least k such

triangles with positive probability (here we see that ∆k is non-degenerate:

with positive probability G is triangle-free, and with positive probability we

find k triangles as above, each one connected to at least 2bRc � (log n)10

vertices and thus part of C1 w.h.p. (see, e.g., [9, Theorem 5.4])).

The proof is concluded by noticing that each of these triangles is robust

under the noise operator. Indeed, the triangle itself survives the noise with

probability (1 − ε)3, and henceforth the noise operator on a binary tree is

simply a branching process with offspring distribution Bin(2, 1− ε). Letting

Zt be its population size at time t, a classical fact on supercritical branching
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processes whose offspring distribution L has a finite second moment is that,

if m = EL > 1 and q < 1 is the extinction probability, for any fixed δ > 0

with probability 1 − q − δ we have that |ZR| ≥ cmR for some fixed c > 0.

Here we have m = 2(1−ε), yielding that |ZR| ≥ c(log n)2 for a small enough

ε, except with probability q+δ ≤ 2q (for a suitable δ) where q goes to 0 with

ε. This would in turn correspond to the scenario where w.h.p. the triangle

under consideration is part of Cε1, the largest component of the new graph (as

the second largest component has Op(log n) vertices). Altogether, we have

shown that for fn = 1∆k
, a positive fraction of the space {ω : fn(ω) = 1}

is such that P(fn(ωε) = 1 | ω) ≥ 1 − g(ε) where g(ε) → 0 as ε → 0. By

Proposition 2.5 it then follows that (fn) is not noise sensitive. �

It remains to prove Proposition 4.9. While it is possible to derive the

proof from various routine branching process estimates, it will be convenient

to appeal to estimates to this effect that were developed specifically for the

setting of a sparse random graph G(n, λ/n) in the recent work of Riordan and

Wormald [14]. Similar to before, let Γt(x) := {v ∈ V (G) : distG(x, v) = t}
for t ≥ 0 be the set of all vertices of G at distance exactly t from x. Set

w := (log n)6 , t0 =
⌊
logλ−1

?
n
⌋
, t1 := blogλwc ,

following the notation of [14]. Using these definitions, the following was

shown in [14, Lemmas 2.1 and 2.2] (see Eqs. (2.10) and (2.11) in particular).

Lemma 4.10 ([14]). Let 0 < κ = o(log n) be so that κ→∞ with n. Then

w.h.p. no vertex x ∈ V satisfies 1 ≤ |Γt(x)| < w for all 0 ≤ t ≤ t0 + t1 + κ.

Observe that t1 = O(log log n) whereas t0 = (1+δλ)λ−1 log n for δλ which

approaches 0 as λ grows. In particular, we have

t0 + t1 + κ ≤ 1
10 logλ n

for large enough λ and any sufficiently large n. Therefore, upon defining

τw(x) := min{t : |Γt(x)| ≥ w} ,

we see that w.h.p. every vertex x satisfies that x ∈ C1 iff τw(x) ∈ [1, 1
10 logλ n].

We can now address the case τw(x) ≤ 1
10 logλ n, which will correspond as per

the discussion above to every x belonging to the giant component. Here we

will need to adapt this conclusion to the case of two simultaneously growing

neighborhoods, as given by the next lemma.

Lemma 4.11. Fix δ > 0 and take ` ∈ N such that `/ logλ n ∈ (1+3δ, 2−2δ).

Then w.h.p. every two vertices x, y whose distance in G exceeds 2δ logλ n and

such that τw(x), τw(y) ≤ δ logλ n are connected by a simple path of length `.
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Proof. Set T = δ logλ n and consider the standard exploration process which

iteratively reveals Γt(x) for 1 ≤ t ≤ T . Estimating |Γt(x)| is elementary by

standard concentration arguments, as noted in [14, Lemma 2.4]. Indeed,

denoting Lt = |Γt(x)| for the number of vertices at distance t from x, clearly

Lt+1 ∼ Bin(n −
∑

i≤t Lt, q) for q = 1 − (1 − λ/n)Lt = λLt/n + O(L2
t /n

2).

It then follows from large deviation estimates of the binomial variable (as

used in the proof of Proposition 4.8) that as long as, e.g.,
∑

i≤t Li ≤ n1−δ/2,

P
(∣∣∣Lt+1

λLt
− 1
∣∣∣ ≥ 1

log2 n

∣∣ Lt) ≤ 2 exp

(
−(1

3 − o(1))
λLt

log4 n

)
,

where the assumption on Lt makes E[Lt+1 | Lt] = (1 + O(n−δ/2))λLt, an

approximation error which is insignificant compared to the O(1/ log2 n) scale

of the deviation considered here. In particular, we see that necessarily

w ≤ Lτw(x) ≤ 2λw

except with probability exp(−cw/ log4 n) = exp(−c log2 n) for an absolute

constant c > 0. Furthermore, by accumulating the O(1/ log2 n) errors up

to time T = O(log n), this estimate can be extended all throughout this

interval (note that since T = δ logλ n this will maintain Lt ≤ nδ satisfying

the requirement on the size of
∑

i≤t |Γi(x)| with room to spare) to yield∣∣∣Lt/[λt−τw(x)Lτw(x)

]
− 1
∣∣∣ ≤ log logn

logn for all τw ≤ t ≤ T

except with probability exp(−c log2 n) for some other absolute c > 0 (the

factor of log log n could have been replaced by any κ(n) going to∞ with n).

Now, let us adapt the exploration process to a pair of initial points x, y

as follows. Denoting the set of neighbors of a set S in G by NG(S), let

Γ′0 = {x} , Γ′t = NG

(
Γ′t−1

)
\
⋃
i<t

(
Γ′i ∪ Γ′′i

)
,

Γ′′0 = {y} , Γ′′t = NG

(
Γ′′t−1

)
\
(

Γ′t ∪
⋃
i<t

(
Γ′i ∪ Γ′′i

))
.

That is, we expand the neighborhood of x among unvisited vertices (those

that had not yet appeared in any of the neighborhoods) followed by the

same procedure for y, repeatedly.

We clearly have that ∪t≤TΓ′t and ∪t≤TΓ′′t are disjoint by construction.

The hypothesis on the distance of x, y then implies that Γ′t = Γt(x) and

Γ′′t = Γt(y) for all t ≤ T . It now follows that
∑

t≤T (|Γ′t| + |Γ′′t |) ≤ 5λwnδ

with probability 1− exp(−c log2 n) for some absolute c > 0.

Exposing Λ′t for t = T + 1, . . . , d`/2e alternating with exposing Λ′′t for

t = T + 1, . . . , b`/2c, the exact same concentration argument as above —

while recalling that ` < (2 − 2δ) logλ n by hypothesis and so at all times
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above there are at least (1 − O(n−δ))n unexposed vertices — implies that

with probability 1− exp(−c log2 n) for some absolute c > 0 we have∣∣|Γ′t|/(λt−T |Γ′T |)− 1
∣∣ ≤ log logn

logn for all T ≤ t ≤ d`/2e ,∣∣|Γ′′t |/(λt−T |Γ′′T |)− 1
∣∣ ≤ log logn

logn for all T ≤ t ≤ b`/2c .

Combining this with the fact that |Γ′T |, |Γ′′T | ≥ w along with the hypothesis

` > (1 + 3δ) logλ n now yields that with the aforementioned probability,

|Γ′d`/2e| ≥ n
(1+δ)/2 and |Γ′′b`/2c| ≥ n

(1+δ)/2 .

Finally, observe that none of the potential edges between Γ′d`/2e and Γ′′b`/2c
has been examined yet, and the probability that none belong to G is at most

(1− λ/n)
|Γ′d`/2e||Γ

′′
b`/2c| ≤ exp

(
−λnδ

)
.

As any such edge yields a simple path of length ` between x, y, the proof of

the lemma is concluded by a union bound over x, y, easily accommodated by

the fact that all error probabilities were super-polynomially small in n. �

With the above ingredients, we can establish Proposition 4.9 guaranteeing

length-specific paths between triangles in the giant component C1.

Proof of Proposition 4.9. Since C1 is of linear size w.h.p., and thanks

to Lemma 4.10 and the discussion following it, w.h.p. every vertex x ∈ C1

satisfies τw(x) < 1
10 logλ n. Choosing δ = 1

10 and ` = rn in Lemma 4.11 we

obtain that w.h.p. every two vertices x, y ∈ C1 with distG(x, y) > 1
5 logλ n

have a simple path connecting them of distance precisely rn = b3
2 logλ nc.

The first statement of the proposition now follows from the fact noted in

the proof of Proposition 4.8 that for any κ = κ(n) going to∞ with n, w.h.p.

no two triangles in G have distance less than logλ(n)− κ between them. In

particular, w.h.p. every pair of triangles in C1 has distance at least 1
2 logλ n,

and thus are connected by a path of length rn, as argued above.

Finally, it is well-known (see, e.g., [9, Theorem 5.12]) that w.h.p. C1 is

the only component that contains more than a single cycle, and therefore

P(Hn ⊂ G) = P(Hn ⊂ C1) + o(1) ≤ P(∆2) + o(1). As we have shown above

that P(∆2) ≤ P(Hn ⊂ C1) + o(1), this completes the proof. �

Propositions 4.8 and 4.9 combined conclude the proof of Theorem 1.6. �

5. General properties of strong noise sensitivity

5.1. 0-strong vs 1-strong noise sensitivity. The following proposition

gives a simple and yet useful necessary condition for StrSens1.
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Lemma 5.1. Let (fn) be a sequence of monotone Boolean functions, and

let Yn(ω) =
∑

W∈W0(fn) 1{ωW≡0} count the occurring 0-witnesses in ω ∈ Ωn.

If supn E[Yn] <∞ then the sequence is not StrSens1.

Proof. Clearly if W ∈ W1 and W ′ ∈ W0, we must have W ∩W ′ 6= ∅, whence

P (ωεW ′ ≡ 0 | ωW ≡ 1) ≤ εP (ωεW ′ ≡ 0) ,

and so, by our main assumption, there exists some C > 0 such that for all n

sup
W∈W1

E [Yn(ωε) | ωW ≡ 1] ≤ Cε .

It follows that

inf
W∈W1

P (fn(ωε) = 1 | ωW ≡ 1) ≥ 1−O(ε) ,

thus the sequence is not StrSens1 (instead, the conditional probability

given any 1-witness is in some sense noise stable, going to 1 as ε→ 0). �

Remark. The converse of Lemma 5.1 is false, as the recursive 3-majority

function demonstrates. We have shown in §3.1 that this function is not

StrSens1, and yet it is easy to see that E[Yn] is not uniformly bounded

(nor is the expected number of 1-witnesses, by symmetry). Indeed, if ak
denotes the number of 0-witnesses when there are n = 3k variables, then

a0 = 1 and ak+1 = 3a2
k, and so in general ak = 32k−1. Since a canonical

witness has size 2k, we have EYn = 1
3(3/2)2k →∞.

Many of the examples that we have seen are StrSens1 but not StrSens0

or vice versa. We next show that there are Boolean functions which are both.

Theorem 5.2. There exists a sequence of non-degenerate Boolean functions

which are both StrSens1 and StrSens0.

Proof. Define the following Boolean functions:

• gn: the tribes function on n bits with blog2( n
log2 n

)c-bit blocks (as usual,

potentially ignoring one shorter block to remedy divisibility issues).

• hn: the tribes function on mn := bnlognc bits with bn := blog2( mn
log2mn

)c
bits per block and reversed 0/1 roles (hn = 0 iff there is an all-0 block).

• fn = gn ◦ hn is the composition of these functions acting on mnn bits

(applying hn to the first mn bits, the next mn bits, etc., then feeding the

n output bits into gn), which we claim is both StrSens1 and StrSens0.

Let pn be such that P(hn = 1) = 1/2 (it is easy to see that pn = 1/2 +o(1)).

The proof will follow from two straightforward properties of hn.

First, we claim that for any ε > 0 there exists δ > 0 so that

inf
n

inf
W∈W1(hn)

P (hn(ωε) = 0 | ωW ≡ 1) ≥ δ . (5.1)
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Indeed, the number of 0-witnesses occurring in ωε given ωW ≡ 1 is binomial

with parameters Bin((1 + o(1)) mn
log2mn

, εpbn). Since pbn � log2mn
mn

, for fixed ε

this converges to a nontrivial Poisson distribution, from which (5.1) follows.

Second, we argue that for any ε > 0 we have

max
W∈W0(hn)

P (hn(ωε) = 0 | ωW ≡ 0)− P (hn = 0) = o (1/n) . (5.2)

To see this, note that since the 0-witnesses for hn are disjoint, the only

gain from conditioning on the event ωW ≡ 0 for some 0-witness W is that

the probability that ωεW ≡ 0 is increased. Therefore, it suffices to show

that P (ωεW ≡ 0 | ωW ≡ 0) = o (1/n) uniformly over W . Indeed this holds as

P (ωεW ≡ 0 | ωW ≡ 0) = (1−εpn)bn with pn ∼ 1/2 and bn & logmn & log2 n,

thus establishing (5.2) (with room to spare).

To show that (fn) is StrSens1, fix ε > 0 and note that a 1-witness W for

fn is obtained by taking a 1-witness W ′ for gn and for each x ∈ W ′ taking

a 1-witness W ′′x for hn. By (5.1), P(ωεx = 0 | ωW ′′x = 1) ≥ δ for any x ∈ W ′

with δ(ε) > 0 fixed. Thus, P(ωW ′ ≡ 1) ≤ (1− δ)|W ′| → 0, and since the rest

of the blocks of gn are independent we get (following the same argument

used to show (5.2) above) that (fn) is StrSens1.

It remains to show that (fn) is StrSens0. Fix ε > 0 and again take a

0-witness W for fn in the form of a 0-witness W ′ for gn and accompanying

each x ∈ W ′ by a 0-witness W ′′x for hn. If ωW ≡ 0, then (5.2) and the fact

that |W ′| � n
logn tell us that ωεW ′ has a distribution whose total variation

distance from an i.i.d. sequence with parameter 1/2 goes to 0. With the other

blocks of gn independent, as before this implies that (fn) is StrSens0. �

5.2. Different levels of noise in strong noise sensitivity. An interest-

ing fact about noise sensitivity, pointed out in §2, is that if the criterion (1.1)

for Sens holds for one fixed ε ∈ (0, 1), then it holds for all such ε. It is then

natural to ask whether strong noise sensitivity also exhibits this behavior.

Clearly, if the criterion (1.2) for StrSens1 holds for one ε ∈ (0, 1) then it

holds for all ε′ > ε by monotonicity. However, the next theorem tells us that

in fact (1.2) may hold for some ε ∈ (0, 1) and not for some other ε′ ∈ (0, ε).

Theorem 5.3. There exists a sequence of monotone Boolean functions (fn)

which is StrSens1 w.r.t. any fixed 1
4 < ε < 1, while for any fixed 0 < ε < 1

5

lim
n→∞

inf
W∈W1(fn)

P(fn(ωε) = 1 | ωW ≡ 1) = 1 .

Proof. Define the following Boolean functions:

• rn: recursive 5-majority on 5b1.01 bnc variables where bn := blog2( n
log2 n

)c.
• gn: the tribes function on n bits with bn-bit blocks.

• fn = rn ◦ gn is the composition of these two functions, acting on

n5b1.01 bnc bits, which we claim will have the desired properties.
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Choose pn such P(gn = 1) = 1/2 (recall that this choice has pn = 1/2+o(1)).

In Claim 3.3 we related the probability that a witness for rn survives the

noise to the k-iterated function h(x) from that claim, denoted here h(k)(x).

The next claim establishes two simple features of that function.

Lemma 5.4. Let h(x) := −1
2x

3 + 3
4x

2 + 3
4x as in (3.4). Then we have

h(1.01m)
(

1
2 + (0.88)m

)
= 1

2 +o(1) whereas h(1.01m)
(

1
2 + (0.89)m

)
= 1−o(1).

Proof. Letting L be the linear function L(x) := 9
8(x− 1

2)+ 1
2 , we have h ≤ L

on [1
2 , 1] since h is concave in that interval and has h(1

2) = 1
2 and h′(1

2) = 9
8 .

Since h is increasing and sends [1
2 , 1] to itself, it follows that h(k) ≤ L(k) on

[1
2 , 1] for all k. Observing that L(k)(x) = (9

8)k(x − 1
2) + 1

2 , in particular we

have h(1.01m)
(

1
2 + (0.88)m

)
− 1

2 ≤ (9
8)1.01m(0.88)m → 0 as m→∞.

For the second statement, choose p0 ∈ (1
2 , 1) so that h′(p0) = 9

8 −
1

1000 .

Since h is concave on [1
2 , 1], now h ≥ M on [1

2 , p0] where M is the linear

function M(x) := h′(p0)(x− 1
2) + 1

2 . Since h is increasing and sends [1
2 , 1] to

itself, h(k)(x) ≥M (k)(x) for all x and k satisfying M (k−1)(x) ≤ p0 (i.e., until

the orbit of x passes p0). Since M (m)(x) = (h′(p0))m(x − 1
2) + 1

2 , we have

M (m)(1
2 + (0.89)m)→∞, and so h(m)(1

2 + (0.89)m) ≥ p0 for large m. Since

p0 is a fixed number larger than 1/2, and h(x) has fixed points at {0, 1/2, 1},
the additional m/100 iterations give h(1.01m)(x) = 1− o(1), as required. �

As for the tribes function gn, it is easy to check that for any 1-witness W ,

Γn := P(gn(ωε) = 1 | ωW ≡ 1)− P(gn = 1) = un

[
(1− ε(1− pn))bn − pbnn

]
where un is the probability that none of the blocks except possibly the first

one is an all 1-block, which is 1/2 + o(1). As pn = 1/2 + o(1), it follows, say,

that for any fixed 0 < ε < 1, any sufficiently large n and any 1-witness W ,(
1− ε/2− ε2/16

)bn ≤ Γn ≤
(
1− ε/2 + ε2/16

)bn
. (5.3)

Any 1-witness W for fn is obtained by taking some 1-witness W ′ for rn
together with a 1-witness W ′′x for gn for every x ∈ W ′. By (5.3), for large

enough n the distribution of the bits ωεW ′ is i.i.d. with probability qn of 1,

where qn ≤ 1/2 + (0.88)bn if ε > 1
4 , whereas qn ≥ 1

2 + (0.89)bn if ε < 1
5 .

Finally, the analysis in Claim 3.3 tells us that for recursive 5-majority

with k levels on an input distribution that is i.i.d. (q, 1− q) for q 6= 1/2 on a

1-witness W ′ and i.i.d. (1/2, 1/2) elsewhere, the probability that the output

is 1 is h(k)(q). This fact together with Lemma 5.4 concludes the proof. �
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