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Abstract

We present a readily applicable way to go beyond the accuracy limits of current
optical flow estimators. Modern optical flow algorithms employ the coarse to fine
approach. We suggest to upgrade this class of algorithms, by adding over-fine

interpolated levels to the pyramid. Theoretical analysis of the coarse to over-fine

approach explains its advantages in handling flow-field discontinuities and simulations
show its benefit for sub-pixel motion. By applying the suggested technique to various
multiscale optical flow algorithms, we reduced the estimation error by 10%-30% on
the common test sequences. Using the coarse to over-fine technique, we obtain optical
flow estimation results that are currently the best for benchmark sequences.

Key words: optical flow

1 Introduction

Optical flow estimation is one of the central problems of computer vision. Optical flow

is the apparent motion between two frames in a sequence (Horn, 1986). It is relevant in

applications such as surveillance and tracking, and is part of higher level computer vision

tasks such as shape from motion. Since the pioneering work of Horn and Schunck (1981)

and Lucas and Kanade (1981), significant improvement has been achieved in the estimation

of optical flow, with the best published results provided by Brox et al. (2004).

The estimation of optical flow relies on the assumption that objects in an image sequence
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may change position but their appearance remains the same (or nearly the same). Classically

this is represented by the grey-level constancy assumption or the optical flow constraint.

However, this assumption by itself is not sufficient for optical flow estimation. Horn and

Schunck (1981) add a smoothness assumption to regularize the flow, and Lucas and Kanade

(1981) assume constant motion in small windows.

Higher accuracy can be achieved using coarse-to-fine or multi-scale methods (Anandan,

1989; Black and Anandan, 1996; Mémin and Pérez, 2002; Brox et al., 2004). These methods

accelerate convergence by allowing global motion features to be detected immediately, but

also improve the accuracy of flow estimation because they provide a better approximation

of image gradients via warping (Bruhn et al., 2005).

In this paper we suggest extending the multi-scale approach beyond the fine grid to

over-fine levels. The representation of the image data on the over-fine grids is obtained by

interpolation. Nevertheless, we show that computing optical flow on the extended pyramid

improves optical flow accuracy. As described in the theoretical section of this paper, the

coarse to over-fine approach leads to sharpening of the flow edges. Sub-pixel motion is

observed to be more accurately estimated as well.

The suggested approach appears to be applicable to any multi-scale optical flow estima-

tion algorithm. Its application to several algorithms was tested using standard benchmark

synthetic sequences and a real-world sequence. Although it is relatively simple to upgrade an

existing multi-scale algorithm using our approach, accuracy is substantially improved. The

standard accuracy metric for optical flow algorithms is the average angular error (AAE) (Bar-

ron et al., 1994). Using the proposed coarse to overfine approach, the AAE is reduced by

10%-30% for conceptually different algorithms such as Brox et al. (2004) and Anandan

(1989). In particular, applied to the algorithm of Brox et al. and its variants, the suggested
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approach yields results which are currently the best for several common test sequences.

The rest of this paper is organized as follows: Section 2 describes the details of the

coarse to over-fine approach, and its theoretical foundation. We describe the assumptions

on which most models for optical flow estimation algorithms are based, and summarize the

concepts of two well known multi-scale algorithms by Anandan (1989) and Brox et al. (2004).

Next, we describe our approach and analyze its advantages. Section 3 presents experimental

results on the incorporation of the coarse to over-fine approach within the algorithms of Brox

et al. (2004), Anandan (1989) and Amiaz and Kiryati (2006). Section 4 consists of a short

discussion and concluding remarks.

2 Coarse to over-fine optical flow

2.1 Multi-scale optical flow estimation

We begin this section with a short description of several common assumptions used in optical

flow estimation. We demonstrate their use in two well known algorithms, Brox et al. (2004)

and Anandan (1989). While both algorithms incorporate a multi-scale approach, the first

is a variational differential method (which gives the best published results on common test

sequences), whereas the latter attempts to match regions in the image sequence.

Most algorithms for optical flow estimation are based on minimization of an objective

functional E(u, v), that includes two terms, a data term and a smoothness term. The data

term, Ed(u, v), measures the quality of the correspondence between the two frames, according

to the given optical flow field. This measure relies on the grey level constancy assumption,

which states that the grey level of objects is constant in consecutive frames. Let I(x, y, t)

denote the grey level of the (x, y) pixel in the t-th frame, and let ~w = (u, v, 1) denote the
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displacement (optical flow) vector of one frame, where u and v depend on x, y and t. Using

these notations, this assumption takes the form:

I(x, y, t) = I(x + u, y + v, t + 1) (1)

Note that first order Taylor expansion leads to the well known optical flow constraint:

Ixu + Iyv + It = 0 (2)

The grey value constancy assumption is sensitive to noise in the images. It is customary to

accommodate for this by pre-blurring the image or equivalently by using weighted windows

around each pixel.

Finding the flow field by minimizing the data term alone is an ill-posed problem, since

the optimum might be attained by many dissimilar displacement fields. In order to solve

the problem, regularization is required. The most suitable regularization assumption is

piece-wise smoothness, that arises in the common case of a scene that consists of semi-rigid

objects. Mathematical representation of piecewise smoothness regularization is not trivial,

and various approximations have been applied over the years, see Black and Anandan (1996);

Brox et al. (2004); Amiaz and Kiryati (2006).

The multi-scale coarse-to-fine approach is used by most modern algorithms for optical

flow estimation, in order to support large motion and for improved accuracy. This approach

relies on estimating the flow in an image pyramid, where the apex is the original image at

a coarse scale, and the levels beneath it are warped representations of the images based on

the flow estimated at the preceding scale. This ensures that the small motion assumption of
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Eq. (2) remains valid.

2.1.1 The differential method of Brox et al. (2004)

This is a variational method, based on minimizing the objective functional

E(u, v) = Ed(u, v) + αEs(u, v) , (3)

where α balances the data term Ed with the smoothness term Es.

The data term incorporates the grey value constancy assumption, as well as the gradient

constancy assumption, according to which the gradient of the grey level of objects is constant

in consecutive frames. This assumption accommodates for slight changes in the illumination

of the scene. The definition of the data term is:

Ed(u, v) =

∫

L
(

|I(~x + ~w) − I(~x)|2 + γ|∇I(~x + ~w) −∇I(~x)|2
)

d~x , (4)

where ∇ = (∂x, ∂y) denotes the spatial gradient, γ relates the weight of the two constancy

assumptions, and L(s2) =
√

s2 + ε2 is a smooth approximation of the L1 norm, L1(s) = |s|.

Using the L1 norm rather than the common L2 norm, the influence of outliers is reduced

and estimation is robust, see e.g. Brox et al. (2004); Bar et al. (2006). The incorporation of

the constant ε makes the approximation differentiable at s = 0; the value of ε sets the level

of approximation. Notice that the data term remains convex, but the derivatives are highly

non-linear, complicating the minimization process.
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The smoothness term Es(u, v) is defined as:

Es(u, v) =

∫

L
(

|∇u|2 + |∇v|2
)

d~x . (5)

The minimization of E(u, v) is a nested iterative process, with external and internal

iterations. The external iterations are with respect to scale. The internal iterations are used

to linearize the Euler-Lagrange equations and solve the resulting linear set of equations.

Linearization via fixed-point iterations is used both in the external and internal loops. The

linear equations are solved using successive over relaxation (SOR) (Press et al., 1992).

An extension of this method was recently proposed, which uses the level set method

to reduce the estimation error near flow discontinuities (Amiaz and Kiryati, 2006). This

extension will be referred to in this paper as the Piecewise Smooth Flow algorithm.

2.1.2 The Anandan region matching method (Anandan, 1989)

The Anandan method is based on matching square regions of the image with neighboring

square regions in the successive image, performed on a multi-scale pyramid. The distance

measure used is SSD (sum of square differences). Keeping the above definitions for I, ~w, ~x,

the measure is:

SSD(~x, ~w) =
∑

−n≤i,j≤n

W (i, j) (I (~x + (i, j, 0)) − I (~x + ~w + (i, j, 0)))2 , (6)

where W is a two-dimensional window function, and (i, j, 0) is the vector used to scan the

square region. The method’s smoothness term is based on Horn and Schunck’s term, with an

additional limit on the difference between the displacement vector solutions in the current

and previous levels of the pyramid.
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2.2 Upgrading multi-scale optical flow algorithms

Consider a multi-scale optical flow estimation algorithm A, whose objective functional E(A)

is comprised of a data term, Ed, and a smoothness term, Es. The following modified algo-

rithm A′ yields a significantly more accurate flow than A:

1. Let I0(x, y, t) denote the input sequence, and let k = 1 denote the iteration counter.

2. Execute A on the original image sequence I0.

3. For each of the input frames, extend the image pyramid beyond the finest scale, using

interpolation (resulting in a coarse-to-over -fine pyramid). The extension of the pyra-

mid is an additional frame sequence, Ik, derived from the original sequence, Ik−1, in

the following manner:

Ik(x, y, t) = Ik−1(x/2, y/2, t) . (7)

For non-integer indices x/2, y/2 of Ik−1, either bilinear or bicubic interpolation is used.

The pre-blurring kernel used in algorithm A should be widened.

4. Continue the execution of A on the extended pyramid.

5. Sample the resulting flow back to the original grid:

~w(x, y) = ~wk(2kx, 2ky)/2k . (8)

This also provides the value of the objective functional in the original scale, Ek(A′).

6. Increment k and return to step 3, as long as Ek−1(A′) is significantly larger than

Ek(A′), or subject to a predefined number of iterations.
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2.3 Analysis of the coarse to over-fine approach

We claim that extending the image pyramid results in a lower penalty for discontinuities in

the optical-flow field. Mathematical analysis of optical flow methods appears to be difficult.

The focus of this paper is on the over-fine approach, as applied to optical flow estimation,

rather than on optical flow per-se. We therefore consider an analogous curve fitting problem,

and study the effect of the over fine approach on edge preservation. The problem we choose

is estimating a smooth function based on samples of a step function. We show that a sharper

edge is estimated on the over-fine grid.

We begin with the one-dimensional case, and consider the following minimization process:

given equidistant samples ~y = (y1, . . . , y2n), we are interested in obtaining a set of points

~z = (z1, . . . , z2n) which minimizes

F (~z) =
2n
∑

i=1

(zi − yi)
2 + α

2n−1
∑

i=1

(zi+1 − zi)
2 . (9)

where α > 0 is the smoothing parameter.

To demonstrate the edge sharpening effect of the over-fine phase in smooth approxima-

tion, we consider the following scenario. Let the input be a step function:

yi =















1 1 ≤ i ≤ n

−1 n + 1 ≤ i ≤ 2n

(10)

Let ~z∗ denote the minimizer of F (~z) according to equation (9). Clearly, since F (~z) is a non-

negative sum of squares, it has a single minimum, attained at the point satisfying ∇F (~z) = 0.

We shall denote the over-fine version of the problem with ~yof , ~zof , both of length 4n− 1.
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Figure 1: Smooth approximation of a sampled step-function. The over-fine approximation
leads to a sharper edge than that of the original approximation version.

The interpolation of yi results in

yof,i =































1 1 ≤ i ≤ 2n − 1

0 i = 2n

−1 2n + 1 ≤ i ≤ 4n − 1

, (11)

and ~z∗
of is the minimizer of (9) with the summations extended to 4n− 1 and ~yof replacing ~y.

Figure 1 presents the original and over-fine versions of the data and the two smooth

approximations. From the inherent antisymmetry of the problem we can deduce that the

approximations ~z∗ and ~z∗
of are antisymmetrical around the points n+1/2 and 2n respectively.

z∗n+1−i = −z∗
n+i 6= 0 , (i = 1, . . . , n).

z∗of,2n = 0

z∗of,2n−i = −z∗
of,2n+i 6= 0 , (i = 1, . . . , 2n − 1). (12)

We claim that the edge in the solution for ~z∗
of is sharper compared to ~z∗, as the following
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equation reflects:

z∗of,2i−1 > z∗
i , (i = 1, . . . , n) . (13)

The proof will proceed along the following lines: Using the antisymmetry of the problem, we

will reduce it to a minimization problem on the left half of the domain and prove that the

point nearest to the edge is higher in the over-fine version. Next, we shall prove by induction

that all the values estimated by the over-fine version are higher than those estimated by the

non over-fine version. Finally using the monotonicity of z∗
of,i we show that the subsampling

provides the desired result (13).

Inserting the antisymmetry property (12) into the minimization problems of ~z and ~zof ,

we obtain

~z∗ = argmin
~z

[

n
∑

i=1

(zi − 1)2 + α
n−1
∑

i=1

(zi+1 − zi)
2 + 2α (zn)2

]

(14)

~z∗of = argmin
~z

[

2n−1
∑

i=1

(zi − 1)2 + α
2n−2
∑

i=1

(zi+1 − zi)
2 + α (z2n−1)

2

]

(15)

This immediately implies the desired result z∗
of,2n−1

> z∗
n due to the larger coefficient of the

square of the latter in the minimized term (see Appendix for details).

Suppose now that the values of z∗
of,2n−1

, z∗n have been determined. By inserting them into

(14) and (15), we can obtain the relation between z∗
of,2n−2

and z∗
n−1,

~z∗ = argmin
~z

[

n−1
∑

i=1

(zi − 1)2 + α

n−2
∑

i=1

(zi+1 − zi)
2 + α (zn−1 − z∗n)2

]

(16)
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Figure 2: Angular error is the angle between the estimated flow and the true flow, with a
unit perpendicular vector added to both.

~z∗of = argmin
~z

[

2n−2
∑

i=1

(zi − 1)2 + α
2n−3
∑

i=1

(zi+1 − zi)
2 + α

(

z2n−2 − z∗of,2n−1

)2

]

(17)

As can be seen, z∗
n−1 is coupled to a smaller value than z∗

of,2n−2
, and therefore (everything

else being equal) it is smaller (see Appendix for rigorous proof). Repeating this process

inductively results in z∗
of,2n−i > z∗

n+1−i for i = 1, . . . , n. The values of z∗
of,i are monotonically

decreasing and thus we obtain z∗
of,2i−1

≥ z∗of,n+i−1
> z∗

i for i = 1, . . . , n, which is the desired

result.

A similar argument to the one above extends the discontinuity scenario above to a 2-

dimensional setting, demonstrating how the over-fine phase may provide sharper edges.

3 Experimental results

We present the quantifiable effect of the method on the well-known Yosemite and

Street with Car (Galvin et al., 1998) sequences and the real-world Flower Garden sequence.

Angular error was measured according to the method of Barron et al. (1994) (see figure 2).

We demonstrate the effectiveness of the coarse to over-fine approach when applied to the

algorithms of Anandan (1989), Brox et al. (2004), and the Piecewise Smooth Flow algo-
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Ground truth
Brox et al
Overfine x 2
Overfine x 4

(a) (b)

(c) (d)

Figure 3: (a) Frame 8 of the Yosemite sequence. (b) Ground-truth and estimated horizontal
flow as a function of vertical position, at the sky-ground boundary. (c) Angular error in Brox
et al’s 2D results. Dark means no error. (d) Angular error after two over-fine iterations.

rithm (Amiaz and Kiryati, 2006).

When running Brox et al’s algorithm1, all images were blurred using a Gaussian kernel

before the optical flow estimation was performed. The width of the kernel was dependent

on the the number of over-fine iterations performed. For the original algorithm σ = 0.8

was used, σ = 1.4 was used for one over-fine step, and σ = 2.6 and σ = 5.0 were used for

two and three over-fine steps respectively. All other parameters used were taken from Brox

et al. (2004) (α = 80, γ = 100, η = 0.95). The number of internal iterations was 5, the

number of SOR iterations 7, and the number of external iterations was chosen according

to the size of the image. The implementation of Anandan’s algorithm was taken from

ftp://ftp.csd.uwo.ca/pub/vision/ANANDAN/. We used a three level image pyramid for the

1We used our implementation of Brox et al’s algorithm, because the original implementation of their
algorithm was not available to us. All results presented in this section are those of our implementation, and
differ only slightly from those published by Brox et al. (2004).
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original method, and four levels for the over-fine version. The window size for the original

method was 3, and 5 for the over-fine version. The increased window size corresponds to a

wider blurring kernel. Bi-cubic interpolation was used to create the over-fine images.

Figure 3 shows the spatial distribution of angular error for the Yosemite with Clouds se-

quence. Notice the reduced over-smoothing near the sky-ground interface. Table 1 shows that

on the Yosemite with Clouds sequence, and with all algorithms tested, significant reduction

of average angular error was achieved. The result for the over-fine Piecewise Smooth Flow

algorithm (Amiaz and Kiryati, 2006) on the Yosemite with Clouds sequence is better than

any result previously published2. Table 2 presents results on the Yosemite without Clouds

sequence. The result is slightly better than that of Roth and Black (2005) which to the

best of our knowledge was the most accurate result published using only two images. Re-

sults which are better than any previously published on a sequence are presented in bold in

Tables 1-3.

Figure 4 shows the reduction in error around the car in the Street with Car sequence.

Table 3 demonstrates the significant reduction in average angular error when using the over-

fine method. The over-fine version of the Piecewise Smooth Flow algorithm (Amiaz and

Kiryati, 2006) is the best result on this sequence.

We finally tested our algorithm on the MPEG Flower Garden sequence, which is a real

sequence of translational camera movement. Figure 5 shows that the flow edge is closer to the

tree in the foreground when using the over-fine method compared with our implementation

of Brox et al.

2Since this paper was originally submitted, better results on the Yosemite with Clouds sequence were
published in Brox et al. (2006).
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Yosemite with Clouds
Technique AAE STD
Anandan 13.07◦ 15.39◦

Over-fine (x2) 11.53◦ 15.75◦

Brox et al. (2D) 2.36◦ 7.94◦

Over-fine (x2) 2.11◦ 7.54◦

Over-fine (x4) 1.96◦ 7.24◦

Piecewise Smooth Flow 1.64◦ 5.81◦

Over-fine (x2) 1.48◦ 5.41◦

Table 1: Demonstration of the accuracy enhancement of the over-fine approach when applied
to the Anandan (1989), Brox et al. (2004) and Piecewise Smooth Flow (Amiaz and Kiryati,
2006) algorithms on the Yosemite with Clouds sequence. (AAE: Average angular error. STD:
Standard deviation of the angular error.)

Yosemite without Clouds
Technique AAE STD
Brox et al. (2D) 1.63◦ 1.55◦

Over-fine (x2) 1.49◦ 1.59◦

Over-fine (x4) 1.44◦ 1.55◦

Table 2: Comparison between the Brox et al. algorithm and the coarse to over-fine enhance-
ment on the Yosemite without Clouds sequence.
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(a) (b) (c)

Figure 4: (a) Frame 10 of the Street with Car sequence. (b) Angular error in the Piecewise
Smooth Flow algorithm. Dark means no error. (c) Angular error after one over-fine iteration.

Street with Car
Technique AAE STD
Anandan 11.29◦ 15.39◦

Over-fine (x2) 10.28◦ 19.55◦

Brox et al. (2D) 3.30◦ 10.43◦

Over-fine (x2) 2.64◦ 9.35◦

Over-fine (x4) 2.37◦ 8.81◦

Piecewise Smooth Flow 2.29◦ 8.82◦

Over-fine (x2) 1.86◦ 8.76◦

Table 3: Comparison between optical flow algorithms and their enhancement by the coarse
to over-fine approach on the Street with Car sequence. (AAE: Average angular error. STD:
Standard deviation of the angular error.)

3.1 Simulation

One might argue that the over-fine approach is nothing more than parameter tuning, namely

reduction of the weight of the smoothness term. To refute this argument we tested the effect

of the approach on optical flow estimation of smooth motion. The algorithm of Brox et al.

(2004) was the base for the over-fine approach in these simulations. Bi-linear interpolation

was used to create the over-fine images.

We prepared sequences of images comprised of sines (Figure 6):

I(x, y, t) = sin(
π(x + ut)

λ1

) sin(
π(x + ut)

λ2

) sin(
πy

λ1

) sin(
πy

λ2

) ,
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(a) (b)

Figure 5: (a) First frame of the Flower Garden sequence, the black contour is the result of
our implementation of Brox et al., the light contour is from the flow calculated using one
step over-fine method. (b) Detail of (a): The tree trunk.

with λ2 = 48 (constant), while λ1 and u are varied.

Figure 7 demonstrates the effect of the over-fine method on estimating optical flow for

smooth motions. The improvement is larger at higher frequencies (smaller λ), it is pro-

nounced between 0.2-0.7 pixel movements, and is non-existent at 0.9-1.0 pixel movement.

The effect is dominated by the first over-fine step.

4 Discussion

The coarse to over-fine approach presented in this paper is an effective way to improve

the accuracy of optical flow estimation algorithms. It relies on two complementing advan-

tages: crisper flow discontinuities, and observed higher accuracy for smooth sub-pixel motion.

Testing on common test sequences shows that the application of the over-fine approach to

multi-scale optical flow estimation algorithms resulted in error reduction by 10%-30%.

We have used simulations to observe the effect of the coarse to over-fine approach on the

accuracy of optical flow estimated for smooth motion. Accuracy was observed to improve

for motion near half pixel in magnitude, and when the frequencies in the image were high.

These happen to be the conditions for recovery of information via super-resolution (Huang
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Figure 6: Sample image used for studying the effect of the over-fine approach on optical flow
estimation of smooth motion.
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Figure 7: Demonstration of the coarse to over-fine method on smooth motion. (a) Effect of
the over-fine method on the average angular error (AAE) as a function of motion magnitude
(λ2 = 6). (b) Performance of the over-fine method as a function of λ2 (motion magnitude
0.2 pixel). As λ2 decreases the benefit grows.

and Tsay, 1984). Future research should examine the relation between the two. It is also

interesting to understand the impact of the method on the data term of the functional in

different optical flow estimation algorithms.

The coarse to over-fine approach may be applicable to additional computer vision prob-

lems. Optical flow calculation for range images, also known as range flow (Spies et al.,

2002), is expected to have the same benefit as optical flow from this approach. Depth from

stereo (Beardsley et al., 1996) relies on extracting information from multiple images, and

requires piecewise smoothness at object boundaries. This similarity to optical flow makes it

likely to benefit from this approach as well.

Recall that the criteria for stopping the coarse to over-fine iteration process (step 6 of
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the algorithm) rely either on a predefined number of iterations or on the improvement of the

objective functional. Future work in this area may incorporate different stopping criteria for

different regions in the image. This will enable continuing the coarse to over-fine approach

only in areas with higher potential gain, while staying with the current result elsewhere.

Determining the iteration limit for each area can be based on either the reduction of the

local value of the objective functional, or the local flow properties.

A Proofs

To prove (14) and (15) we begin by showing that a smooth approximation of a sampled

sequence, with a single outlier, tends to be farther from the outlier the larger the support.

Consider the minimization problems

~z1 = argmin
~z

[

m
∑

i=1

(zi − 1)2 + α

m−1
∑

i=1

(zi+1 − zi)
2 + α (zm − θ)2

]

(18)

~z2 = argmin
~z

[

m
∑

i=2

(zi − 1)2 + α

m−1
∑

i=2

(zi+1 − zi)
2 + α (zm − θ)2

]

(19)

with θ < 1, we show that

z1

m ≥ z2

m . (20)

For the length m minimization problem (18), the minimizing arguments {zi} are deter-

mined by differentiating the objective function

m
∑

i=1

(zi − 1)2 + α
m−1
∑

i=1

(zi+1 − zi)
2 + α (zm − θ)2
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with respect to each zi and equating to zero. For example, taking the derivative with respect

to z1 we obtain

(1 + α)z1 − αz2 = 1

Similarly,

−αz1 + (1 + 2α)z2 − αz3 = 1

...

−αzm−2 + (1 + 2α)zm−1 − αzm = 1

−αzm−1 + (1 + α)zm = θ .

In matrix form, the resulting system of linear equations is expressed as A~z = ~y with

~y = (1, . . . , 1, θ). Denoting Am the m-sized matrix, direct calculation shows that

(Am)−1
m,m ≤ (Am−1)

−1

m−1,m−1. This is a sufficient condition for the desired result (20), be-

cause
∑m

i=1
(Am)−1

m,i = 1 and

z1

m =
m−1
∑

i=1

(Am)−1

m,i + (Am)−1

m,mθ (21)

= (1 − (Am)−1

m,m) + (Am)−1

m,mθ = 1 − (1 − θ)(Am)−1

m,m

z2

m = 1 − (1 − θ)(Am−1)
−1

m−1,m−1 (22)

Equation (15) has the same form as (18) (with θ = 0, and m = 2n − 1). Using the

relationship (20) recursively we can deduce that z∗
of,2n−1

≥ z∗of ′,2n−1
where

~z∗of ′ = argmin
~z

[

2n−1
∑

i=n

(zi − 1)2 + α
2n−2
∑

i=n

(zi+1 − zi)
2 + α (z2n−1)

2

]

. (23)
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But it is obvious that z∗
of ′,2n−1

> z∗
n because it is exactly the same smooth approximation

problem, only with θ larger for ~z∗
of than for ~z∗. The same line of reasoning can be applied

for (16) and (17).
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