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Abstract. The following question is due to Chatterjee and Varadhan (2011). Fix 0 < p < r < 1
and take G ∼ G(n, p), the Erdős-Rényi random graph with edge density p, conditioned to have at
least as many triangles as the typical G(n, r). Is G close in cut-distance to a typical G(n, r)? Via
a beautiful new framework for large deviation principles in G(n, p), Chatterjee and Varadhan gave
bounds on the replica symmetric phase, the region of (p, r) where the answer is positive. They
further showed that for any small enough p there are at least two phase transitions as r varies.

We settle this question by identifying the replica symmetric phase for triangles and more generally
for any fixed d-regular graph. By analyzing the variational problem arising from the framework of
Chatterjee and Varadhan we show that the replica symmetry phase consists of all (p, r) such that

(rd, hp(r)) lies on the convex minorant of x 7→ hp(x
1/d) where hp is the rate function of a binomial

with parameter p. In particular, the answer for triangles involves hp(
√
x) rather than the natural

guess of hp(x
1/3) where symmetry was previously known. Analogous results are obtained for linear

hypergraphs as well as the setting where the largest eigenvalue of G ∼ G(n, p) is conditioned to
exceed the typical value of the largest eigenvalue of G(n, r). Building on the work of Chatterjee
and Diaconis (2012) we obtain additional results on a class of exponential random graphs including
a new range of parameters where symmetry breaking occurs. En route we give a short alternative
proof of a graph homomorphism inequality due to Kahn (2001) and Galvin and Tetali (2004).

1. Introduction

The following question was raised by Chatterjee and Varadhan [8] concerning large deviations
in G(n, p), the Erdős-Rényi random graph on n vertices with edge density p.

Fix 0 < p < r < 1 and let Gn be an instance of G(n, p) conditioned on the rare
event of having at least as many triangles as a typical instance of G(n, r). Is it the
case that as n→∞ the graph Gn is close in cut-distance to a typical G(n, r) graph?

(A more formal statement, including the definition of the graph cut-metric, is postponed to §1.1.)
This amounts to asking whether the likely reason for too many triangles is an overwhelming number
of edges, uniformly distributed, or some fewer edges arranged in a special structure, e.g., a clique.
Dubbed replica symmetry and symmetry breaking, resp., the dichotomy between these scenarios
turns out to depend on p and r. Intriguingly, it was known that for small enough p there are at
least two phase transitions as r increases from p to 1, with replica symmetry near the two endpoints.

In this work we analyze the variational problems arising from the framework of Chatterjee and
Varadhan and obtain a full answer for the question above, as depicted in Fig. 1. More generally, we
identify the phase diagram for upper tails of any fixed regular subgraph and derive related results
in other random graph settings, e.g., exponential random graphs, random hypergraphs, etc.

1.1. Subgraph densities and spectral radii. Large deviations for subgraph densities in random
graphs have been extensively studied (see, e.g., [29, 46, 32, 28, 30, 5, 13, 14] as well as [3, 27] and
the references therein). A representing example which drew significant attention is upper tails
of triangle counts, i.e., estimating the probability that G(n, p) has at least

(
n
3

)
r3 triangles where

r = (1 + η)p for fixed η > 0 (allowing p to vary with n), a problem whose understanding is still
incomplete. The order of the rate function (the normalized logarithm of this probability) when
p → 0 was only very recently settled: Chatterjee [5] and DeMarco and Kahn [14] independently
established it to be n2p2 log(1/p) when p & log n/n, and yet the exact rate function remains
unknown in this range of p. We now turn to what was known for fixed p, our focus in this paper.
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Figure 1. Phase diagram for the upper tail of triangle counts. Shaded region is
the replica symmetric phase; the region to its left is the symmetry breaking phase.
Previous results [6, 8] established replica symmetry to the right of the dashed curve.

Clearly, if the total number of edges in G(n, p) deviates to m ∼
(
n
2

)
r then one will arrive at a

random graph with m uniformly distributed edges featuring the desired number of triangles. Thus,
the large deviation rate function for encountering

(
n
3

)
r3 triangles in G(n, p) is at most hp(r), where

hp(x) := x log
x

p
+ (1− x) log

1− x
1− p

for p ∈ (0, 1) and x ∈ [0, 1] (1.1)

is the rate function associated to the binomial distribution with probability p. However, it is
possible that other configurations with broken symmetry would give rise to lower rate functions.

As an application of Stein’s method for concentration inequalities, Chatterjee and Dey [6] found
a range of (p, r) where the large deviation rate function for triangles is equal to hp(r), namely when

p ≥ 2/(2 + e3/2) ≈ 0.31 or when r is suitably close either to p or to 1. This symmetry region was
explicitly stated in [8, Theorem 4.3] as all pairs (p, r) where (r3, hp(r)) lies on the convex minorant

of x 7→ hp(x
1/3). The breakthrough work of Chatterjee and Varadhan [8] introduced a remarkable

general framework for large deviation principles in G(n, p) via Szemerédi’s regularity lemma [45] and
the theory of graph limits by Lovász et al. [34, 35, 4]. It expressed the large deviation rate function,
and moreover the structure of the random graph conditioned on the large deviation, in terms of a
variational problem on graphons, the infinite-dimensional limit objects for graph sequences.

Although often this variational problem is intractable, for triangles in the mentioned range of
(p, r) it was shown in [8] to have a unique and symmetric solution. To formalize this symmetry, we
say a graph G is close in cut-distance to a typical G(n, r) graph if all induced subgraphs on a linear
number of vertices have edge density close to r. More precisely, for a graph G and r ∈ [0, 1] let

δ�(G, r) := sup
A,B⊂V (G)

1

|V (G)|2
∣∣eG(A,B)− r |A| |B|

∣∣ ,
where eG(A,B) is the number of pairs (a, b) ∈ A × B with ab ∈ E(G). Chatterjee and Varadhan
showed that, in the above range of (p, r), if Gn ∼ G(n, p) is conditioned to have at least

(
n
3

)
r3

triangles then δ�(Gn, r) → 0 in probability as n → ∞. The function x 7→ hp(x
1/3) governing that

region is the natural candidate for the phase boundary as the cube-root accounts for the 3 edges of
the triangle (see, e.g., [15, §4.5.2] for related literature), and indeed Chatterjee and Varadhan asked
whether this precisely characterizes the full replica symmetric phase. As it turns out, however, the
replica symmetric phase is strictly larger, being governed instead by x 7→ hp(

√
x). (See Fig. 1.)
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Figure 2. The phase boundary for counts of d-regular fixed subgraphs in G(n, p).

For any graph G let e(G) = |E(G)|, and for any two graphs G and H let hom(H,G) denote the
number of homomorphisms from H to G (i.e., maps V (H)→ V (G) that carry edges to edges). Let

t(H,G) :=
|hom(H,G)|
|V (G)||V (H)|

be the probability that a random map V (H) → V (G) is a graph homomorphism. We now state
our main result on the phase diagram for large deviations in densities of d-regular subgraphs.

Theorem 1.1. Fix 0 < p ≤ r < 1 and let H be a fixed d-regular graph for some d ≥ 2. Let
Gn ∼ G(n, p) be the Erdős-Rényi random graph on n vertices with edge probability p.

(i) If the point (rd, hp(r)) lies on the convex minorant of the function x 7→ hp(x
1/d) then

lim
n→∞

1(
n
2

) logP
(
t(H,Gn) ≥ re(H)

)
= −hp(r)

and furthermore, for every ε > 0 there exists some C = C(H, ε, p, r) > 0 such that for all n,

P
(
δ�(Gn, r) < ε

∣∣∣ t(H,Gn) ≥ re(H)
)
≥ 1− e−Cn2

.

(ii) If the point (rd, hp(r)) does not lie on the convex minorant of the function x 7→ hp(x
1/d) then

lim
n→∞

1(
n
2

) logP
(
t(H,Gn) ≥ re(H)

)
> −hp(r)

and furthermore, there exist ε, C > 0 such that for all n,

P
(

inf
{
δ�(Gn, s) : 0 ≤ s ≤ 1

}
> ε

∣∣∣ t(H,Gn) ≥ re(H)
)
≥ 1− e−Cn2

.

In particular, when d = 2, case (ii) occurs if and only if p <
[
1 + (r−1 − 1)1/(1−2r)

]−1
.

The boundary curves for various values of d are plotted in Fig. 2. It is easy to verify (Lemma A.1)
that the rightmost point in the curve for d-regular subgraphs is (p, r) =

(
d−1

d−1+ed/(d−1) ,
d−1
d

)
.
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We give an analogous result for large deviations of the spectral radius of an Erdős-Rényi random
graph. The phase boundary in this case coincides with that of triangles.

Theorem 1.2. Fix 0 < p ≤ r < 1. Let Gn ∼ G(n, p) be an Erdős-Rényi random graph on n vertices
with edge probability p, and let λ1(Gn) denote the largest eigenvalue of its adjacency matrix.

(i) If p ≥
[
1 + (r−1 − 1)1/(1−2r)

]−1
then

lim
n→∞

1(
n
2

) logP (λ1(Gn) ≥ nr) = −hp(r)

and furthermore, for every ε > 0 there exists some C = C(ε, p, r) > 0 such that for all n,

P (δ�(Gn, r) < ε | λ1(Gn) ≥ nr) ≥ 1− e−Cn2
.

(ii) If p <
[
1 + (r−1 − 1)1/(1−2r)

]−1
then

lim
n→∞

1(
n
2

) logP (λ1(Gn) ≥ nr) > −hp(r)

and furthermore, there exist ε, C > 0 such that for all n,

P
(
inf
{
δ�(Gn, s) : 0 ≤ s ≤ 1

}
> ε

∣∣ λ1(Gn) ≥ nr
)
≥ 1− e−Cn2

.

Both theorems are proved through an analysis of the graphon variational problems rising from the
framework of Chatterjee and Varadhan [8]. We show that throughout the replica symmetric region
its unique solution is the symmetric one (a consequence of a generalized form of Hölder’s inequality),
whereas elsewhere one can construct graphons that outperform the symmetric candidate. Note
that Theorem 1.2 addresses spectral large deviations, whereas the framework of [8] was tailored
for subgraph densities (the recent work [9] broadens it to general random matrix properties with
respect to an appropriately defined spectral distance. Here we consider concretely large deviations
in the spectral norm of random graphs). Fortunately, the results of [8] easily extend to a wide family
of graph parameters with respect to the cut-metric, including the operator norm, the extension of
the (normalized) spectral norm to the space of graphons. This generalization is detailed in §2.

1.2. Exponential random graphs. We now turn our attention to a different random graph
model, the basic setting of which assigns a probability pβ(G) to every graph G on n labeled
vertices as a function of its edge density t(K2, G), its triangles density t(K3, G) and a weight vector
β = (β1, β2) for these two quantities.1 Namely, the graph G appears with the following probability:

pβ(G) =
1

Zn
exp

((
n

2

)
(β1t(K2, G) + β2t(K3, G))

)
, (1.2)

where Zn is a normalizing factor (the partition function). When β2 > 0 the model favors graphs
with more triangles whereas triangles are discouraged for β2 < 0. There is a rich literature on both
flavors of the model, motivated in part by applications in social networking: the reader is referred
to [25, 37, 38, 44] as well as [2, 7] and the references therein.

As shown by Bhamidi, Bresler and Sly [2] and Chatterjee and Diaconis [7], when β2 ≥ 0 and n
is large, a typical random graph drawn from the distribution has a trivial structure — essentially
the same one as an Erdős-Rényi random graph with a suitable edge density. This somewhat
disappointing conclusion accounts for some of the practical difficulties with statistical parameter
estimation for such models. It was further shown in [7] that if we allow β2 to be sufficiently negative,
then the model does behave appreciably differentially from an Erdős-Rényi model. In this part of
our work we focus on the case β2 > 0, and propose a natural generalization that will enable the
model to exhibit a nontrivial structure instead of the previously observed Erdős-Rényi behavior.

1The general model allows for an arbitrary (fixed) collection of subgraphs. While the majority of our arguments
can be extended to the general setting, we focus on the two-term model for simplicity and clarity.
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Figure 3. The (β1, β2)-phase diagrams for the exponential random graph model
in (1.3) with β2 ≥ 0 and various values of α > 0, as a special case of Theorem 1.3.
When α < 2/3, symmetry breaking occurs in the shaded region (at least) and replica
symmetry occurs for β1 ≥ −2. When α ≥ 2/3, replica symmetry always occurs.

Consider the exponential random graph model which includes an additional exponent α > 0 in
the exponent of the triangle density term:

pα,β(G) =
1

Zn
exp

((
n

2

)
(β1t(K2, G) + β2t(K3, G)α)

)
. (1.3)

We will show that this model exhibits a symmetry breaking phase transition even when β2 > 0.
When α ≥ 2/3, the generalized model features the Erdős-Rényi behavior, similar to the previously
observed case of α = 1. However, for 0 < α < 2/3, there exist regions of values of (β1, β2) for which
a typical random graph drawn from this distribution has symmetry breaking. As was the case for
Theorems 1.1 and 1.2, rather than just triangles we prove this result for any d-regular graph H.

Theorem 1.3. Let H be a d-regular graph for some fixed d ≥ 2 and fix β1 ∈ R and β2, α > 0. Let
Gn be an exponential random graph on n labeled vertices with law

pα,β(Gn) =
1

Zn
exp

((
n

2

)
(β1t(K2, Gn) + β2t(H,Gn)α)

)
. (1.4)

(a) Suppose α ≥ d/e(H). There exists a subset Γ = {(β1, ϕ(β1)) : β1 < log(e(H)α− 1)− e(H)α
e(H)α−1}

of R2 for some function ϕ : R → R such that for every (β1, β2) ∈ R × (0,∞) \ Γ there exists
0 < u∗ < 1 so that δ�(Gn, u

∗) → 0 almost surely as n → ∞, and for every (β1, β2) ∈ Γ there
exist 0 < u∗1 < u∗2 < 1 such that min{δ�(Gn, u

∗
1) , δ�(Gn, u

∗
2)} → 0 almost surely as n→∞.
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Figure 4. Linear d-regular hypergraphs: a cycle (d = 2) and the Fano plane (d = 3).

(b) Suppose 0 < α < d/e(H) and β1 ≥ log(d − 1) − d/(d − 1). Then there exists 0 < u∗ < 1 such
that for every ε > 0 there is a C > 0 such that δ�(Gn, u

∗)→ 0 almost surely as n→∞.
(c) Suppose 0 < α < d/e(H) and β1 < log(d − 1) − d/(d − 1). Then there exists an open interval

of values β2 > 0 with the property that there exist ε, C > 0 such that for all n,

P
(
inf
{
δ�(Gn, s) : 0 ≤ s ≤ 1

}
> ε
)
≥ 1− e−Cn2

.

Note that, as in the previous theorems, for the replica symmetric phase one can quantify the
rate of convergence, e.g., when δ�(Gn, u

∗) → 0 almost surely we in fact have that for any ε > 0

there exists some C > 0 so that P(δ�(Gn, u
∗) ≤ ε) ≥ 1− e−Cn2

for every n.

1.3. Linear hypergraphs. Theorem 5.1 (see §5) extends Theorem 1.1 to the setting of random
hypergraphs. A k-uniform hypergraph G consists of a set V (G) of vertices and a set E(G) of
hyperedges, where each hyperedges is a k-element subsets of V (G). It is said to be d-regular if
every vertex is incident to exactly d edges, and linear if every two vertices are incident to at most
one common hyperedge (see Fig. 4 for examples of d-regular 3-uniform linear hypergraphs). The

random hypergraph G(k)(n, p) is formed by starting with n vertices and adding k-element subset of
the vertices as a hyperedge independently with probability p.

In order to generalize our arguments to large deviations in the density of H, an arbitrary d-regular
linear hypergraph, one must first extend the theory developed by Chatterjee and Varadhan [8] to
k-uniform hypergraphs. Thanks to the linearity of the hypergraph H there is a simple extension of
Szemerédi’s regularity lemma to hypergraphs that behaves well with respect to the density of H.

1.4. Graph homomorphisms. Alon [1] conjectured in 1991 that the number of independent sets

in a d-regular graph H, denoted i(H), satisfies i(H) ≤ i(Kd,d)
|V (H)|/(2d), i.e., it is maximized when

H is a union of complete bipartite graphs Kd,d. Kahn [31] verified this when H is bipartite using
an ingenious application of the entropy method (specifically, Shearer’s inequality). This result was
thereafter extended by the second author [47] to all d-regular graphs via an elementary bijection.
Using the entropy method of Kahn, Galvin and Tetali [22] extended [31] to graph homomorphisms:

Theorem 1.4 (Galvin and Tetali [22], following Kahn [31]). Let H be a simple d-regular bipartite
graph, and let G be a graph, possibly containing loops. We have

hom(H,G) ≤ hom(Kd,d, G)|V (H)|/(2d). (1.5)

Observe that this inequality generalizes the independent set result, since i(H) = hom(H, ).
Previously, all the known proofs of these inequalities relied on entropy techniques. Regarding a more
elementary proof, Kahn [31] wrote that “one would think that this simple and natural conjecture...
would have a simple and natural proof.” As a related aside, in §6 we give a short new entropy-free
proof for (1.5) as an immediate consequence of the generalized form of Hölder’s inequality.
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1.5. Organization. In §2 we review graph limits as well as the large deviation principle for random
graphs developed by Chatterjee and Varadhan. In §3 we apply the machinery of Chatterjee and
Varadhan to prove Theorems 1.1 and 1.2, determining the phase diagram for large deviations of
subgraph densities and the largest eigenvalue in G(n, p), resp. Section 4 focuses on exponential
random graphs and gives the proof of Theorem 1.3. In §5 we extend Theorem 1.1 to densities
of linear hypergraphs in random hypergraphs. Section 6 contains the short new proof of the
inequalities of Kahn and Galvin-Tetali (Theorem 1.4). Finally, in §7 we discuss some open problems.

2. Graph limits and the framework of Chatterjee-Varadhan

The theory of Chatterjee-Varadhan reduces the problem of determining the rate function for large
deviations in dense random graphs to solving a prescribed variational problem in graph limits. We
will review the required definitions from graph limit theory and then describe the results of [8] in
the broader context of “nice” graph parameters, generalizing subgraph counts.

2.1. Graph limits. Let W be the space of all bounded measurable functions [0, 1]2 → R that
are symmetric (i.e., f(x, y) = f(y, x) for all x, y ∈ [0, 1]). Further let W0 denote all symmetric
measurable functions [0, 1]2 → [0, 1], referred to as graphons or kernels (occasionally these are
called labeled graphons since later we consider equivalence classes ofW0 modulo measure-preserving
bijections on [0, 1]). Lovász and Szegedy [34] showed that the elements of W0 are limit objects for
sequences of graphs w.r.t. all subgraph densities. Specifically, for any f ∈ W and any simple graph
H with V (H) = [m] = {1, 2, . . . ,m}, define

t(H, f) =

∫
[0,1]m

∏
(i,j)∈E(H)

f(xi, xj) dx1 · · · dxm .

(We shall omit the domain of integration when there is no ambiguity.) Any simple graph G on
vertices {1, 2, . . . , n} can be represented as a graphon fG by

fG(x, y) =

{
1 if (dnxe , dnye) is an edge of G,

0 otherwise.

In particular, t(H,G) = t(H, fG) for any two graphs H and G.
A sequence of graphs {Gn}n≥1 is said to converge if the sequence of subgraph densities t(H,Gn)

converges for every fixed finite simple graph H. It was shown in [34] that for any such convergent
graph sequence there is a limit object f ∈ W0 such that t(H,Gn) → t(H, f) for every fixed H.
Conversely, any f ∈ W0 arises as a limit of a convergent graph sequence.

We will consider several norms on W, beginning with the standard Lp norm

‖f‖p :=

(∫
|f(x, y)|p dxdy

)1/p

.

Each f ∈ W can be viewed as a Hilbert-Schmidt kernel operator Tf on L2([0, 1]) by

(Tfu)(x) =

∫ 1

0
f(x, y)u(y) dy for any u ∈ L2([0, 1]),

and the operator norm for f is then given by

‖f‖op := min
{
c ≥ 0 : ‖Tfu‖2 ≤ c ‖u‖2 for all u ∈ L2([0, 1])

}
.

As Tf is self-adjoint, its operator norm is equal to its spectral radius (see, e.g., [41, Thm. 12.25]).
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The cut-norm on W is given by

‖f‖� := sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

f(x, y) dxdy

∣∣∣∣
= sup

u,v : [0,1]→[0,1]

∣∣∣∣∣
∫

[0,1]2
f(x, y)u(x)v(y) dxdy

∣∣∣∣∣ ,
where the two suprema are equal since one only needs to consider {0, 1}-valued u and v by the
linearity of the integral. The second definition is useful for giving upper bounds using the cut-norm.

For any measure-preserving map σ : [0, 1] → [0, 1] and f ∈ W, define fσ ∈ W to be given by
fσ(x, y) = f(σ(x), σ(y)). We define the cut-distance on W by

δ�(f, g) = inf
σ
‖f − gσ‖�

where σ ranges over all measure-preserving bijections on [0, 1]. For the case of graphons this gives a

pseudometric space (W0, δ�), which can be turned into a genuine metric space W̃0, equipped with
the same cut-metric, by taking a quotient w.r.t. the equivalence relation f ∼ g iff δ�(f, g) = 0. The
following theorem can be viewed as a topological interpretation of Szemerédi’s regularity lemma.

Theorem 2.1 ([34]). The metric space (W̃0, δ�) is compact.

It was shown in [4] that a sequence of graphs {Gn}n≥1 converges in the sense of subgraph

densities if and only if the sequence of graphons fGn ∈ W0 converge in W0 w.r.t. the cut-distance.
Equivalently, the topology on W0 induced by δ� is the weakest topology that is continuous w.r.t.
the subgraph densities t(H, ·) for every H. This underlines one of the reasons making the cut-metric
topology a natural choice for the space of graphons.

2.2. Graph parameters in the cut-metric topology. We shall focus on graph parameters
whose extensions to the space of graphons behave well under the cut-metric topology. One example
of such a graph parameter is the subgraph density t(H, ·) for an arbitrary finite simple graph H,
which was defined in §2.1 directly on the full space of graphons such that t(H,G) = t(H, fG) for
any graph G. A crucial feature of t(H, ·) is being continuous w.r.t. the cut-metric ([4]), related to
the existence of a “counting lemma” in the regularity lemma literature. This will be a prerequisite
for applying the large deviations machinery of Chatterjee and Varadhan.

Definition 2.2. A nice graph parameter is a function τ : W̃0 → R that is continuous w.r.t. δ� and
such that every local extrema of τ w.r.t. L∞(W0) is necessarily a global extrema. We extend such
a function τ to W0 in the obvious manner and further write τ(G) = τ(fG) for any graph G.

Another way to state the local extrema condition is that if f ∈ W0 is not a global maximum
(resp. minimum) of τ then for every ε > 0 there exists g ∈ W0 with ‖f − g‖∞ < ε and τ(g) > τ(f)
(resp. τ(g) < τ(f)). This technical condition will later imply the continuity of the rate function.

Since the metric space (W̃0, δ�) is compact and path-connected, the image of τ as above is a

finite closed interval. In particular, its maximum is attained by a non-empty closed subset of W̃0.

Example 2.3 (Subgraph density). For any fixed finite simple graph H, the subgraph density
t(H, ·) is a nice graph parameter. As mentioned above, t(H, ·) is continuous w.r.t. δ� and in
fact the map f 7→ t(H, f) is Lipschitz-continuous in the metric δ� ([4, Theorem 3.7]). The local
extrema condition is fulfilled since the function g+ = min {f + ε, 1} satisfies t(H, g+) > t(H, f)
unless t(H, f) = 1, and similarly g− = (1− ε)f has t(H, g−) < t(H, f) unless t(H, f) = 0.

The next two examples are of graph parameters that do not meet the criteria of Definition 2.2.
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Example 2.4 (Frobenius norm). Let τ be the function that maps a weighted graph G on n vertices
with adjacency matrix AG to the normalized Frobenius norm ‖AG‖F /n. Then τ is discontinuous

in (W̃0, δ�) and therefore is not nice. Indeed, fix 0 < p < 1 and let Gn ∼ G(n, p). The sequence Gn
is known to converge in W̃0 almost surely to the constant graphon p (see [4, Theorem 4.5]), whose
Frobenius norm is p. In contrast to this limiting value, ‖AGn‖F /n =

∥∥fGn∥∥
2
→ √p almost surely.

Example 2.5 (Max-cut). The function τ(G) = maxcut(G)/ |V (G)|2 extends to W̃0 via

τ(f) = sup
U⊂[0,1]

∫
U×([0,1]\U)

f(x, y) dxdy .

Despite being continuous w.r.t. δ� as well as monotone, the max-cut density is not nice. The
continuity of τ follows from the fact |τ(f)− τ(g)| ≤ δ�(f, g), as any cut for either f or g translates
into a cut for the other with value differing by at most δ�(f, g). To see that τ does not satisfy the
local maxima condition, let f be the graphon defined to be 1 on [0, 1

3 ]× [1
3 , 1] ∪ [1

3 , 1]× [0, 1
3 ] and 0

elsewhere. We have τ(f) = 2
9 , induced by U = [0, 1

3 ]. This is not the global maximum for τ , which

is 1
4 for the constant function 1. However, we claim that f is a local maximizer of τ with respect to

the L∞-topology. By monotonicity, showing that τ(g) = 2
9 for the function g = min

{
f + 1

2 , 1
}

will

imply that τ(f0) ≤ τ(g) = τ(f) for any f0 with ‖f0 − f‖∞ ≤
1
2 . Indeed, if µ(U ∩ [0, 1

3 ]) = a and

µ(U ∩ [1
3 , 1]) = b, where µ is Lebesgue measure, then the cut density induced by U for g is equal to

1
2a(1

3 −a) + 1
2b(

2
3 − b) +a(2

3 − b) + b(1
3 −a), which is maximized at (a, b) = (0, 2

3) and (a, b) = (1
3 , 0).

We will see in §3.2 (see Lemma 3.6) that, in contrast to the Frobenius norm, the spectral norm
(the focus of Theorem 1.2) does behave well under the cut-metric topology, thus qualifying for an
application of the large deviation theory of Chatterjee and Varadhan.

2.3. Large deviations for random graphs. A random graph Gn ∼ G(n, p) corresponds to the

random point fGn ∈ W̃0, thus G(n, p) induces a probability distribution Pn,p on W̃0 supported on
a finite set of points (graphs on n vertices). Recalling (1.1), we extend hp : [0, 1]→ R to W0 by

hp(f) :=

∫
[0,1]2

hp(f(x, y)) dxdy for any f ∈ W0.

An important feature of hp is that it is a convex function on [0, 1] and hence lower-semicontinuous

on W̃0 with respect to the cut-metric topology ([8, Lem. 2.1]).
Using Szemerédi’s regularity lemma as well as tools from graph limits, Chatterjee and Varad-

han [8] proved the following large deviation principle for random graphs.

Theorem 2.6 ([8]). For each fixed p ∈ (0, 1), the sequence Pn,p obeys a large deviation principle

in the space (W̃0, δ�) with rate function hp. Explicitly, for any closed set F ⊆ W̃0,

lim sup
n→∞

1(
n
2

) logPn,p(F ) ≤ − inf
f∈F

hp(f) ,

and for any open U ⊆ W̃0,

lim inf
n→∞

1(
n
2

) logPn,p(U) ≥ − inf
f∈U

hp(f) .

The machinery developed by Chatterjee and Varadhan reduces the problem determining the large
deviation rate function for dense random graphs to solving a variational problem on graphons. For
any nice graph parameter τ : W0 → R, any p ∈ [0, 1], and any t ∈ τ(W0), let

φτ (p, t) := inf {hp(f) : f ∈ W0 , τ(f) ≥ t} . (2.1)

Since hp is lower-semicontinuous on W̃0, the infimum in (2.1) is always attained.
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The following result was stated in [8, Thm 4.1 and Prop. 4.2] for the graph parameter τ = t(K3, ·).
We state its generalization to the class of nice graph parameters as per Definition 2.2.

Theorem 2.7 (Variational problem). Let τ : W0 → R be a nice graph parameter and Gn ∼ G(n, p).
Fix p ∈ (0, 1) and t < max(τ). Let φτ (p, t) denote the solution to (2.1). Then

lim
n→∞

1(
n
2

) logP (τ(Gn) ≥ t) = −φτ (p, t) . (2.2)

Let F ∗ be the set of minimizers for (2.1) and let F̃ ∗ be its image in W̃0. Then F̃ ∗ is a non-empty

compact subset of W̃0. Moreover, for each ε > 0 there exists C = C(τ, ε, p, t) > 0 so that for all n,

P
(
δ�(Gn, F̃

∗) < ε
∣∣∣ τ(Gn) ≥ t

)
≥ 1− e−Cn2

.

In particular, if F̃ ∗ = {f∗} for some f∗ ∈ W̃0 then the conditional distribution of Gn given the
event τ(Gn) ≥ t converges to the point mass at f∗ as n→∞.

Observe that by considering −τ (also a nice graph parameter) one obtains the same result for
lower tail deviations. The intuition behind the second part of Theorem 2.7 is that the probability

that δ�(Gn, F̃
∗) ≥ ε conditioned on τ(Gn) ≥ t can be again computed using Theorem 2.6 and

shown to be exponentially smaller than that of the probability of the event τ(Gn) ≥ t.
The proof of Theorem 2.7 is a straightforward extension of the arguments of [8, Thm. 4.1] to

nice graph parameters. A technical condition needed to complete the proof of Theorem 2.7 is given
by the following lemma, key to which are the attributes of a nice graph parameter.

Lemma 2.8. Let τ : W0 → R be a nice graph parameter. For any p ∈ (0, 1), the map t 7→ φτ (p, t)
is continuous on τ(W0).

Proof. Fix 0 < p < 1. By definition, t 7→ φτ (p, t) is non-decreasing. To prove left-continuity,
consider a ∈ R. Since hp is lower-semicontinuous onW0, the set {f : hp(f) ≤ a} is closed inW0, thus
also compact by the compactness of W0. Since τ is continuous on W0, the set {τ(f) : hp(f) ≤ a} is
compact and in particular closed. Note that the latter is precisely the pre-image of (−∞, a] under
the inverse of t 7→ φτ (p, t). As this pre-image is closed for any a ∈ R, left-continuity follows.

In order to prove right-continuity it suffices to show that for every t0 ∈ τ(W0) with t0 < max(τ)
and every ε > 0 there exists some f ∈ W0 such that hp(f) < φτ (p, t0) + ε and τ(f) > t0.
Indeed, since hp : [0, 1] → R is uniformly continuous (for any fixed p), there exists ε′ > 0 so that
|hp(x)− hp(y)| < ε whenever |x− y| < ε′. Let f0 be the minimizer of the variational problem (2.1)
for t = t0. The local extrema condition in Definition 2.2 now implies that there is some f ∈ W0

with τ(f) > t0 and ‖f − f0‖∞ < ε′. Hence, hp(f) < hp(f0) + ε = φτ (p, t0) + ε, as desired. �

3. The phase diagram for subgraph densities and the spectral radius

3.1. Subgraph density. In this section we prove Theorem 1.1, characterizing the phase diagram
of upper tails (replica symmetry vs. symmetry breaking) of the density of a fixed d-regular subgraph.

Establishing the replica symmetric phase will hinge on a generalized form of Hölder’s inequality
which appeared in [18] (see also [19, Lemma 5.1]). We include its short proof for completeness.

Theorem 3.1 (Generalized Hölder’s inequality). Let µ1, . . . , µn be measures on Ω1, . . . ,Ωn, resp.,
and let µ =

∏n
i=1 µi be the product measure on Ω =

∏n
i=1 Ωi. Let A1, . . . , Am be nonempty subsets

of [n] = {1, . . . , n} and write ΩA =
∏
`∈A Ω` and µA =

∏
`∈A µ`. Let fi ∈ Lpi (ΩAi , µAi) with pi ≥ 1

for each i ∈ [m] and suppose in addition that
∑

i:`∈Ai(1/pi) ≤ 1 for each ` ∈ [n]. Then∫ m∏
i=1

|fi| dµ ≤
m∏
i=1

(∫
|fi|pi dµAi

)1/pi

.

In particular, when pi = d for every i ∈ [m] we have
∫ ∏m

i=1 |fi| dµ ≤
∏(∫

|fi|d dµAi
)1/d

.
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Proof. The proof carries by induction on n with the trivial base case of n = 0. By Fubini’s theorem,∫
Ω

m∏
i=1

|fi| dµ =

∫
Ω

∏
i:n∈Ai

|fi|
∏

i:n/∈Ai

|fi| dµ =

∫
Ω[n−1]

(∫
Ωn

∏
i:n∈Ai

|fi| dµn
) ∏
i:n/∈Ai

|fi| dµ[n−1] .

where the argument of each fi is the restriction of x ∈ Ω to the coordinates of Ai, denoted by xAi .
Hölder’s inequality (along with Jensen’s inequality if

∑
i:n∈Ai(1/pi) is less than 1) implies that∫

Ωn

∏
i:n∈Ai

|fi| dµn ≤
∏

i:n∈Ai

(∫
Ωn

|fi|pi dµn
)1/pi

,

thus for each i with n ∈ Ai we can let f∗i : Ω[n−1] → R denote the averaging map
(∫

Ωn
|fi|pi dµn

)1/pi

and obtain that ∫
Ω

m∏
i=1

|fi| dµ ≤
∫

Ω[n−1]

∏
i:n∈Ai

f∗i
∏

i:n/∈Ai

|fi| dµ[n−1] .

Now, the functions f∗i correspond to A∗i = Ai \ {n} and therefore, thanks to the assumption that∑
i:`∈Ai(1/pi) ≤ 1 for each ` ∈ [n− 1] we can apply the induction hypothesis and infer that∫

Ω

m∏
i=1

|fi| dµ ≤
∏

i:n∈Ai

(∫
Ω[n−1]

(f∗i )pi dµ[n−1]

)1/pi ∏
i:n/∈Ai

(∫
Ω[n−1]

|fi|pi dµ[n−1]

)1/pi

=

m∏
i=1

(∫
Ω
|fi|pi dµ

)1/pi

,

as required. �

It is helpful to compare Theorem 3.1 with the standard Hölder’s inequality for the case where
pi = d for all i. A direct application of Hölder’s inequality produces the inequality ‖

∏
fi‖1 ≤∏

i ‖fi‖m, whereas Theorem 3.1 exploits the extra assumption that #{i : ` ∈ Ai} ≤ d for all ` ∈ [n]
and gives the stronger inequality ‖

∏
fi‖1 ≤

∏
i ‖fi‖d. For instance,(∫

f1(x, y)f2(y, z)f3(x, z) dxdydz

)2

≤
∏
i

(∫
fi(x, y)2 dxdy

)
.

Placing this in the context of subgraph densities, as an immediate corollary of Theorem 3.1 (in the
special case that pi = d for all i) we have the following inequality.

Corollary 3.2. Let H be a graph whose maximum degree is at most d, and let f ∈ W. Then

t(H, f) ≤ ‖f‖e(H)
d .

Recall that Theorem 2.7 reduces the problem of finding the phase boundary to determining
whether the constant function r is a solution for the variational problem of minimizing hp(f) over

f ∈ W0 subject to t(H, f) ≥ re(H), where H is some fixed graph. In light of the above corollary, it
is important to estimate hp(f) for functions f ∈ W0 with ‖f‖d = r, as addressed next.

Lemma 3.3. Let 0 < p < 1 and let f ∈ W0. Suppose that d ≥ 1 and 0 < r < 1 are such that the
point (rd, hp(r)) lies on the convex minorant of x 7→ hp(x

1/d). If in addition either

(a) p < r < 1 and ‖f‖d ≥ r, or
(b) 0 < r < p and ‖f‖d ≤ r,
then hp(f) ≥ hp(r), with equality occurring if and only if f ≡ r.
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r r

r

r1 r2

r

a b

1− a− b
I0

I1 I2

x

hp(x
1/d)

rd1 rd2rd

(1 − s) ` s `

`

Figure 5. The construction in Lemma 3.4.

Proof. Let ψ(x) = hp(x
1/d) and let ψ̂ be the convex minorant of ψ. By Jensen’s inequality,

hp(f) =

∫
ψ(f(x, y)d) dxdy ≥

∫
ψ̂(f(x, y)d) dxdy ≥ ψ̂

(∫
f(x, y)d dxdy

)
= ψ̂

(
‖f‖dd

)
.

Since hp(x) (and hence ψ̂) is decreasing along [0, p] and increasing along [p, 1] (see §A), under either

of the assumptions in Parts (a),(b) we have ψ̂(‖f‖dd) ≥ ψ̂(rd) = ψ(rd) = hp(r); thus, hp(f) ≥ hp(r).
Moreover, as ψ̂ is not linear in any neighborhood of rd, equality can occur if and only if f ≡ r. �

The final element needed for the proof of Theorem 1.1 is a construction that outperforms the
constant graphon in the symmetry breaking regime. This is achieved by the following lemma.

Lemma 3.4. Let H be a d-regular graph. Fix 0 < p ≤ r < 1 so that (rd, hp(r)) is not on the convex

minorant of x 7→ hp(x
1/d). Then there exists f ∈ W0 with t(H, f) > re(H) and hp(f) < hp(r).

Proof. Since (rd, hp(r)) does not lie on the convex minorant of x 7→ hp(x
1/d), there necessarily exist

0 ≤ r1 < r < r2 ≤ 1 such that the point (rd, hp(r)) lies strictly above the line segment joining

(rd1 , hp(r1)) and (rd2 , hp(r2)). Letting s be such that

rd = srd1 + (1− s)rd2 ,
we therefore have

shp(r1) + (1− s)hp(r2) < hp(r) . (3.1)

Let ε > 0 and define

a = sε2 , b = (1− s)ε2 + ε3 ,

I0 = [a, 1− b] , I1 = [0, a] , I2 = [1− b, 1] ,

noting that for a < 1− b for any sufficiently small ε. Define fε ∈ W0 by

fε(x, y) =


r1 if (x, y) ∈ (I0 × I1) ∪ (I1 × I0) ,

r2 if (x, y) ∈ (I0 × I2) ∪ (I2 × I0) ,

r otherwise .

(See Fig. 5 for an illustration of this construction.) We claim that

t(H, fε)− re(H) = v(H)
(
a(rd1 − rd) + b(rd2 − rd)

)
re(H)−d +O(ε4) . (3.2)

Indeed, the only embeddings of H that have values different from re(H) are those where at least one
vertex of H is mapped to I1∪I2. Since a and b are both O(ε2), in order to compute t(H, fε)−re(H)
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up to an O(ε4) error we need only consider embeddings of H where precisely one vertex gets mapped
to I1∪I2. Denote this vertex of H by u, and observe that if u is mapped to I1 then the contribution
to t(H, fε)− re(H) is (rd1 − rd)re(H)−d since H is d-regular. Similarly, if u is mapped to I2 then the

contribution is (rd2 − rd)re(H)−d. Putting everything together yields (3.2).
By definition of a, b and s we have

a(rd1 − rd) + b(rd2 − rd) = sε2(rd1 − rd) + ((1− s)ε2 + ε3)(rd2 − rd) = ε3(rd2 − rd) .
Recalling that r2 > r and plugging the last equation in (3.2) it now follows that t(H, fε) > re(H)

for any sufficiently small ε > 0. At the same time, we also have

hp(fε)− hp(r) = 2a(1− a− b)(hp(r1)− hp(r)) + 2b(1− a− b)(hp(r2)− hp(r))
= 2(1− a− b) (ahp(r1) + bhp(r2)− (a+ b)hp(r))

= 2(1− a− b)ε2 (shp(r1) + (1− s)hp(r2)− hp(r) + (hp(r2)− hp(r))ε) .
Revisiting (3.1) we conclude that hp(fε) < hp(r) for any sufficiently small ε > 0. �

We now have all the ingredients needed for establishing the phase diagram of upper tail deviations
for subgraph densities.

Proof of Theorem 1.1. For Part (i), by applying Theorem 2.7 to the graph parameter t(H, ·),
it suffices to show that the constant function r is the unique element f ∈ W0 minimizing hp(f)

subject to t(H,F ) ≥ re(H). Indeed, by Corollary 3.2, t(H,F ) ≥ re(H) implies that ‖f‖d ≥ r, and
by Lemma 3.3 Part (a), hp(f) ≥ hp(r) with equality if and only if f is the constant function r.

To prove Part (ii), let F ∗ ⊂ W̃0 be the set of minimizers for the variational problem (2.1) with
the graph parameter t(H, ·). Then F ∗ does not contain the constant function r by Lemma 3.4,
nor does it contain any constant function of value r′ 6= r (when r′ > r one has hp(r

′) > hp(r),

whereas if r′ < r then t(H, f) < re(H)). Let C̃ ⊂ W̃0 be the set of constant graphons. Since F ∗

and C̃ are disjoint and both are compact, δ�(F ∗, C̃) > 0. The desired result follows from applying

Theorem 2.7 with ε = δ�(F ∗, C̃)/2.
When d = 2, the phase boundary is explicitly given by Lemma A.2, thus concluding the proof. �

One can also ask what the phase diagram is for lower tail deviations of subgraph densities. We
next show that for certain bipartite graphs there is replica symmetry everywhere for lower tails.

A beautiful conjecture of Erdős and Simonovits [43] and Sidorenko [42] (from here on referred

to as Sidorenko’s conjecture) states that every bipartite graph H satisfies t(H,G) ≥ t(K2, G)e(H)

for every graph G. The conjecture was verified for various graphs H (e.g., trees, even cycles [42],
hypercubes [26], bipartite graphs with one vertex complete to the other part [11]). As it turns out,
for any such graph H the lower tail deviations are always replica symmetric (no phase transition).

Proposition 3.5. Fix 0 < r ≤ p < 1, let Gn ∼ G(n, p) be the Erdős-Rényi random graph and let
H be a fixed bipartite graph for which Sidorenko’s conjecture holds. Then

lim
n→∞

1(
n
2

) logP
(
t(H,Gn) ≤ re(H)

)
= −hp(r)

and furthermore, for every ε > 0 there exists some constant C = C(H, ε, p, r) > 0 such that

P
(
δ�(Gn, r) < ε

∣∣∣ t(H,Gn) ≤ re(H)
)
≥ 1− e−Cn2

.

Proof. Applying Theorem 2.7 with −t(H, ·), it suffices to show that the constant function r is the

unique element f ∈ W0 minimizing hp(f) subject to t(H, f) ≤ re(H). Since H satisfies Sidorenko’s

conjecture, t(H, f) ≥ ‖f‖e(H)
1 for all f ∈ W0. Thus, if t(H, f) ≤ re(H) then ‖f‖1 ≤ r, and so by

Lemma 3.3 Part (b) (applied to the case d = 1, noting that then hp(x
1/d) is itself convex) we have

hp(f) ≥ hp(r) with equality if and only if f is the constant function r. �
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3.2. Largest eigenvalue. In this section we prove Theorem 1.2, addressing the phase boundary
for large deviations in the spectral norm. The proof will follow a similar route as the previous
section, yet first we must show that the spectral norm is a nice graph parameter.

For a graph G on n vertices, let λ1(G) be the largest eigenvalue of its adjacency matrix AG. Since
AG is symmetric, λ1(G) = ‖AG‖op, and therefore over W we have

∥∥fG∥∥
op
≥ λ1(G)/n. It is easy to

verify (see Lemma 3.6 below) that in fact
∥∥fG∥∥

op
= λ1(G)/n, thus the operator norm on W is the

graphon extension of the (normalized) largest eigenvalue. Furthermore, as we show below, ‖·‖op is

(uniformly) continuous w.r.t. the cut-metric, and the local extrema condition in Definition 2.2 is
satisfied as well, thus ‖·‖op is a nice graph parameter.

Lemma 3.6. The function ‖·‖op is a continuous extension of the normalized graph spectral norm,

i.e., λ1(G)/n for a graph G on n vertices, to (W̃0, δ�). Moreover, ‖·‖op is a nice graph parameter.

Proof. We first show that ‖f‖op = λ1(G)/n for any graph G on n vertices. Clearly, the largest

eigenvector of AG, the adjacency matrix of G, can be turned into a step function u : [0, 1]→ R such
that TfGu = (λ1(G)/n)u, and so

∥∥fG∥∥
op
≥ λ1(G)/n. Conversely, for any u : [0, 1]→ R we consider

the step function un : [0, 1]→ R such that for any 1 ≤ i ≤ n, on the interval ( i−1
n , in ] it is equal to

the average of u over that interval. Let v ∈ Rn be the vector of values of un. Since fG is constant
in every box ( i−1

n , in ]× ( j−1
n , jn ], we have

‖Tfu‖2 = ‖Tfun‖2 = ‖AGv‖2 /n
2 ≤ λ1(G) ‖v‖2 /n

2 = λ1(G) ‖un‖2 /n ≤ λ1(G) ‖u‖2 /n,
where the last inequality is due to convexity. It follows that ‖f‖op = λ1(G)/n.

Next, we will argue that

‖f‖4op ≤ 4 ‖f‖� for any symmetric measurable f : [0, 1]2 → [−1, 1]. (3.3)

Let u ∈ L2([0, 1]) with ‖u‖2 = 1. By Cauchy-Schwarz we can infer that

‖Tfu‖42 =

(∫ (∫
f(x, y)u(y) dy

)2

dx

)2

=

(∫
f(x, y)f(x, y′)u(y)u(y′) dxdydy′

)2

≤

(∫ (∫
f(x, y)f(x, y′) dx

)2

dydy′

)(∫
u(y)2u(y′)2 dydy′

)
.

=

∫
f(x, y)f(x, y′)f(x′, y)f(x′, y′) dxdx′dydy′ .

For any fixed x′, y′ we can let vy′(x) = f(x, y′) and wx′(y) = f(x′, y), thus rewriting the above as∫ (∫
f(x, y)vy′(x)wx′(y) dxdy

)
f(x′, y′) dx′dy′ ≤ 4 ‖f‖� ,

with the last inequality justified by the fact that for any g ∈ W and v, w : [0, 1]→ [−1, 1] we have∣∣∫ g(x, y)v(x)w(y) dxdy
∣∣ ≤ 4 ‖g‖� by the definition of the cut-norm, thereby establishing Eq. (3.3).

(The factor of 4 above was due to splitting v, w into positive and negative parts. Indeed, for
f : [0, 1]2 → [0, 1] the bound in (3.3) remains valid without the factor of 4 in the right-hand side.)

Consider f, g ∈ W̃0 and let σ vary over all measure-preserving bijections on [0, 1]. We then have∣∣∣‖f‖op − ‖g‖op

∣∣∣ ≤ inf
σ
‖f − gσ‖op ≤

√
2 inf

σ
‖f − gσ‖1/4� =

√
2δ�(f, g)1/4 ,

thus implying that ‖·‖op is uniformly continuous in (W̃0, δ�).
Finally, we need to verify the local extrema condition in Definition 2.2. Let f ∈ W0. There are

no local non-global minima since ‖(1− ε)f‖op = (1−ε) ‖f‖op < ‖f‖op unless ‖f‖op = 0 already. In

addition, we claim that g = min {f + ε, 1} satisfies ‖g‖op > ‖f‖op unless ‖f‖op = 1 already. Indeed,
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take some u ∈ L2([0, 1]) which is nonzero (a.e.) and satisfies u ≥ 0 and Tfu = ‖f‖op u. It suffices to

show that Tgu > Tfu on some subset of [0, 1] with positive measure. Let A = {x ∈ [0, 1] : u(x) > 0}
be the support of u, which by our choice has positive Lebesgue measure µ(A) > 0. If µ(A) < 1
then Tfu = u = 0 (a.e.) on Ac := [0, 1] \ A, so that f = 0 on Ac × A. Hence, g = ε on Ac × A
and Tgu = ε ‖u‖1 > 0 = Tfu on Ac, as desired. Suppose therefore that µ(A) = 1. If ‖f‖op < 1 we
must have g > f on a subset of positive measure, and hence also Tgu > Tfu on a subset of positive
measure, as u has full support. This shows that f cannot be a local maximum unless ‖f‖op = 1. �

In light of the above lemma, the variational problem under consideration in Theorem 1.2 becomes

inf{hp(f) : f ∈ W0, ‖f‖op ≥ r} . (3.4)

We will need the following straightforward inequality relating the operator norm, ‖·‖1 and ‖·‖2.

Lemma 3.7. For every f ∈ W0 we have ‖f‖1 ≤ ‖f‖op ≤ ‖f‖2.

Proof. For the left inequality, observe that since f ≥ 0 we have that

‖f‖1 = ‖Tf1‖1 ≤ ‖Tf1‖2 ≤ ‖f‖op .

For the right inequality in the statement of the lemma, let u : [0, 1]→ R. By Cauchy-Schwarz,

‖Tfu‖22 =

∫ (∫
f(x, y)u(y) dy

)2

dx ≤
(∫

f(x, y)2 dydx

)(∫
u(y)2 dy

)
= ‖f‖22 ‖u‖

2
2 ,

and therefore ‖f‖op ≤ ‖f‖2, as claimed. �

The following lemma is the operator norm analogue of Lemma 3.4, providing a construction that
beats the constant graphon in the symmetry breaking regime.

Lemma 3.8. Let 0 < p ≤ r < 1 be such that (r2, hp(r)) does not lie on the convex minorant of
x 7→ hp(

√
x). Then there exists some f ∈ W0 with ‖f‖op > r and hp(f) < hp(r).

Proof. Let ε > 0. Let fε be the construction from the proof of Lemma 3.4 with d = 2, and define the
parameters of that construction r1, r2, s, a, b, I0, I1, I2 as given there. Having already demonstrated
that hp(fε) < hp(r) for any small enough ε > 0, it remains to show that ‖fε‖op > r. To this end,

it suffices to exhibit a function u ∈ L2([0, 1]) such that (Tfεu)(x) > ru(x) for all x ∈ [0, 1]. Let

u(x) =


(1− a− b)r1 if x ∈ I1 ,

(1− a− b)r2 if x ∈ I2 ,

r if x ∈ I0 .

Recall that fε(x, y) is r except when (x, y) ∈ (I0 × Ii) ∪ (Ii × I0) where it is ri for i = 1, 2. It now
follows that for every x ∈ I1 = [0, a]

(Tfεu)(x) = a(1− a− b)r1r + b(1− a− b)r2r + (1− a− b)r1r > (1− a− b)r1r = ru(x) .

Similarly, for any x ∈ I2 = [1− b, 1] we have

(Tfεu)(x) > (1− a− b)r2r = ru(x) .

Finally, if x ∈ I0 = [a, 1− b] then

(Tfεu)(x) = a(1− a− b)r2
1 + b(1− a− b)r2

2 + (1− a− b)r2 = (1− a− b)(r2 + ar2
1 + br2

2) .

Plugging in the facts that r2 = sr2
1 + (1− s)r2

2 while a = sε2 and b = (1− s)ε2 + ε3, we get that

(Tfεu)(x) = (1− ε2 − ε3)(r2 + r2ε2 + r2
2ε

3) = r2 + (r2
2 − r2)ε3 +O(ε4) > r2 = ru(x) ,

where the strict inequality is valid for any sufficiently small ε > 0 since r2 > r.
Altogether, (Tfεu)(x) > ru(x) for all x ∈ [0, 1] and so ‖f‖op > r, as required. �
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Proof of Theorem 1.2. To prove Part (i), by Theorem 2.7 applied to the graph parameter ‖·‖op

it suffices to show that the constant function r is the unique element f ∈ W0 minimizing hp(f)
subject to ‖f‖op ≥ r. Indeed, by Lemma 3.7, ‖f‖2 ≥ ‖f‖op ≥ r. By Lemma 3.3 Part (a) and

Lemma A.2 we know that hp(f) ≥ hp(r), with equality if and only if f is the constant function r.
For Part (ii), similar to the proof of Part (ii) of Theorem 1.1 in §3.1, Lemma 3.8 implies that the

set of minimizers of the variational problem (2.1) is disjoint from the set of constant graphons. We
then apply Theorem 2.7 to conclude the proof, with the phase boundary given by Lemma A.2. �

The behavior of the lower tails deviations in the spectral norm is similar to that of the subgraph
densities in Proposition 3.5, where replica symmetry is exhibited everywhere (no phase transition).

Proposition 3.9. Let 0 < r ≤ p < 1. Let Gn ∼ G(n, p) be the Erdős-Rényi random graph and let
λ1(Gn) denote the largest eigenvalue of its adjacency matrix. Then

lim
n→∞

1(
n
2

) logP (λ1(Gn) ≤ r) = −hp(r)

and furthermore, for every ε > 0 there is some C = C(ε, p, r) > 0 such that for all n,

P (δ�(Gn, r) < ε | λ1(Gn) ≤ nr) ≥ 1− e−Cn2
.

Proof. Applying Theorem 2.7 with τ = −‖·‖op, it suffices to show that the constant function r is

the unique element f ∈ W0 minimizing hp(f) subject to ‖f‖op ≤ r. By Lemma 3.7, if f ∈ W0

with ‖f‖op ≤ r then ‖f‖1 ≤ ‖f‖op ≤ r. It now follows from Lemma 3.3 Part (b) (used with d = 1

bearing in mind that hp(x) is convex) that hp(f) ≥ hp(r) with equality if and only if f ≡ r. �

4. Exponential random graph models

Let us review the tools developed by Chatterjee and Diaconis [7] to analyze exponential random
graphs. Define

h(x) := x log x+ (1− x) log(1− x) for x ∈ [0, 1] ,

and for any graphon f ∈ W0 let

h(f) :=

∫
[0,1]2

h(f(x, y)) dxdy .

The following result from [7, Thm. 3.1 and Thm. 3.2] reduces the analysis of the exponential random
graph model in the large n limit to a variational problem. It was proven with the help of the theory
developed by Chatterjee and Varadhan [8] for large deviations in random graphs.

Theorem 4.1 (Chatterjee and Diaconis [7]). Let τ : W̃0 → R be a bounded continuous function.

Let Zn =
∑

G exp
((
n
2

)
τ(G)

)
where the sum is taken over all 2(n2) simple graphs G on n labeled

vertices. Let ψn =
(
n
2

)−1
logZn. Then

ψ := lim
n→∞

ψn = sup
f∈W̃0

(τ(f)− h(f)) , (4.1)

and the set F ∗ ⊂ W̃0 of maximizers of this variational problem is nonempty and compact.
Let Gn be a random graph on n vertices drawn from the exponential random graph model defined

by τ , i.e., with distribution Z−1
n exp

((
n
2

)
τ(·)

)
. Then for every η > 0 there exists C = C(τ, η) > 0

such that for all n,

P (δ�(Gn, F
∗) > η)) ≤ e−Cn2

.
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We say that the exponential random graph model has replica symmetry if the set of maximizers
F ∗ for the variational problem τ(f)−h(f) contains only constant functions, and we say that it has
replica symmetry breaking if no constant function is a maximizer. Intuitively, Theorem 4.1 implies
that when there is replica symmetry, for large n, the random graph behaves like an Erdős-Rényi
random graph (or a mixture of Erdős-Rényi random graphs), while this is not the case when there
is broken symmetry. More precisely we have the following result (see [7, Thm. 6.2]).

Corollary 4.2. Continuing with Theorem 4.1. Let C̃ ⊂ W̃0 be the set of constant functions. If

F ∗ ∩ C̃ = ∅ then there exist C, ε > 0 such that for all n,

P(δ�(Gn, C̃) > ε) ≥ 1− e−Cn2
.

To prove Theorem 1.3 using the above tools, we need to analyze the following variational problem:

sup
f∈W̃0

(β1t(K2, f) + β2t(H, f)α − h(f)) . (4.2)

Here is the main result of this section, from which Theorem 1.3 follows by the results above.

Theorem 4.3. Let H be a d-regular graph (d ≥ 2) and fix β1 ∈ R and α, β2 > 0. Let E denote the
corresponding exponential random graph model on n labeled vertices as specified in (1.4).

(a) If α ≥ d/e(H), then E has replica symmetry. Moreover, there exists a set Γ ⊂ R2 of the form

Γ = {(β1, ϕ(β1)) : β1 < log(e(H)α− 1)− e(H)α
e(H)α−1} ⊂ R2 for some function ϕ : R→ R

such that when (β1, β2) ∈ R× (0,∞) \ Γ the set of maximizers of the variational problem (4.2)
is a single constant function, and when (β1, β2) ∈ Γ the set of maximizers consists of exactly
two distinct constant functions.

(b) If 0 < α < d/e(H) and β1 ≥ log(d− 1)− d/(d− 1) then E has replica symmetry. Moreover, the
variational problem (4.2) is maximized by a unique constant function.

(c) If 0 < α < d/e(H) and β1 < log(d − 1) − d/(d − 1) then there exists an open interval of
values β2 > 0 for which E has broken symmetry, i.e., the set of maximizers of the variational
problem (4.2) does not contain any constant function. Furthermore, this open interval can be

taken to be (β2, β2) with β2 = u1−e(H)αh′p(u)/(e(H)α) and β2 = u1−e(H)αh′p(u)/(e(H)α), where

(ud, hp(u)) and (ud, hp(u)) are the two points where the lower common tangent of x 7→ hp(x
1/d)

touches the curve for p = 1/(1 + e−β1).

When restricted only to constant functions in W̃0, the variational problem (4.2) becomes the
one-dimensional optimization problem

sup
0≤u≤1

(β1u+ β2u
e(H)α − h(u)) . (4.3)

Note that for both (4.2) and (4.3) the supremum is in fact a maximum due to compactness. Let u∗

be the maximizer for (4.3). When there is replica symmetry, the maximum values attained in (4.2)
and (4.3) are equal, and the exponential random graph behaves like an Erdős-Rényi random graph
with edge density u∗. It is possible that there are two distinct maximizers u∗, in which case the
model behaves like a (possibly trivial) distribution over two separate Erdős-Rényi models. In the
work of Chatterjee and Diaconis [7], where the α = 1 case was considered, it was shown that u∗ as
a function of (β1, β2) experiences a discontinuity across a curve in the parameter space. Radin and
Yin [39] later showed that (when α = 1) the limiting free energy density ψ from (4.1), as a function
in the parameter space (β1, β2), is analytic except on a first order phase transition curve ending in
a critical point with second order phase transition. (See Fig. 3 in §1 for a plot of the location of
the discontinuity in the (β1, β2)-phase diagram.)

Here we focus less on the discontinuity of u∗ and more on symmetry breaking. Nevertheless we
shall start our analysis by giving a simple geometric interpretation of the discontinuity of u∗.
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hp(x
1/(e(H)α))

((u∗)e(H)α, hp(u))

β2

The critical slope
β2 when there are
two distinct u∗

Figure 6. Discontinuity in the symmetric solution u∗ due to the geometry of x 7→ hp(x
1/(e(H)α)).

By definition,

hp(x) = h(x)− x log
p

1− p
− log(1− p) .

Setting

p =
1

1 + e−β1
,

so that β1 = log p
1−p , we absorb the linear term in (4.2) and (4.3) into the entropy term, at which

point these two optimization problems respectively become

sup
f∈W̃0

(β2t(H, f)α − hp(f)− log(1− p)) (4.4)

and

sup
0≤u≤1

(β2u
e(H)α − hp(u)− log(1− p)) . (4.5)

By a change of variables u = x1/(e(H)α) in (4.5) we get the equivalent optimization problem

sup
0≤x≤1

(β2x− hp(x1/(e(H)α))− log(1− p)) . (4.6)

Observe that x = x∗ maximizes (4.6) iff the tangent to the curve defined by x 7→ hp(x
1/(e(H)α)) at

x = x∗ has slope β2 and lies below the curve. Thanks to Lemma A.1 from the appendix, we know
that x 7→ hp(x

1/γ) is convex if 0 < γ ≤ 1 or if

γ > 1 and p ≥ p0(γ) :=
γ − 1

γ − 1 + eγ/(γ−1)
. (4.7)

Otherwise, hp(x
1/γ) has exactly two inflection points to the right of x = pγ , so that the curve starts

convex, becomes concave, and finally turns convex again. In addition, hp(x
1/γ) has an infinite

slope at both endpoints. For any β2 ∈ R, there is a unique lower tangent of slope β2 to the curve
hp(x

1/(e(H)α)), touching the curve at x = x∗ = (u∗)e(H)α. As β2 varies, u∗ increases continuously

with β2, except in the situation where the curve of hp(x
1/(e(H)α)) is not convex and β2 is the slope

of the unique lower tangent that touches the curve at two points. In that case, (4.5) is optimized
at two distinct values of u, denoted by 0 < u < u < 1, and as β2 increases through this critical
point, u∗ jumps over the interval (u, u) corresponding to the part of the curve lying above the

convex minorant, then increases continuously afterwards. When hp(x
1/(e(H)α)) is convex, this jump

does not occur. See Fig. 6 for an illustration of this process (the function hp(x
1/(e(H)α)) is plotted

not-to-scale in order to highlight its features). The uniqueness of u∗ is stated below as a lemma.
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B3

trajectory of (p, u∗)
as β2 ↗, β1 fixed

H = K3, α = 1

p0 1

u∗

0

1

B1.8

symmetry
broken in
the shaded
region

H = K3, α = 0.6

p0 1

u∗

0

1

Figure 7. Discontinuity in the symmetric solution u∗ as reflected in the (p, u)-phase diagram.

Lemma 4.4. If 0 < e(H)α ≤ 1 or if e(H)α > 1 and p ≥ p0(e(H)α) as defined in (4.7), then the
optimization problem (4.3) is maximized at a unique value of u. Otherwise, (4.3) is maximized at
a unique u except for a single value of β2, where the maximum is attained at two distinct u’s.

We can also represent this jump of u∗ in the (p, u)-phase diagram as follows. For each γ > 0,
consider the region Bγ ⊂ [0, 1]2 containing all points (p, u) such that (uγ , hp(u)) does not lie on the

convex minorant of x 7→ hp(x
1/γ). When γ < 1 the region Bγ is empty, but otherwise it is nonempty.

The geometric argument in the previous paragraph shows that u can never appear as a maximizer
to (4.5) if (p, u) ∈ Be(H)α, but all other values of u can. Thus, for a fixed p = 1/(1 + e−β1), as
β2 increases from −∞ to ∞, the point (p, u∗) moves up continuously from 0 in the (p, u)-phase
diagram, and jumps over Be(H)α as it reaches it. Thereafter it resumes moving up until hitting 1.
This process is illustrated on the left of Fig. 7 when e(H)α = 3, e.g., when H = K3 and α = 1.

Turning to large deviations, we know from Lemma 3.4 that there is broken symmetry for the
density of copies of a d-regular graph H whenever we are in Bd. It turns out that the same is
true for the corresponding exponential random graph model given in (1.4). As we just saw though,
one must remove Be(H)α from the possible solution space for (p, u∗). Whenever γ < γ′ we have
Bγ ⊂ Bγ′ (see Lemma A.5), and consequently, if e(H)α ≥ d then Be(H)α covers Bd and so the entire
symmetry breaking phase is removed, leaving replica symmetry everywhere. This agrees with the
results of Chatterjee and Diaconis [7] for the case α = 1. However, when e(H)α < d it is possible
to have (p, u∗) ∈ Bd, in which case the construction from Lemma 3.4 breaks the symmetry. This is
shown on the right of Fig. 7 for the case d = 2 and e(H)α = 1.8, e.g., for H = K3 and α = 0.6.

Proof of Theorem 4.3. The proof of Part (a) is essentially the same as the proof of Theorem 4.1
in the work of Chatterjee and Diaconis [7], except now we use the generalized Hölder’s inequality
(Theorem 3.1) instead of the usual Hölder’s inequality.

Suppose that α ≥ d/e(H). We first need to show that in this case the only maximizers for the

variational problem (4.4) are constant functions. Applying Corollary 3.2, for any f ∈ W̃0 we have

β2t(H, f)α − hp(f) ≤ β2 ‖f‖e(H)α
d − hp(f) ≤ β2 ‖f‖e(H)α

e(H)α − hp(f) ,

where the last inequality used the assumption on α. This in turn is equal to∫
(β2f(x, y)e(H)α − hp(f(x, y))) dxdy ≤ sup

0≤u≤1
β2u

e(H)α − hp(u) ,
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showing that the β2t(H, f)− hp(f) is indeed maximized at constant functions. Furthermore, when

β2u
e(H)α−hp(u) is maximized at a unique u∗, then equality holds in place of the above inequalities

only for the constant function f = u∗. An additional argument is needed to treat the case when
β2u

e(H)α − hp(u) is maximized at two distinct values. Either by checking the equality conditions
in the proof of Theorem 3.1, or by referring to [18], we know that equality in Corollary 3.2 occurs
if and only if f(x, y) = g(x)g(y) for some function g : [0, 1]→ [0,∞). It can then be easily checked
that equality in the above sequence of inequalities can only occur when f is a constant function.
The value of this constant u∗ is given by the optimization problem (4.5) and its the uniqueness is
addressed in Lemma 4.4.

We now turn to prove Part (b). Since β1 ≥ log(d− 1)− d/(d− 1),

p =
1

1 + e−β1
≥ 1

1 + e− log(d−1)+d/(d−1)
=

d− 1

d− 1 + ed/(d−1)
= p0(d) .

By Lemma A.1, x 7→ hp(x
1/d) is convex for this value of p. Hence, hp(f) ≥ hp(‖f‖d) by Jensen’s

inequality with equality if and only if f is a constant function. Since t(H, f) ≤ ‖f‖d by Corollary 3.2,

β2t(H, f)α − hp(f) ≤ β2 ‖f‖e(H)α
d − hp(‖f‖d) ≤ sup

0≤u≤1
(β2u

e(H)α − hp(u)) ,

with equality iff f is the constant function equal to u∗, the unique maximizer of β2u
e(H)α − hp(u).

The uniqueness of u∗ follows from Lemma 4.4 together with noting that when e(H)α > 1 we have
p ≥ p0(d) > p0(e(H)α) as d > e(H)α and p0(·) is increasing in [1,∞).

It remains to prove Part (c). We have 0 < p < p0(d). Let 0 < u < u < 1 be such that the

lower common tangent to x 7→ hp(x
1/d) touches the curve at x = ud and ud. Since e(H)α < d,

Lemma A.5 implies that the points (ue(H)α, hp(u)) and (ue(H)α, hp(u)) both lie on the convex

minorant of x 7→ hp(x
1/(e(H)α))) and do not lie on the common lower tangent (if there is one). Let

β2 and β2 be as in the theorem statement, observing that these are the values of the derivative of
hp(x

1/(e(H)α)) at x = ue(H)α and ue(H)α, respectively. Then for any β ∈ (β2, β2), using the slope
interpretation of β2 given in the discussion proceeding this proof, we see that the optimization
problem (4.5) is maximized for some u∗ ∈ (u, u). At the same time, by Lemma 3.4 there exists

some f ∈ W0 such that t(H, f) > (u∗)e(H) and hp(f) < hp(u
∗). It follows that

sup
f∈W̃0

(β2t(H, f)α − hp(f)) > β2(u∗)e(H)α − hp(u∗) = sup
0≤u≤1

(β2u
e(H)α − hp(u)) ,

and hence β2t(H, f)α − hp(f) is not maximized at any constant function. �

5. Densities of linear hypergraphs in random hypergraphs

In this section, we extend our results to densities of linear hypergraphs in random hypergraphs.
Homomorphisms and densities are defined as in graphs. Similarly, for any r ∈ [0, 1] let

δ�(G, r) := sup
A1,...,Ak⊂V (G)

1

|V (G)|k
∣∣eG(A1, . . . , Ak)− r |A1| · · · |Ak|

∣∣
where eG(A1, . . . , Ak) is the number of (ordered) hyperedges of the form (a1, . . . , ak) ∈ A1×· · ·×Ak.
The main result in this section is the following:

Theorem 5.1. Fix d, k ≥ 2 and 0 < p ≤ r < 1. Let H be a d-regular k-uniform linear hypergraph.
Let Gn ∼ G(k)(n, p) be the random k-uniform hypergraph on n vertices with hyperedge probability
p.

(i) If the point (rd, hp(r)) lies on the convex minorant of the function x 7→ hp(x
1/d) then

lim
n→∞

1(
n
k

) logP
(
t(H,Gn) ≥ re(H)

)
= −hp(r)
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and furthermore, for every ε > 0 there exists some constant C = C(H, ε, p, r) > 0 such that

P
(
δ�(Gn, r) < ε

∣∣∣ t(H,Gn) ≥ re(H)
)
≥ 1− e−Cnk .

(ii) If the point (rd, hp(r)) does not lie on the convex minorant of the function x 7→ hp(x
1/d) then

lim
n→∞

1(
n
k

) logP
(
t(H,Gn) ≥ re(H)

)
> −hp(r)

and furthermore, there exist ε, C > 0 such that

P
(

inf
{
δ�(Gn, s) : 0 ≤ s ≤ 1

}
> ε

∣∣∣ t(H,Gn) ≥ re(H)
)
≥ 1− e−Cnk .

In particular, when d = 2, case (ii) occurs if and only if p <
[
1 + (r−1 − 1)1/(1−2r)

]−1
.

Let k ≥ 2 be an integer and letW(k) be the space of all bounded measurable functions [0, 1]k → R
that are symmetric (i.e., f(x1, x2, . . . , xk) = f(xπ(1), xπ(2), . . . , xπ(k)) for any permutation π of

[k] = {1, 2, . . . , k}). Let W(k)
0 denote all symmetric measurable functions [0, 1]k → [0, 1]. Every

k-uniform hypergraph G corresponds to a point fG ∈ W(k)
0 similar to the case for graphs. As

before, we can endow W with usual Lp-norm and in addition have the following cut norm:

‖f‖� := sup
S1,...,Sk⊂[0,1]

∫
S1×···×Sk

f(x1, . . . , xk) dx1 · · · dxk .

This gives rise to the cut distance: for any f, g ∈ W(k)
0 ,

δ�(f, g) := inf
σ
‖f − gσ‖�

where σ ranges over all measure-preserving bijections on [0, 1], and gσ ∈ W(k)
0 is defined by

gσ(x1, . . . , xk) = g(σ(x1), . . . , σ(xk)). Let W̃(k)
0 be the metric space formed by taking equivalences

of points in W(k)
0 with zero cut-distance.

The space W(k)
0 is a straightforward generalization of the space W0 of graphons. Unfortunately,

it does not fully capture the richness of the structure of hypergraphs. This notion is closely related
to some initial attempts at generalizing Szemerédi’s regularity lemma to hypergraphs (e.g., [10]).
The main issue is that while the regularity lemma generalizes easily to this setting, there is no
corresponding counting lemma for embedding a fixed hypergraph H unless H is linear (recall that
a hypergraph is linear if every pair of vertices is contained in at most one hyperedge). The difficulty
in extending the results to general H is related to the intricacies of hypergraph regularity (see, e.g.,
Gowers [24] and Nagle, Rödl, Schacht, and Skokan [36, 40], as well as the recent progress in this
direction by Elek and Szegedy [16, 17]). Here we restrict ourselves to the basic setting above which
suffices for controlling densities of linear hypergraphs.

For any f ∈ W(k) and any k-uniform hypergraph H, write V (H) = [m] and define

t(H, f) =

∫
[0,1]k

∏
{i1,...,ik}∈E(H)

f(xi1 , . . . , xik) dx1 · · · dxm .

The Chatterjee-Varadhan theory can be generalized to derive rate functions for large deviations
of H-counts, where H is a fixed linear hypergraph. We outline the modifications and omit the
complete details, as the changes required in the original proofs are mostly straightforward.

We start with a statement generalizing the weak regularity lemma of Frieze and Kannan [20].
The analytic form of this statement for graphs can be found in Lovász and Szegedy [35, Lem. 3.1].
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Theorem 5.2. For every ε > 0 there exists some M(ε) > 0 such that for every f ∈ W(k)
0 there

exist some m ≤ M(ε) and some g ∈ W(k)
0 with δ�(f, g) ≤ ε, and such that g is constant in each

box ( i1−1
m , i1m ]× · · · × ( ik−1

m , ikm ].

Using Theorem 5.2, the proof of Lovász and Szegedy [35, Thm. 5.1] can be modified to give the
following topological interpretation of this result.

Theorem 5.3. For any integer k ≥ 2, the metric space (W̃(k)
0 , δ�) is compact.

Theorems 5.2 and 5.3 allow us to generalize the framework of Chatterjee and Varadhan to

(W̃(k)
0 , δ�). The random hypergraph graph G(k)(n, p) corresponds to a random point fG

(k)(n,p) ∈
W̃(k), and therefore it induces a probability distribution Pn,p on W̃(k) supported on a finite set of
points corresponding to hypergraphs on n vertices.

Theorem 5.4. For each fixed p ∈ (0, 1), the sequence Pn,p obeys a large deviation principle in the

space (W̃(k)
0 , δ�) with rate function hp. Explicitly, for any closed set F ⊆ W̃(k)

0 ,

lim sup
n→∞

1(
n
k

) logPn,p(F ) ≤ − inf
f∈F

hp(f) ,

and for any open set U ⊆ W̃(k)
0 ,

lim inf
n→∞

1(
n
k

) logPn,p(U) ≥ − inf
f∈U

hp(f) .

To derive large deviation results for subgraph densities in random graphs, it was crucial that
the subgraph densities t(H, ·) behaved continuously with respect to the cut topology. The next
result implies that the same is true when H is a linear hypergraph. The proof is a straightforward
generalization of the proof for graphs (see [4, Thm. 3.7]).

Theorem 5.5. Let H be a k-uniform linear hypergraph. Then for any f, g ∈ W(k)
0 ,

|t(H, f)− t(H, g)| ≤ e(H)δ�(f, g) .

The rate function for large deviations in H-counts is then determined by the following variational
problem.

Theorem 5.6. Let H be a k-uniform linear hypergraph and let Gn ∼ G(k)(n, p) be the random
k-uniform hypergraph on n vertices with hyperedge probability p. For any fixed p, r ∈ (0, 1),

lim
n→∞

1(
n
k

) logP
(
t(H,Gn) ≥ re(H)

)
= − inf

{
hp(f) : f ∈ W(k)

0 , t(H, f) ≥ re(H)
}
. (5.1)

Let F ∗ be the set of minimizers for (5.1) and let F̃ ∗ be its image in W̃(k)
0 . Then F̃ ∗ is a non-empty

compact set. Moreover, for each ε > 0 there exists some C(H, ε, p, r) > 0 so that for any n

P
(
δ�(Gn, F̃

∗) ≥ ε
∣∣∣ t(H,Gn) ≥ re(H)

)
≤ e−Cnk .

In particular, if F̃ ∗ = {f∗} for some f∗ ∈ W̃(k)
0 then the conditional distribution of Gn given the

event t(H,Gn) ≥ re(H) converges to the point mass at f∗ as n→∞.

We now turn to study the variational problem (5.1) towards the proof of Theorem 5.1. The
following inequality is an immediate consequence of Theorem 3.1.

Lemma 5.7. Let H be a k-uniform hypergraph with maximum degree at most d, and let f ∈ W(k)
0 .

Then t(H, f) ≤ ‖f‖e(H)
d .

The following lemma mirrors Lemma 3.4 for proving the symmetry breaking phase.
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Lemma 5.8. Let H be linear d-regular k-uniform hypergraph. Let 0 < p ≤ r < 1 be such that

(rd, hp(r)) does not lie on the convex minorant of x 7→ hp(x
1/d). Then there exists f ∈ W(k)

0 with

t(H, f) > re(H) and hp(f) < hp(r).

The proof of Lemma 5.8 is essentially the same as the proof of Lemma 3.4, with the following
modification. One needs to adjust fε into fε = r + (r1 − r)1A + (r2 − r)1B, where A ⊂ [0, 1]k is
the union of the box [0, a]× [a, 1− b]k−1 along with the k− 1 other boxes formed by permuting the
coordinates. Similarly B is the union of [1− b, 1]× [a, 1− b]k−1 and its coordinate permutations.

Proof of Theorem 5.1. Our starting point is an application of Theorem 5.6. Suppose f ∈ W(k)
0

satisfies t(H, f) ≥ re(H). By Lemma 5.7, ‖f‖d ≥ r. For Part (i) of the theorem, Lemma 3.3

Part (a) (which is also valid for W(k)
0 ) implies that hp(f) ≥ hp(r) with equality if and only if

f is the constant function r, so the variational problem on the right-hand side of (5.1) has the
constant function r as the unique minimizer. For Part (ii) of the theorem, Lemma 5.8 implies that
the constant function r is not in the set of minimizers of the variational problem (5.1), and the
conclusion follows analogously to the proof of Part (ii) of Theorem 1.1. �

6. Graph homomorphism inequalities

Our goal in this section is to present a short new proof of Theorem 1.4, stating that for any
graph G allowing loops and any d-regular bipartite graph H one has

hom(H,G) ≤ hom(Kd,d, G)|V (H)|/(2d) . (6.1)

(This inequality is tight when H is a disjoint union of copies of the complete bipartite graph Kd,d.)
Generalized to graphons, the inequality states that for any d-regular bipartite graph H and f ∈ W0

t(H, f) ≤ t(Kd,d, f)|V (H)|/(2d) (6.2)

(the more general formulation follows from (6.1) via a standard limiting argument, e.g., see [22]).
As mentioned in the introduction, all previously known proofs of this inequality involved entropy.
In contrast, the following proof does not rely on entropy or limiting arguments and instead is an
immediate consequence of the generalized Hölder’s inequality (Theorem 3.1).

Proof of Theorem 1.4. Label the vertices on the left-bipartition of H by [n] = {1, . . . , n}, and
let Ai ⊂ [n] be the neighborhood of the i-th vertex on the right-bipartition of H. Define

g(x1, . . . , xd) :=

∫
f(x1, y)f(x2, y) · · · f(xd, y) dy for any x1, . . . , xd ∈ [0, 1] ,

and write g(xA) for x ∈ [0, 1]n and A = {i1, . . . , id} to denote g(xi1 , . . . , xid). With this notation,

t(H, f) =

∫ n∏
j=1

∏
i∈Aj

f(xi, yj) dx1 · · · dxndy1 · · · dyn =

∫
[0,1]n

g(xA1) · · · g(xAn) dx ≤ ‖g‖nd

by the generalized Hölder’s inequality (Theorem 3.1). The result follows from noting that

‖g‖dd =

∫ d∏
i=1

d∏
j=1

f(xi, yj) dx1 · · · dxddy1 · · · dyd = t(Kd,d, f) . �

Remark. A natural question to ask is whether Theorem 1.4 can be extended to all d-regular graphs
H, as in the case for independent sets [47]. Unfortunately, the answer to this question is negative.
A simple counter-example is H = K3 and f being the graphon corresponding to the 2× 2 identity
matrix. The second author [48] extended Theorem 1.4 to non-bipartite H for certain families of
f ∈ W0, e.g., {0, 1}-valued graphons that are non-decreasing in both coordinates. Galvin [21]
conjectured that if G is a graph allowing loops and H is a simple d-regular graph then hom(H,G)

is at most the maximum of hom(Kd,d, G)|V (H)|/(2d) and hom(Kd+1, G)|V (H)|/(d+1).
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7. Open problems

It is natural to ask for extensions of the Chatterjee-Varadhan [8] large deviations theory to
sparse Erdős-Rényi random graphs (i.e., G(n, p) where p(n) → 0 as n → ∞) or to densities of
general (not necessarily linear) hypergraphs in random hypergraphs. These may require extensions
of Szemerédi’s regularity lemma to sparse graphs (see [33, 23, 12]) and hypergraphs [24, 36, 40].
Even for G(n, p) with fixed p, various problems remain open, several of which we highlight below.

Minimizers of the variational problem. It was pointed out by Chatterjee and Varadhan [8] that
no solutions of the variational problem in Theorem 2.7 are known anywhere in the symmetry
breaking phase. This remains the case. In fact, there is not a single point (p, r) in the symmetry
breaking phase where we can even compute the large deviation rate. It would be interesting to see
whether the minimizers are always 2-step graphons, i.e., graphons which are constant on each of
[0, w]2,

(
[0, w]× (w, 1]

)
∪
(
(w, 1]× [0, w]

)
and [w, 1]2 for some w ∈ (0, 1).

Phase boundary for non-regular graphs. In this paper, we identified the replica symmetric phase
for upper tail deviations in the densities of d-regular graphs. The phase boundary for non-regular
graphs remains unknown. We suspect that a modification of the construction in Lemma 3.4 can be
used to establish the symmetry breaking phase for some (perhaps all) subgraph density deviations.
However, at present we do not have matching boundaries for the replica symmetric phase.

Lower-tail phase transition. Proposition 3.5 shows that if a bipartite graph H satisfies Sidorenko’s
conjecture then there is replica symmetry everywhere in the lower tail deviation of H-densities.
It is an open question whether all bipartite graphs satisfy Sidorenko’s conjecture, although it is
possible that Proposition 3.5 can be proved without the full resolution of Sidorenko’s conjecture.

When H is not bipartite, the following argument shows that there exists symmetry breaking
in the lower tail, at least for certain values of (p, r). Let f be the graphon taking the value 0 on
[0, 1

2 ]2 ∪ [1
2 , 1]2 and the value p elsewhere, so that t(H, f) = 0 and hp(f) = hp(0)/2. Let r0 ∈ (0, p)

be such that hp(0) = 2hp(r0). Then for any r ∈ (0, r0) we have hp(f) < hp(r), and so (p, r) is in
the symmetry breaking phase, resulting in a nontrivial phase diagram. We currently do not know
the complete lower tail phase diagram for any non-bipartite H.

Symmetry breaking in exponential random graphs. Fig. 3 showed several (β1, β2)-phase plots for the
symmetry breaking region given in Part (c) of Theorem 4.3. However, unlike the situation for large
deviations, we do not know if that is the full region of symmetry breaking. It would be interesting
to characterize the full set of triples (α, β1, β2) for which there is replica symmetry in Theorem 1.3.

Appendix A. The convex minorant of hp(x
1/γ)

This appendix contains some technical lemmas about the convex minorant of hp(x
1/γ), which

appears throughout the paper. Let us first informally summarize the claims. It is well known that

hp(x) = x log
x

p
+ (1− x) log

1− x
1− p

is a convex function of x. When γ > 1 (here we allow any real γ, not just integers), it turns out

that there is some p0(γ) for which x 7→ hp(x
1/γ) is still a convex function when p ≥ p0. However,

when p < p0, the function x 7→ hp(x
1/γ) is no longer convex: it has exactly two inflection points,

both to the right of its minimum at x = pγ . The function is concave in the corresponding middle
region, whereas it is convex in the two outer regions.

In the case when x 7→ hp(x
1/γ) is not convex, it has a unique lower tangent, touching the plot

of the function at the points (qγ , hp(q)) and (qγ , hp(q)). The convex minorant of x 7→ hp(x
1/γ) is

formed by replacing the middle segment x ∈ (qγ , qγ) by the lower common tangent, as shown in
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x

hp(x
1/γ)

pγ qγ qγ

Figure 8. Illustration of the convex minorant of x 7→ hp(x
1γ).

Fig. 8. (The various not-to-scale plots of hp(x
1/γ) are shown for illustrative purposes in order to

highlight the features of the plots. In contrast, all the phase diagrams plots are drawn to scale.)
Let Bγ ⊂ [0, 1]2 denote the set of all points (p, q) such that (qγ , h(q)) does not lie on the convex

minorant of x 7→ hp(x
1/γ). Each vertical section of Bγ is thus the interval (qγ , qγ) described in the

previous paragraph. For example, B2 is the shaded region in Fig. 9, and the boundaries of Bγ for
additional values of γ were plotted in Figure 2 (see Section 1).

We shall show that each Bγ resembles a rotated V-shape. More importantly, we show that Bγ
strictly contains Bγ′ if γ > γ′.

The first lemma describes the shape of the function x 7→ hp(x
1/γ).

Lemma A.1. The function x 7→ hp(x
1/γ) with domain (0, 1) is convex for 0 < γ ≤ 1. If γ > 1,

and

p ≥ p0(γ) :=
γ − 1

γ − 1 + eγ/(γ−1)
,

then the function is also convex. If γ > 1 and 0 < p < p0, then the function has exactly two
inflection points (both to the right of x = pγ), with a region of concavity in the middle. Finally the
function has infinite derivatives at both endpoints of (0, 1).

Proof. When 0 < γ ≤ 1, x 7→ x1/γ is convex. Since the composition of two convex functions is
convex we deduce that x 7→ hp(x

1/γ) is convex.
Next, assume γ ≥ 1. We have

h′p(x) = log
x

1− x
− log

p

1− p
, and h′′p(x) =

1

x(1− x)
.

Therefore,

d

dx
hp(x

1/γ) =
1

γ
x1/γ−1h′p(x

1/γ)

and

d2

dx2
hp(x

1/γ) =
1

γ2
x2/γ−2h′′(x1/γ) +

1

γ

(
1

γ
− 1

)
x1/γ−2h′p(x

1/γ)

=
x1/γ−2

γ2

(
x1/γh′′p(x

1/γ)− (γ − 1)h′p(x
1/γ)

)
.
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

B2

Figure 9. The region B2 consisting of all points (p, q) such that (q2, hp(q)) does
not lie on the convex minorant of x 7→ hp(

√
x).

The claim on infinite derivatives easily follows from the above formulas. Setting x = qγ , we have

d2

dx2
hp(x

1/γ)
∣∣∣
x=qγ

=
q1−2γ

γ2

(
qh′′p(q)− (γ − 1)h′p(q))

)
=
q1−2γ

γ2

(
1

1− q
− (γ − 1) log

q

1− q
+ (γ − 1) log

p

1− p

)
. (A.1)

Hence, hp(x
1/γ) is convex at x = qγ whenever 1

1−q − (γ− 1) log q
1−q ≥ −(γ− 1) log p

1−p and concave

otherwise. The fact that

d

dq

(
1

1− q
− (γ − 1) log

q

1− q

)
=
γq − γ + 1

q(1− q)2

implies that 1
1−q − (γ − 1) log q

1−q is decreasing until q = (γ − 1)/γ and then increasing afterwards.

It diverges to +∞ at both endpoints of (0, 1) and attains a minimum value of γ− (γ− 1) log(γ− 1)
at q = (γ − 1)/γ. The term (γ − 1) log p

1−p of Eq. (A.1) is increasing for p ∈ (0, 1) and surjective

onto the reals. Therefore, h′′p(x
1/d) ≥ 0 for all x if γ − (γ − 1) log(γ − 1) + (γ − 1) log p

1−p ≥ 0,

which is equivalent to having p ≥ γ−1
γ−1+eγ/(γ−1) . Additionally, if p < γ−1

γ−1+eγ/(γ−1) , then h′′p(x) starts

as positive, becomes negative, then turns positive again. �

We next give an explicit description of the region B2.

Lemma A.2 (γ = 2 case). Let p, q ∈ (0, 1). The point (q2, hp(q)) lies strictly above the convex

minorant of x 7→ hp(
√
x) if and only if p <

(
1 + (q−1 − 1)1/(1−2q)

)−1
.

Proof. We claim that the lower common tangent of x 7→ hp(
√
x) has slope log(1−p

p ). To show this,

it suffices to check that hp(
√
x)−x log(1−p

p ) has a horizontal common lower tangent, and it suffices

to check the same thing for hp(x)− x2 log(1−p
p ). Observe that

hp(x)− x2 log
1− p
p

= x log
x

p
+ (1− x) log

1− x
1− p

− x2 log
1− p
p

= x log x+ (1− x) log(1− x)− x(1− x) log
p

1− p
− log(1− p)
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qγ qγ1 qγ2 qγ
x

hp(x
1/γ)

Figure 10. Illustration of the convex minorant of x 7→ hp(x
1/γ) in the setting of Lemma A.3.

qγ1 qγ2
x

hp′(x
1/γ)

qγ1 qγ2
x

x1/γ log p′(1−p)
p(1−p′)

qγ1 qγ2
x

hp(x
1/γ)

Figure 11. Illustration of the functions in Eq. (A.3).

is invariant under x 7→ 1− x, so that its lower tangent must be horizontal by symmetry, and let it
touch the curve at x = q, q, so that 0 < q < q < 1 are the zeros of the derivative, namely

log
x

1− x
− (1− 2x) log

p

1− p
. (A.2)

It follows that (q2, hp(q)) lies strictly above the convex minorant if and only if q < q < q, which is

equivalent to having 1
1−2q log q

1−q ≤ log p
1−p . Rearranging the latter concludes the proof. �

For γ > 1 and 0 < p < p0(γ), define q = q(γ, p) and q = q(γ, p) to be such that the lower common

tangent to x 7→ hp(x
1/γ) touches the curve at points (qγ , hp(q) and (qγ , hp(q)). An examination of

the geometry of the curve, as illustrated in Fig. 10, immediately leads to the following lemma:

Lemma A.3. Let γ > 1 and 0 < p < p0(γ). Let 0 < q1 < q2 < 1. If the line segment joining points
(qγ1 , hp(q1)) and (qγ2 , hp(q2)) lies below the curve {(qγ , hp(q)) : 0 ≤ q ≤ 1} and is not tangent to the
curve at one of the end points, then this segment lies strictly above the lower common tangent of
the curve. Consequently, q(γ, p) < q1 < q2 < q(γ, p).

We now apply the above lemma to describe the shape of the regions Bγ .

Lemma A.4. If γ > 1 and 0 < p < p′ < p0(γ), then q(γ, p) < q(γ, p′) < q(γ, p′) < q(γ, p). So Bγ
is a rotated-V-shaped region.

Proof. Let q1 = q(γ, p′) and q2 = q(γ, p′). As illustrated in Fig. 11, we have

hp(x
1/γ) = hp′(x

1/γ) + x1/γ log
p′(1− p)
p(1− p′)

+ log
1− p′

1− p
. (A.3)
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x=uγ
′/γ

−−−−−→

qγ
′

1 qγ
′

2

x

hp(x
1/γ′)

qγ1 qγ2
u

hp(u
1/γ)

Figure 12. The plot of x 7→ hp(x
1γ) following a change of variable x = uγ

′/γ .

The segment joining (qγ1 , hp′(q1)) and (qγ2 , hp′(q2)) lies below x 7→ hp′(x
1/γ) by definition. Since

x 7→ x1/γ log p′(1−p)
p(1−p′) is concave, the segment joining x = qγ1 and x = qγ2 must also lie below the

curve x 7→ hp(x
1/γ), and it is not tangent to either endpoint due to the x1/γ term. The conclusion

now follows from Lemma A.3. �

Lemma A.5. If γ > γ′ > 1 and 0 < p < pγ′, then q(γ, p) < q(γ′, p) < q(γ′, p) < q(γ, p). So Bγ
strictly contains Bγ′.

Proof. Let q1 = q(γ′, p) and q2 = q(γ′, p). Let `′ denote the line segment joining points (qγ
′

1 , hp(q1))

and (qγ
′

2 , hp(q2)), so that `′ is tangent to the curve x 7→ hp(x
1/γ′).

Consider a transformation of the plots induced by the change of variable x = uγ
′/γ . The plot of

x 7→ hp(x
1/γ′) becomes the plot of u 7→ hp(u

1/γ) (see Fig. 12). Originally `′ was a line segment of

positive slope lying below the curve x 7→ hp(x
1/γ′) and tangent to it at both endpoints. Following

the transformation x = uγ
′/γ (recall that γ′/γ < 1) we see that `′ becomes a concave curve ` still

lying below the new curve u 7→ hp(u
1/γ) and tangent to it at both endpoints. This implies that the

line segment joining the two endpoints of ` in the new frame lies below both curves and is tangent
to neither at the endpoints. The conclusion then follows from Lemma A.3. �

Acknowledgments

We thank Amir Dembo and Ofer Zeitouni for fruitful discussions. This work was initiated while
Y. Z. was an intern at the Theory Group of Microsoft Research, and he thanks the Theory Group
for its hospitality.

References

[1] N. Alon. Independent sets in regular graphs and sum-free subsets of finite groups. Israel J. Math., 73(2):247–256,
1991.

[2] S. Bhamidi, G. Bresler, and A. Sly. Mixing time of exponential random graphs. Ann. Appl. Probab., 21(6):2146–
2170, 2011.

[3] B. Bollobás. Random graphs, volume 73 of Cambridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, second edition, 2001.

[4] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi. Convergent sequences of dense graphs. I.
Subgraph frequencies, metric properties and testing. Adv. Math., 219(6):1801–1851, 2008.

[5] S. Chatterjee. The missing log in large deviations for triangle counts. Random Structures Algorithms, 40(4):437–
451, 2012.



ON REPLICA SYMMETRY OF LARGE DEVIATIONS IN RANDOM GRAPHS 29

[6] S. Chatterjee and P. S. Dey. Applications of Stein’s method for concentration inequalities. Ann. Probab.,
38(6):2443–2485, 2010.

[7] S. Chatterjee and P. Diaconis. Estimating and understanding exponential random graph models. Ann. Statist.,
to appear.

[8] S. Chatterjee and S. R. S. Varadhan. The large deviation principle for the Erdős-Rényi random graph. European
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