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Abstract. We study the diameter of C1, the largest component of the

Erdős-Rényi random graph G(n, p) in the emerging supercritical phase,

i.e., for p = 1+ε
n

where ε3n → ∞ and ε = o(1). This parameter was

extensively studied for fixed ε > 0, yet results for ε = o(1) outside the

critical window were only obtained very recently. Prior to this work,

Riordan and Wormald gave precise estimates on the diameter, how-

ever these did not cover the entire supercritical regime (namely, when

ε3n → ∞ arbitrarily slowly).  Luczak and Seierstad estimated its order

throughout this regime, yet their upper and lower bounds differed by a

factor of 1000
7

.

We show that throughout the emerging supercritical phase, i.e. for

any ε = o(1) with ε3n → ∞, the diameter of C1 is with high proba-

bility asymptotic to D(ε, n) = (3/ε) log(ε3n). This constitutes the first

proof of the asymptotics of the diameter valid throughout this phase.

The proof relies on a recent structure result for the supercritical giant

component, which reduces the problem of estimating distances between

its vertices to the study of passage times in first-passage percolation.

The main advantage of our method is its flexibility. It also implies that

in the emerging supercritical phase the diameter of the 2-core of C1 is

w.h.p. asymptotic to 2
3
D(ε, n), and the maximal distance in C1 between

any pair of kernel vertices is w.h.p. asymptotic to 5
9
D(ε, n).

1. Introduction

The Erdős-Rényi random graph G(n, p) is perhaps the most fundamental

random graph model, and its rich behavior has been studied in numerous

papers since its introduction in 1959 [11]. One of the most famous phenom-

ena exhibited by this model is the double jump at the critical p = 1/n. As

discovered by Erdős and Rényi in their celebrated papers from the 1960’s,

for p = c/n with c fixed, the largest component C1 has size O(log n) with

high probability (w.h.p.) when c < 1, its size is w.h.p. linear in n for c > 1,

and for c = 1 its size has order n2/3 (the latter was fully established only

decades later by Bollobás [7] and  Luczak [15]). Furthermore, Bollobás found
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that the critical behavior extends throughout the regime where p = (1±ε)/n
for ε = O(n−1/3), known as the critical window (or scaling window).

Despite the intensive study of this model, one of its key features — the

diameter of the largest component — remained unknown in a regime just

beyond criticality, namely for p = (1 + ε)/n where ε = o(1) and ε3n →
∞ arbitrarily slowly. Our main results determine the asymptotic behavior

of the diameter throughout this regime, as well as the diameter of the 2-

core and the maximal distance in it between kernel vertices (see definitions

below).

Theorem 1. Let C1 be the largest component of the random graph G(n, p)

with p = (1 + ε)/n, where ε3n→∞ and ε = o(1). Then w.h.p.,

diam(C1) =
3 + o(1)

ε
log(ε3n) .

A key advantage of our method over alternative approaches is its flex-

ibility, demonstrated by the following theorem. Recall that the 2-core of

C1, denoted by C(2)
1 , is the maximal subgraph of C1 where every vertex has

degree at least degree 2. The kernel K is the multigraph obtained from C(2)
1

by contracting every 2-path (a path where all interior vertices have degree

2) into an edge.

Theorem 2. Let C(2)
1 be the 2-core of the largest component C1 of G(n, p)

with p = (1 + ε)/n, where ε3n→∞ and ε = o(1). Let K denote the kernel

of C(2)
1 . Then w.h.p.,

diam(C(2)
1 ) =

2 + o(1)

ε
log(ε3n) , (1.1)

max
u,v∈K

distC1(u, v) =
5/3 + o(1)

ε
log(ε3n) . (1.2)

(In the above statements, the term w.h.p. denotes a probability tending

to 1 as n→∞, while the o(1)-terms denote functions going to 0 as n→∞.)

Theorem 1 completes a long list of studies of the diameter in sparse

Erdős-Rényi random graphs. In the subcritical case, p = (1 − ε)/n where

for ε → 0 and ε3n → ∞,  Luczak [16] obtained a precise estimate of

log1/(1−ε)(2ε
3n) + O(1/ε) for the largest diameter of a component (includ-

ing the limiting distribution of the additive O(1/ε)-term). In the critical

window, it was shown in [19] that the diameter of C1 has order n1/3. See

also the recent work [1] studying the limiting distribution within the critical

window.

However, analyzing the diameter in the supercritical case is considerably

more delicate. The asymptotics of this parameter in the fully-supercritical

regime, p = (1 + ε)/n where ε > 0 is fixed, were obtained in [12] (see also
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[8,9]). Results for the regime ε = o(1) were only obtained fairly recently. In

2008, Riordan and Wormald [21] proved accurate estimates of the diameter

for most of this regime, but did not cover the entire range where the random

graph emerges from the critical window (i.e., ε3n → ∞ arbitrarily slowly).

Note that, while the gap that remained was extremely small, the authors

stated that “our method does seem to need some concrete lower bound on

ε3n tending to infinity as a function of n”.  Luczak and Seierstad [17] gave

estimates for the diameter that do apply to the entire supercritical regime,

yet their upper and lower bounds differ by a factor of 1000
7 .

Remark. Following the completion of this work, Riordan and Wormald [22]

managed to extend their analysis to the entire supercritical regime, thus

obtaining a version of Theorem 1 with more accurate error-term estimates.

Referring to the present work, they stated in [22] that “Seeing this paper

stimulated us to remove the unnecessary restriction on ε”. We emphasize

that the proofs in [21, 22] rely on branching process analysis and are quite

different from our methods.

Remark. By our results and the duality of the supercritical and subcritical

regimes, it follows that in the setting of Theorem 1, the diameter of C1 is

w.h.p. the largest diameter of a component – larger by an asymptotic factor

of 3 compared to the largest diameter of any other component. Compare

this to the subcritical case p = (1−ε)/n, where the largest component C1 has

diameter of order (1/ε)
√

log(ε3n) w.h.p. (since C1 is w.h.p. a tree whose size

has order ε−2 log(ε3n), and conditional on this it is uniformly distributed on

all trees of this size).

In order to establish Theorems 1 and 2, we apply a recent structure result

proved in a companion paper [10]. This result translates the supercritical

giant component into a contiguous tractable model constructed in 3 steps

as follows (see Theorems 4.1 and 5.1 for the precise formulation):

1. Select a multigraph K uniformly among all graphs with a prescribed

size and degree sequence, where almost all degrees are 3.

2. Replace the edges of K by paths of i.i.d. geometric lengths.

3. Attach a Poisson-Galton-Watson tree to each vertex.

Note that Step 1 above constructs the kernel, Step 2 gives the 2-core and

Step 3 produces the entire giant component.

Using this tool, the problem of estimating distances in C1 is reduced to

the study of passage times in first-passage percolation (see, e.g., [14] for

further information on this thoroughly studied topic). For instance, one

may readily deduce from known results [4] on first-passage percolation that

the typical distance between kernel vertices in the 2-core is asymptotically



4 JIAN DING, JEONG HAN KIM, EYAL LUBETZKY AND YUVAL PERES

(1/ε) log(ε3n) (in fact, the limiting distribution of this typical distance is

completely determined in [4]); see [10, Corollary 2].

However, in weighted random graphs, maximal distances exhibit a behav-

ior different from typical distances. In order to prove our main results, we

establish sharp large deviation estimates for these distance variables.

The rest of this paper is organized as follows. Section 2 contains a few

preliminary facts required for the proofs. In Section 3 we analyze typical

and maximal distances in weighted random regular graphs, as well as in

metric graphs (obtained by replacing each weighted edge by a line segment

with the corresponding length). Section 4 contains the proofs of the main

theorems in the special case of ε = o(n−1/4), where the description of the

giant component has a particularly elegant form (Theorem 4.1). We extend

these results to the general case of any ε = o(1) in Section 5.

2. Preliminaries and notation

A random d-regular G ∼ G(n, d) is a graph uniformly chosen among all

graphs on n vertices in which every vertex has degree d. One of the main

tools for sampling from this distribution, as well as analyzing the behavior

its typical elements, is the configuration model, introduced by Bollobás [5]

(see [6, 13,23]).

To construct a graph using this method, associate each of the n vertices

with d distinct half-edges, and select a uniform perfect matching on these

half-edges. The resulting (multi)graph is obtained by contracting each d

half-edges into their corresponding vertex (possibly introducing multiple

edges or self-loops). Crucially, given that the graph produced is simple,

it is uniform over G(n, d), and for d fixed, the probability of this event is

bounded away from 0. Hence, events that hold w.h.p. for the graph obtained

via the configuration model also hold w.h.p. for G ∼ G(n, d).

One particularly useful property of the configuration model is that it al-

lows one to construct the graph gradually, exposing the edges of the perfect

matching one at a time. This way, each additional edge is uniformly dis-

tributed among all possible edges on the remaining (unmatched) half-edges.

The distance between two vertices u, v in an unweighted (undirected)

graph G, denoted by distG(u, v), is the number of edges in the shortest path

connecting these two vertices. We will use the abbreviation dist(u, v) when

there is no danger of confusion. If G has non-negative weights on its edges,

the length of a path is replaced by its weight (the sum of weights along its

edges), and dist(u, v) is analogously defined as the weight of the shortest

(least heavy) path between u, v.

The diameter of a graph G, denoted by diam(G), is the maximum of

dist(u, v) over all possible vertices u, v.
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It is well-known (and easy to show) that G(n, d) is locally tree-like around

a typical vertex. To formalize such statements, we use the following notion.

The tree excess of a connected set S, denoted by tx(S), is the maximum

number of edges that can be deleted from the induced subgraph on S while

still keeping it connected (i.e., the number of extra edges in that induced

subgraph beyond |S| − 1).

3. Random regular graphs with exponential weights

3.1. Diameters of weighted graphs. In this section, we consider a ran-

dom regular graph for d ≥ 3 fixed, with i.i.d. rate 1 exponential variables

on its edges. In fact, here and throughout the paper, we will consider a

random d-regular multigraph generated via the configuration model (which

will prove useful in capturing the geometry of the kernel of the largest com-

ponent in G(n, p)). Our goal is both to obtain the asymptotic diameter in

this graph, and crucially, also establish its decay rate (see Eq. (3.3)).

Theorem 3.1. Fix d ≥ 3 and let G ∼ G(n, d) be a random d-regular multi-

graph with n vertices and i.i.d. rate 1 exponential variables on its edges.

Then w.h.p., diam(G) =
(

1
d−2 + 2

d

)
log n+O(log log n).

To prove the above result, we need to address the exponential decay of

the distance between vertices, and introduce the following definition: Let

t > 0. The t-radius neighborhood of a vertex u, denoted by Bu(t), is

Bt(u)
4
= {v : dist(u, v) ≤ t} . (3.1)

Further define the threshold of Bt(u) reaching a certain size as

Tu(s)
4
= min{t : |Bt(u)| ≥ s} . (3.2)

Given these definitions, we can now formulate the exponential decay of

diam(G) as well as Tu for all u ∈ V .

Theorem 3.2. Fix d ≥ 3 and let G ∼ G(n, d) be a a random d-regular

multigraph with n vertices and i.i.d. rate 1 exponential variables on its edges.

Then there exists some c > 0 so that the following holds. For any ` > 0,

P
(

diam(G) ≥
(

1
d−2 + 2

d

)
log n+ 15 log log n+ `

)
≤ ce−`/2 + cn−1/2 , (3.3)

and for q = 2
√
dn log n and a uniformly chosen vertex u,

P
(
Tu(q) ≥ log n

2(d− 2)
+ 7 log log n+ `

)
≤ ce−d` +

c

n
e−` + 2n−3/2 . (3.4)

Proof. We first wish to prove (3.4). Fix a vertex u, and consider the following

continuous-time exploration process. At time t = 0, we have a ball that
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contains only u. For t > 0, our ball contains every v that has dist(u, v) ≤ t,
i.e., it is precisely Bu(t).

In our setting, u is a fixed vertex and both the graph and its weights are

random, hence we can expose the edges and their weights as we grow Bt(u).

This leads to an equivalent description of the process:

• Start with B0(u) = {u}, where u has d (unmatched) half-edges.

• Reveal any matchings (and weights) of these d half-edges connecting

them amongst themselves (self-loops at u).

• Repeat the following exploration step:

– Given there are m half-edges in the current set, denoted by

h1, . . . , hm, let Ψ ∼ Exp(m) be a rate m exponential variable.

– Select a uniform half edge hi and match it to a uniformly chosen

half-edge outside of B, thus introducing a new vertex with d−1

new half-edges to the set B.

– Reveal the matchings (and weights) of any of the half-edges of

the newly added vertex whose match is also in B.

To verify the validity of the above process, consider the usual configuration

model for generating the neighborhood of u, a fixed vertex in a random d-

regular graph. That process would repeatedly select a uniform unmatched

half-edge in the current neighborhood B and match it to a uniform half-

edge in the entire graph. Equivalently, one can grow the neighborhood by

repeatedly revealing every edge within the induced subgraph on B before

proceeding to expose edges to new vertices. This method of generating the

underlying random regular graph will simultaneously provide us with the

weights along the edges. Indeed, we can continuously grow the weights of

the half-edges h1, . . . , hm in B until one of their rate 1 exponential clocks

fires. Since the minimum of m exponentials is exponential with rate m, this

is the same as choosing a uniform half-edge hi after time Ψ (recall that by

our conditioning, these m half-edges do not pair within themselves). Note

that the final weight of an edge is accumulated between the time of arrival

of its first half-edge and the time of its pairing (except edges going back

into B whose weights are revealed immediately). Finally, the memoryless

property of the exponential distribution guarantees that the process indeed

generates a random d-regular graph with i.i.d. rate 1 exponentials.

Let τi denote the time of the i’th exploration step (i ≥ 0) in the above

continuous-time process, and notice that for each i, at time τi+1 we match a

uniformly chosen half-edge from the set Bτi to a uniformly chosen half-edge

among all other half-edges (excluding those in Bτi). Moreover, given Fτi ,
we have that τi+1 − τi is an exponential variable with rate k, where k is the

number of half-edges in Bτi(u).
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By the uniform choice of the matching, given Fτi , the number of half-

edges introduced by the new vertex at time τi+1 and connecting back to

Bτi+1 is stochastically dominated by a binomial variable

Bin(d− 1, α) , where α = d+(d−2)(i+1)
dn−2i ≤ (i+2)d−2

dn ≤ i+2
n ,

where the first inequality above is valid for, say, every i ≤ n
2 − 5. To justify

this, observe that after i steps we have some m ≤ d+ (d− 2)i half-edges in

Bτi out of some M ≥ dn − 2i half-edges in total. Moreover, if b half-edges

connected back (did not produce a new vertex) then m = d+ (d− 2)i− 2b

whereas M = dn− 2i− 2b. Since the probability for each of the new d− 1

half-edges to connect back into Bτi is at most m+d−2
M ≤ d+(d−2)i

dn−2i the above

statement holds.

Therefore, for every i, the tree-excess of Bτi is stochastically dominated

by a binomial variable Bin(id, (i + 2)/n) (with room to spare). Recalling

that q = 2
√
dn log n and defining

r
4
= log3 n ,

we have the following for large n

P(tx(Bτr) ≥ 1) ≤ P
(

Bin
(
dr, r+2

n

)
≥ 1
)
≤ O

(
r2

n

)
= O

( log6 n
n

)
,

P(tx(Bτr) ≥ 2) ≤ P
(

Bin
(
dr, r+2

n

)
≥ 2
)
≤ O

(
r4

n2

)
= o
(
n−3/2

)
.

(3.5)

Furthermore, for any k satisfying r ≤ k ≤ 10q,

P
(
tx(Bτk) ≥ k√

r

)
≤ P

(
Bin

(
dk, k+2

n

)
≥ k√

r
) ≤ exp

(
−1

3k/
√
r
)
< n−6 ,

where the last two inequalities hold for any sufficiently large n by Chernoff’s

inequality (see, e.g., [2]), noting that k2/n = o(k/
√
r). Define the event

R
4
=
{
tx(Bτk) < k/

√
r for all r ≤ k ≤ 10q

}
, (3.6)

and note that a union bound over all r ≤ k ≤ 10q gives that P(R) ≥ 1−n−5.

(In the rare event that the exploration from u exhausts itself prior to k = 10q,

the event R applies only to values of k for which τk is defined. This occurs

with probability O(1/n2) hence may be neglected.) At this point, we have

two cases concerning tx(Bτr).

• Case 1. The tree excess of Bτr is 0 and the event R holds so far.

Denote this event by Q1.

In this case, for any i < r, conditioning on tx(Bτi) = 0 we have

that the number of half-edges of Bτi is d + di − 2i = (d − 2)i + d, and

τi+1 − τi � Yi, where

Yi ∼ Exp((d− 2)i+ d) (i = 0, 1, . . . , r − 1)

and all Yi’s are independent. (Here and in what follows, µ � ν denotes

stochastic domination, i.e.
∫
fdµ ≤

∫
fdν for any increasing function
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f .) Now, each matching that contributes to the tree excess eliminates

two half-edges instead of introducing d − 1 new ones. Thus, for each

i ≥ r, conditioning on tx(Bτi) < i/
√
r we get that τi+1− τi � Yi, where

Yi ∼ Exp((d− 2)i+ d− 2i/
√
r) (i = r, r + 1, . . .) (3.7)

Applying the Laplace transform, and noting that for Y ∼ Exp(ρ)

EeλY =

∫ ∞
0

eλyρe−ρydy =
ρ

ρ− λ
,

we obtain that

E
[
eλ(τq−τ1) | Q1

]
≤

r−1∏
i=1

(d− 2)i+ d

(d− 2)i+ d− λ

q−1∏
i=r

(d− 2)i+ d− 2i/
√
r

(d− 2)i+ d− 2i/
√
r − λ

.

Taking λ = d, we get

E
[
ed(τq−τ1) | Q1

]
≤

r−1∏
i=1

(
1 +

d

(d− 2)i

) q−1∏
i=r

(
1 +

d

(d− 2)i− 2i/
√
r

)

≤ exp

[
d

d− 2

r−1∑
i=1

1

i
+

d

d− 2
· 1

1− 2
d−2r

−1/2

q−1∑
i=r

1

i

]

≤ exp

[
d

d− 2

(
1 +O(r−1/2)

)
log q + 2

]
≤ 10qd/(d−2) ,

where the last inequality holds for large n. Hence, in Case 1 we have

P
(
τq − τ1 ≥

log n

2(d− 2)
+

log logn

2(d− 2)
+ `

∣∣∣ Q1

)
≤ O(exp(−d`)) .

As τ1 ∼ Exp(d), altogether in this case

P
(
τq ≥

log n

2(d− 2)
+

log logn

2(d− 2)
+ `

∣∣∣ Q1

)
≤ O(exp(−d`)) .

• Case 2. The tree excess of Bτr is 1 and the event R holds so far.

Denote this event by Q2.

Here, for any i < r, the following holds: Conditioned on tx(Bτi) ≤ 1,

the number of half-edges in Bτi is d for i = 0 and at least (d − 2)i for

i ≥ 1. Hence, τi+1 − τi � Yi, where the Yi’s are independent variables

given by

Yi ∼ Exp
(
(d− 2)(i+ 1)

)
(i = 0, 1, . . . , r − 1) .

For i ≥ r, conditioned on tx(Bτi) < i/
√
r the bounds of Case 1 hold,

that is, τi+1 − τi � Yi for the variables Yi as given in (3.7). This yields

that

E
[
eλ(τq−τ1) | Q2

]
≤

r−1∏
i=1

(d− 2)(i+ 1)

(d− 2)(i+ 1)− λ

q−1∏
i=r

(d− 2)(i+ 1)− 2i/
√
r

(d− 2)(i+ 1)− 2i/
√
r − λ

.
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Taking λ = 1, we get

E
[
eτq−τ1 | Q2

]
≤

r−1∏
i=1

(
1 +

1

(d− 2)(i+ 1)

) q−1∏
i=r

(
1 +

1

(d− 2)(i+ 1)− 2i/
√
r − 1

)

≤ exp

[
1

d− 2

r∑
i=2

1

i
+

1

d− 2
· 1

1− 2[(d− 2)
√
r]−1

q−1∑
i=r

1

i

]

≤ exp

[
1

d− 2

(
1 +O(r−1/2)

)
log q + 2

]
≤ 10q1/(d−2) ,

where the last inequality holds for large n. Hence, in Case 2 ,

P
(
τq − τ1 ≥

log n

2(d− 2)
+

log logn

2(d− 2)
+ `

∣∣∣ Q2

)
≤ O(exp(−`)) ,

and again, as τ1 � Exp(d− 2), in this case

P
(
τq ≥

log n

2(d− 2)
+

log logn

2(d− 2)
+ `

∣∣∣ Q2

)
≤ O(exp(−`)) .

Combining the above two cases using (3.5) and that P(R) ≥ 1− n−5, we

conclude that for some c > 0 fixed,

P
(
τq ≥

log n

2(d− 2)
+ 7 log log n+ `

)
≤ ce−d` +

c

n
e−` + 2n−3/2 ,

(here the 7 log log n term eliminated the log6 n factor from Eq. (3.5)), readily

implying (3.4).

To obtain (3.3) we need the next simple lemma.

Lemma 3.3. With high probability, dist(u, v) ≤ Tu(q) + Tv(q) for all u, v.

Proof. Assume that Tu(q), Tv(q) <∞ (i.e. each of the connected components

of u and v consists of at least q vertices) otherwise the statement of the

lemma holds trivially.

Fix two vertices u, v and consider the aforementioned exploration process.

Explore Bt(u) until reaching t = Tu(q), and condition on the event that its

tree-excess is o(q), as ensured by the event R defined in (3.6) (this event

holds with probability at least 1 − n−5). Thus, there are (d − 1 − o(1))q

half-edges in BTu(q) except with probability n−5.

Next, begin exposing Bt(v); each matching adds a uniform half-edge to

the neighborhood of v, and so the probability that BTv(q) does not intersect

BTu(q) is at most(
1− (d− 1− o(1))q

dn

)q
≤ exp(−4(d− 1− o(1)) log n) < n−7

for any large n. A union bound over u, v now completes the proof. �



10 JIAN DING, JEONG HAN KIM, EYAL LUBETZKY AND YUVAL PERES

To infer (3.3) from (3.4) and the above lemma, argue as follows. Choose

` = 1
d log n+ k in (3.4) to obtain that for some constant c > 0, a uniformly

chosen vertex u has

P
(
Tu(q) ≥

(
1

2(d−2) + 1
d

)
log n+ 7 log log n+ k

)
<
c

n
e−dk +

c

n
e−k + 2n−3/2

(with room to spare), and by taking a union bound over u it follows that,

for some other c > 0, the probability of{
Tu(q) ≤

(
1

2(d−2) + 1
d

)
log n+ 7 log log n+ k

}
for every u

is at least 1− ce−k− 2/
√
n. Combining Lemma 3.3 with a choice of k = `/2

now gives the estimate (3.3) for the decay of the diameter, as required. �

We also need the next simple lemma, which bounds the number of edges

in a path achieving dist(u, v) for any u, v.

Lemma 3.4. With high probability, for any two vertices u, v, the number of

edges in the path achieving dist(u, v) is at most 4de log n.

Proof. First consider an arbitrary given d-regular graph H on n vertices with

i.i.d. rate 1 exponentials on its edges. Consider a simple path consisting of

` edges, and let Xi denote the Exp(1) variable that corresponds to the i’th

edge. Setting S` =
∑

i≤`Xi,

P(S` ≤ a`) = P(e−λS` ≥ e−λa`) ≤ eλa`Ee−λS` =
eλa`

(1 + λ)`
,

where the last equality is by the fact that
∫∞

0 e−λxe−xdx = 1
1+λ . Choosing

λ = (1− a)/a and subsequently a = 1/(2de), we get that

P(S` ≤ a`) ≤
(
ae1−a)` ≤ (2d)−` .

Fix a starting position u for the path. Summing over all d(d−1)`−1 possible

simple paths of length ` originating from u, we have that the probability

that one of these paths would have weight smaller than a` is at most 2−`. In

particular, if Au denotes the event that for some integer ` ≥ 2 log2 n there is

a simple path originating from u with length ` and weight at most a`, then

P(Au) ≤ 2n−2. Taking a union bound over the vertices u gives this for any

vertex of the graph H w.h.p.

Now take H to be our random d-regular graph. By the estimate of Theo-

rem 3.2 on the diameter we deduce that, w.h.p., for any u, v either the path

achieving dist(u, v) has at most 2 log2 n edges, or the number of edges is

contains is at most

diam(G)/a ≤ 2de
( 1

d− 2
+

2

d
+ o(1)

)
log n < 4de log n

for large n, thus concluding the proof. �
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The upper bound on the diameter of the weighted graph G will follow

immediately from the results we have established so far. For the lower

bound, we need to the following lemma.

Lemma 3.5. Let u, v be two uniformly chosen vertices of the graph G de-

fined in Theorem 3.2. Let B′t(x) = {y : dist(y,NG(x)) ≤ t}, where NG(x)

denotes the neighbors of x in G. Then w.h.p., B′t0(u) ∩ B′t0(v) = ∅ for

t0 = 1
2(d−2) log n− 3 log log n.

Proof. Fix a vertex u, consider the exploration process defined in the proof

of Theorem 3.2 from the set NG(u) (w.h.p. comprised of d(d−1) half-edges),

and again let τi be the time of the i’th step. As argued before, τi+1−τi � Yi,
where the Yi’s are independent exponential variables given by

Yi ∼ Exp ((d− 2)i+ d(d− 1))

(this follows from the fact that the worst case is when the explored set forms

a tree). At this point, setting b
4
= d(d− 1)− (d− 2), we get

P(τz ≤ t) ≤
∫
∑z
i=1 xi≤t

z∏
i=1

[
(d− 2)i+ b

]
e−

∑z
i=1((d−2)i+b)xidx1 . . . dxz

=

∫
0≤y1≤...≤yz≤t

z∏
i=1

[
(d− 2)i+ b

]
e−byze−(d−2)

∑z
i=1 yidy1 . . . dyz ,

where yk =
∑k−1

i=0 xz−i. Letting y play the role of yz and accounting for all

permutations over y1, . . . , yz−1 (giving each such variable the range [0, y]),

P(τz ≤ t) ≤
∫ t

0
e−(d−2+b)y

∏z
i=1(i+ b

d−2)

(z − 1)!

·

(∫
[0,y]z−1

(d− 2)ze−(d−2)
∑z−1
i=1 yidy1 . . . dyz−1

)
dy

≤
∫ t

0
e−(d−2+b)y

∏z
i=1(i+ b

d−2)

(z − 1)!
·
( z−1∏
i=1

∫ y

0
(d− 2)e−(d−2)yidyi

)
≤ c(d− 2)z

b
d−2

+1
∫ t

0
e−d(d−1)y(1− e−(d−2)y)z−1dy ,

where c > 0 is an absolute constant. Setting t0 = 1
d−2(log z − 2 log log n)

and z =
√
n/ log n we obtain that

P(τz ≤ t0) ≤ c(d− 2)z
b

d−2
+1
∫ t0

0
e− log2 ndy = o(n−5) ,

where we used the fact that (1− e−(d−2)y)z−1 ≤ e− log2 n for all 0 ≤ y ≤ t0.
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To conclude the proof, observe that the above argument showed that

w.h.p. |B′t0(u)| ≤ z. Choosing another uniform vertex v (which misses this

mentioned set with probability 1− o(1)) and exposing B′t0(v), again w.h.p.

we obtain a set of size at most z. Crucially, each matching is uniform among

the remaining half-edges, and so its probability of hitting the boundary of

|B′t0(u)| is at most z/n. Altogether,

P(B′t0(u) ∩B′t0(v) 6= ∅) ≤ z2

n
+ o(1) = o(1) ,

as required. �

We are now ready to prove the asymptotic behavior of the diameter.

Proof of Theorem 3.1. For the upper bound, apply Theorem 3.2 with,

say, ` = log log n, to obtain that w.h.p.

diam(G) ≤
( 1

d− 2
+

2

d

)
log n+ 16 log log n =

( 1

d− 2
+

2

d
+ o(1)

)
log n .

It remains to provide a matching asymptotic lower bound.

Set

D
4
=

1

d
log n− 1

d
log logn ,

and call a vertex “good” if the weight on all the d edges connected to it is

larger than D. For a vertex u ∈ V , let Au denote the event that u is good.

Clearly, P(Au) = logn
n , and so if Y =

∑
u 1Au counts the number of good

vertices, we have that EY = log n. Furthermore,

Var(Y ) =
∑
u,v

Cov(1Au ,1Av) =
∑
u

Var(1Au) +
∑
u

∑
v:uv∈E(G)

Cov(1Au ,1Av)

≤ EY +
∑
u

dP(Au) = (d+ 1)EY ,

and by Chebyshev’s inequality we deduce that, for instance, Y ≥ 2
3 log n

w.h.p. In particular, the number of pairs of distinct good vertices, denoted

by R, satisfies R ≥ 1
4 log2 n w.h.p.

On the other hand, recalling Lemma 3.5 and taking

t0 =
1

2(d− 2)
log n− 3 log log n ,

we have that two uniform vertices u, v satisfy B′t0(u) ∩ B′t0(v) = ∅ w.h.p.,

where the ball B′t(x) includes all vertices of distance t from the neighbors of

x (excluding x itself). In particular, condition on the events Au and Av, the

probability that B′t0(u) does not intersect B′t0(v) remains the same (since

the weights on the immediate edges incident to u, v do not play a part).

Therefore, for two uniformly chosen vertices u, v we have

P
(
Au , Av , B

′
t0(u) ∩B′t0(v) 6= ∅

)
= o(P(Au , Av)) .
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Denoting by R′ the the number of pairs of good vertices that are of distance

at most 2D + 1
d−2 log n− 6 log log n, we deduce that

ER′ = o(EY 2) = o((EY )2) = o(log2 n) .

By Markov’s inequality, R′ ≤ 1
8 log2 n w.h.p., and hence R − R′ is w.h.p.

nonempty. This implies the existence of two vertices whose distance is at

least
(

1
d−2 + 2

d

)
log n− 7 log log n, completing the proof. �

3.2. Diameters of metric graphs. We consider the following continuous

analogue of the diameter of a weighted graph (see, e.g., [3] for related infor-

mation).

Definition 3.6. Let G = (V,E) be a graph with non-negative weights on

its edges {w(e) : e ∈ E}. The corresponding metric graph X = X (G) is the

graph obtained by replacing every e ∈ E by a line segment Le of length w(e),

with the (uncountable) vertex set ∪eLe and the obvious shortest path metric.

That is, the distance between any x, y ∈ X , lying on two distinct Le and

Le′ resp., is the minimum of |x′ − x|Le + |y′ − y|Le′ + distG(x′, y′) over all

4 possible choices of endpoints x′, y′ of Le, Le′ resp., where | · |Le is the Eu-

clidean distance in the interval [0, w(e)] and we identified x′, y′ with vertices

of G (When e = e′ the distance is the minimum of the above and |x− y|Le).
For a fixed integer d ≥ 3, Let G ∼ G(n, d) be a random d-regular graph

with i.i.d. rate 1 exponential weights on its edges. At times we will identify

the metric graph X with its points (the union of its line segments). As

before, we let diam(X ) = maxx,y∈X dist(x, y).

The next theorem establishes the typical diameter of X , which differs

from that of G by a term of (d−2
d + o(1)) log n.

Theorem 3.7. Fix d ≥ 3, let G ∼ G(n, d) be a random d-regular multigraph

on n vertices with i.i.d. Exp(1) variables on its edges, and let X (G) be its

metric graph. Then diam(X ) =
(
1 + 1

d−2

)
log n+O(log log n) w.h.p.

The proof follows the same arguments used to prove Theorem 3.1, but

instead of exposing a neighborhood of an initial vertex, it does so while

excluding one of the edges incident to this vertex. We will therefore focus

on the modifications required to adapt the original argument to our new

setting.

Recall that we defined Tu(q) in the discrete setting as the minimal t such

that |Bt(u)| ≥ q. In the continuous case, we will still have Bt(u) count the

number of vertices of G, that is, endpoints of line segments in X . Further

define Bt(ē) for a directed edge ē = (x, y) as the set of all vertices of G whose

distance from y is at most t, without using the edge ē (in any direction).
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That is, Bt(ē) is the set Bt(y) minus vertices that depend on ē for being

included in this set.

A small modification is required in the rare case of a self-loop or multiple-

edge incident either to y or to one of its neighbors excluding x. In this case we

call the edge ē = (x, y) “rare” and take Bt(ē) to be Bt(ē
′), where ē′ = (y, x)

is the reversed edge. Observe that w.h.p. at most one of these edges is rare

as the probability for each of these independent events is O(1/n).

Similar to before (yet slightly modified in the case of a rare edge), let

Tē(q) = min{t : |Bt(ē)| ≥ q}+ 1{ē is rare}
1

2
w(ē) . (3.8)

We can now formulate an exponential decay statement for the diam(X ),

analogous to Theorem 3.2.

Theorem 3.8. Let G and X be as in Theorem 3.7. Then there exists some

c > 0 so that the following holds. For any ` > 0,

P
(

diam(X ) ≥
(
1 + 1

d−2

)
log n+ 15 log log n+ `

)
≤ ce−`+(2+ce−`/2)n−1/2 ,

(3.9)

and for q = 2
√
dn log n and a uniformly chosen directed edge ē,

P
(
Tē(q) + 1

2w(ē) ≥ log n

2(d− 2)
+ 7 log log n+ `

)
≤ ce−2` +

c

n
e−` + 2n−3/2 .

(3.10)

Proof. Consider the exploration process from the endpoint y of the uniformly

chosen edge ē = (x, y), while disregarding ē. This process is identical to the

process defined in the previous subsection except that it starts with d − 1

half-edges rather than d half-edges.

Letting τi be the time of the i’th exploration step, we have that there are

at most d− 1 + (d− 2)i half-edges in Bτi out of dn− 2i half-edges in total.

As before, the number of half-edges, introduced at time τi+1 and connecting

back to Bτi+1 , is stochastically dominated by a binomial variable

Bin(d− 1, α) where α = d−1+(d−2)(i+1)
dn−2i ≤ i+2

n .

Thus, we apply the same analysis of the tree excess of Bτi as in the proof of

Theorem 3.2 (stochastically dominating it via a binomial Bin(d, (i+ 2)/n))

to obtain the exact bounds of (3.5), as well as that P(R) ≥ 1 − n−5 for R

defined in (3.6).

Examining the two cases for tx(Bτr), we now have that τi+1− τi � Yi for

i.i.d. exponential variables Yi defined as follows:
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• Case 1. (The tree excess of Bτr is 0 and the event R holds)

Y0 ∼ Exp(d− 1) , Yi ∼ Exp(d− 1 + (d− 2)i) (i = 1, . . . , r − 1) ,

Yi ∼ Exp(d− 1 + (d− 2)i− 2i/
√
r) (i = r, r + 1, . . .) .

For d ≥ 3 the rates of the above Yi’s are all at least 2.

• Case 2. (The tree excess of Bτr is 1 and the event R holds)

First assume ē is not rare. In this case there are d − 1 half-edges

initially, the first step adds d− 2 half-edges to the boundary (d− 1 new

ones at the cost of 1 half-edge lost, as there are no loops or multiple

edges), and similarly the second steps adds d− 2 half-edges. Thus,

Y0 ∼ Exp(d− 1) , Y1 ∼ Exp(2d− 3) ,

Yi ∼ Exp(3d− 7 + (d− 2)(i− 2)) (i = 2, . . . , r − 1) ,

Yi ∼ Exp(3d− 7 + (d− 2)(i− 2)− 2i/
√
r) (i = r, r + 1, . . .) .

Note that for d ≥ 3 the rates of the above Yi’s are again all at least 2.

In the special case where ē is rare (occurring with probability O(1/n)),

the analogous sequence of Yi’s will feature a reduced rate of at least 1.

It is then easy to verify that a choice of λ = 2 for the Laplace transform for

a typical edge ē and λ = 1 when ē is rare, plugged in the same calculations

as in the proof of Theorem 3.2, gives that

P
(
Tē(q) ≥

log n

2(d− 2)
+ 7 log log n+ `

)
≤ ce−2` +

c

n
e−` + 2n−3/2

(the middle term corresponded to a rare edge ē; otherwise, Cases 1,2 both

give a decay-rate of 2).

Consider an edge ē that is not rate. Crucially, w(ē) is independent of

Tē(q) by definition, and as w(ē) ∼ Exp(1) (and so 1
2w(ē) ∼ Exp(2) has

decay rate 2) we immediately obtain (3.10). Alternatively, when ē is rare,

our modified definition of Tē(q) again verifies (3.10) (this time both w(ē)

and the growth of B have rate 1).

Choosing ` = 1
2 log n+ k and taking a union bound over ē, we have that{

Tē(q) + 1
2w(ē) ≤

(
1

2(d−2) + 1
2

)
log n+ 7 log log n+ k

}
for every ē (3.11)

with probability at least 1− ce−2k − (2 + ce−k)n−1/2.

To conclude (3.9) from (3.11), argue as follows. For two points x, y ∈ X ,

write ux, uy for their closest points in G respectively, and let ēx, ēy denote

the directed edges containing x, y and ending at ux, uy respectively. For

simplicity, assume first that neither of these edges is rare. Clearly,

dist(x, y) ≤ dist(ux, uy) +
1

2
w(ēx) +

1

2
w(ēy) .
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Now, by Lemma 3.3, w.h.p. we have dist(u, v) ≤ Tu(q) + Tv(q) for all u, v.

Furthermore, for any directed edge ē = (u, v), as Bt(ē) ⊂ Bt(v) we get that

Tē(q) ≥ Tv(q). Altogether, w.h.p.

dist(x, y) ≤ Tēx(q) +
1

2
w(ēx) + Tēy(q) +

1

2
w(ēy) . (3.12)

We claim that the above inequality remains valid if one or more of the edges

ēx, ēy is rare. For instance, if ēx is rare we could replace ux by the other

endpoint of ēx at a cost of at most 1
2w(ēx), which is precisely accounted for

in the modified definition of Tēx(q). The exponential decay of the diameter,

as stated in (3.9), now immediately follows from (3.11). �

Proof of Theorem 3.7. The upper bound on diam(X ) follows directly

from the exponential decay estimate in (3.9), e.g., by taking ` = log log n.

The proof of the lower bound will follow from essentially the same argu-

ments used to prove Theorem 3.1. Here, instead of defining a “good” vertex,

we call an edge “good” if its weight is larger than D = log n− log logn, and

obtain that the probability that a given edge e is good is logn
n . The same

second moment argument that showed that R, the number of pairs of dis-

tinct good vertices, is at least 1
4 log2 n w.h.p., now yields the same estimate

on the number of pairs of distinct good edges.

The argument in Theorem 3.1 then proceeded with an application of

Lemma 3.5, which bounds the probability that two uniformly chosen vertices

u, v have intersecting neighborhoods B′t0(u) and B′t0(v) for a prescribed t0
(where B′t(x) consists of vertices that are of distance at most t from NG(x),

the neighbors of x in G). We now note that the statement of this lemma

holds also for any uniformly chosen points x, y ∈ X , when NG(x) still stands

for the neighbors of x in the graph G (i.e., the endpoints of the incident

edges). To see this, simply replace the b by 2(d− 1)− (d− 2) in the proof of

that lemma, accounting for the 2(d− 1) initial half-edges in the exploration

process. Since the value of b does not play a role in the proof (as long as

it is a constant), the proof holds without any further changes (for the same

value of t0).

Therefore, as before we may deduce that the expected number of pairs of

good edges whose distance is at most 2t0 is o(log2 n), and so w.h.p. (using

Markov’s inequality) there exists a pair of good edges, e, f , whose distance

in X is at least 2t0. The proof is now concluded by choosing the middle

points in e, f to obtain a distance of

2 · D
2

+ 2t0 =
(

1 +
1

d− 2

)
log n− 7 log log n ,

as required. �
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4. The young giant component

In this section, we focus on the giant component in the regime ε3n→∞
and ε = o(n−1/4). In order to relate the results of the previous section

(concerning diameters of weighted random regular graphs) to this setting,

we apply the main result of the companion paper [10], which provides a

complete and tractable description of C1.

Theorem 4.1 ([10, Theorem 1]). Let C1 be the largest component of the

random graph G(n, p) for p = 1+ε
n , where ε3n→∞ and ε = o(n−1/4). Then

C1 is one-sided contiguous to the model C̃1, constructed in 3 steps as follows:

1. Let Z ∼ N
(

2
3ε

3n, ε3n
)
, and select a random 3-regular multigraph K on

N = 2bZc vertices.

2. Replace each edge of K by a path, where the path lengths are i.i.d. Geom(ε).

3. Attach an independent Poisson(1− ε)-Galton-Watson tree to each vertex.

That is, P(C̃1 ∈ A)→ 0 implies P(C1 ∈ A)→ 0 for any set of graphs A.

In the above, a Poisson(µ)-Galton-Watson tree (or a PGW-tree for short)

is the family tree of a Galton-Watson branching process with offspring dis-

tribution Poisson(µ), and N (µ, σ2) stands for the Normal distribution with

mean µ and variance σ2.

4.1. The 2-core and its kernel. In light of the above theorem, the kernel

K of the giant component in the regime of p = 1+ε
n for ε3n → ∞ and

ε = o(n−1/4) can be regarded a random 3-regular graph G ∼ G(N, 3). The 2-

core C(2)
1 is then obtained by replacing the edges of this graph by 2-paths (i.e.,

paths whose interior vertices all have degree 2) of lengths i.i.d. geometric

with mean 1/ε.

Proof of Theorem 2 for the regime ε = o(n−1/4). Let G ∼ G(N, 3) be

a random 3-regular graph with i.i.d. Exp(λ) edge weights {w(e) : w ∈ E(G)},
where e−λ = 1 − ε. Further let H be the unweighted graph obtained by

taking the underlying graph of G, and replacing each of its edges by paths

of length i.i.d. geometric variables with mean 1/ε. Let K denote the subset

of the vertices of H of degree at least 3.

By Theorem 4.1, for N as defined as in Step 1 (which in particular satisfies

N = (4
3 + o(1))ε3n w.h.p.), H corresponds to C(2)

1 , the 2-core of the giant

component of G(n, p), and the graph G corresponds to its kernel K.

We can clearly couple G and H such that each 2-path P in H, corre-

sponding to some edge e ∈ E(G), would satisfy ||P | − w(e)| ≤ 1.

By Theorem 3.2, the diameter of the weighted graph G is w.h.p.

diam(G) =
(

5
3 + o(1)

)
(1/λ) logN ,
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and by Lemma 3.4 the path achieving it consists of O(logN) edges. Hence,

recalling that 1/λ = (1 + o(1))(1/ε) → ∞, the distance between any two

vertices u, v ∈ K in the graph H differs from their distance in G by at most

O(logN) = o(diam(G)), and so w.h.p.

max
u,v∈K

distH(u, v) =
(

5
3 + o(1)

)
(1/ε) log(ε3n) .

Furthermore, by the coupling of G and H, given the metric graph X (G)

we clearly have that distance between two given points x, y ∈ X is up to a

difference of 2 the distance between two other points u, v ∈ H (simply take

the closest points to x, y in the subdivision of the corresponding edges), and

vice versa. Since we know by Theorem 3.7 that w.h.p.

diam(X ) = (2 + o(1))(1/λ) logN ,

we can now deduce that w.h.p.

diam(H) = (2 + o(1))(1/ε) log(ε3n) ,

as required. �

4.2. The diameter of the giant component. We next wish to prove

Theorem 1, which establishes the asymptotics of the diameter of the giant

component.

The next lemma estimates the diameter of a Poisson-Galton-Watson tree.

Throughout the proof, let 0 < µ < 1 be some function of n satisfying

µ = 1− ε+O(ε2) .

Lemma 4.2. Let T be a PGW(µ)-tree for µ as above, and let Lk be the k-th

level of T . For any k ≥ 1/ε we have P(Lk 6= ∅) = Θ
(
ε exp

[
−k(ε+O(ε2))

])
.

Proof. Let T ′ be a Galton-Watson tree with a Binomial offspring distribution

Bin(b, µ/b). Then T ′ is precisely the open cluster containing the root after

percolating on a b-ary tree Tb, where the percolation probability is µ/b. Let

L′k be the k-th level of T ′. We will use the next lemma which gives a sharp

estimate for the probability that L′k is non-empty.

Lemma 4.3 ([18, Theorem 2.1], restated). Assign each edge e from level

h− 1 to level h in Tb the edge resistance re = (1− µ
b )(µb )−h. Let Rk be the

effective resistance from the root to level k of Tb. Then,

1

1 +Rk
≤ P(L′k 6= ∅) ≤

2

1 +Rk
.

In our case, the resistance Rk satisfies (see, e.g., [20, Example 8.3])

Rk =
k∑
i=1

(1− µ
b )(µb )−i

b(b− 1)i−1
=
b− 1

b− µ
·
[
(1 + 1

b−1)/µ
]k+1 − 1[

(1 + 1
b−1)/µ

]
− 1

.
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Note that for k ≥ 1/ε we have

lim
b→∞

Rk =
(1/µ)k+1 − 1

(1/µ)− 1
= Θ

(
ε−1 exp

[
k(ε+O(ε2))

])
.

Applying Lemma 4.3, we obtain that

1

1 +Rk
≤ P(L′k 6= ∅) ≤

2

1 +Rk
.

Letting b → ∞ and using the fact that Bin(b, µb ) converges to a Poisson(µ)

distribution, we obtain that for any k ≥ 1/ε,

P(Lk 6= ∅) = Θ
(
ε exp

[
−k(ε+O(ε2))

])
,

as required. �

We are now ready to prove the main result.

Proof of Theorem 1 for the regime ε = o(n−1/4). For N as defined in

Theorem 4.1, let G ∼ G(N, 3) be a random 3-regular graph with i.i.d. Exp(λ)

edge weights, denoted by {w(e) : w ∈ E(G)}, where e−λ = 1− ε. Again, let

H be the unweighted graph obtained by taking the underlying graph of G,

and replacing each of its edges by paths of length i.i.d. geometric variables

with mean 1/ε.

In what follows, we will shift between the shortest distances in the metric

graph X (G) and those in the weighted graph H. Since we have

1/λ = 1/ log(1/(1− ε)) = (1/ε) +O(1) ,

Lemma 3.4, together with the aforementioned coupling between the two

models, implies that this shift will only cause an error of O(log(ε3n)), which

is easily absorbed in our estimate for the diameter.

Set δ > 0. and consider m = Θ(ε2n) i.i.d. PGW(1 − ε)-trees. By

Lemma 4.2, the probability that a given such tree will have height at least

h− = (1− δ)(1/ε) log(ε3n)

is, for some c = c(δ) > 0, at least

cε(ε3n)−(1−δ)(1+O(ε)) = cε(ε3n)−1+δ+o(1) 4= ζ .

Therefore, standard estimates for the binomial variable Bin(m, ζ) (whose

mean is mζ = (ε3n)δ−o(1)) imply that there exist at least 2 such trees w.h.p.

Let Hu denote the height of the PGW-tree attached to a vertex u in the 2-

core. By the above discussion, the two vertices u, v with largest Hu, Hv have

Hu, Hv ≥ h−, and clearly they are uniformly distributed among the vertices

of C(2)
1 (by the definition of our model). As such, Lemma 3.5 asserts that

their distance in G is w.h.p. at least 2t0 = (1 + o(1)) logN (neglecting the

distance to their nearest kernel vertices in this lower bound) and re-scaling,
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we obtain that their distance is at least (1+o(1))(1/ε) log(ε3n) in the 2-core.

Altogether, the distance between a level-Hu leaf of the PGW-tree of u and

a level-Hv leaf of the PGW-tree of v is at least

(3− 2δ + o(1))(1/ε) log(ε3n) ,

and letting δ → 0 completes the lower bound.

For the upper bound, let B = {u ∈ C(2)
1 : Hu ≥ 1/ε}. Applying

Lemma 4.2 and Markov’s inequality (as E|B| = O(ε3n)) we infer that w.h.p.

|B| ≤ ε3n log log(ε3n) . (4.1)

Recall that the attached trees are independent of the 2-core and hence B is

independent of the structure of the 2-core. Moreover, for any u,

P
(
Hu ≥ 1/ε+ `

∣∣u ∈ B) = O
(
e−(1+O(ε))ε`

)
,

since we have P(u ∈ B) = Θ(ε).

Now, let u′ be the closest kernel point to u and let ēu be the kernel edge

incident to u and ending at u′. Define Tu = Tēu(q) + 1
2w(ēu), where Tēu(q)

is as given in (3.8), i.e. the minimum time t at which Bt(ēu) reaches size

q = 2
√
N logN (adjusted by 1

2w(ēu) in the case of rare edges).

For δ > 0, set

tn =
(

1
2 + δ

)
(1/ε) log(ε3n) .

Since Hu and Tu are independent, using (3.10) we deduce that for any u,

P(Hu ≥ `1
∣∣u ∈ B , Tu) ≤ O(e−(1+O(ε))ε`1) ,

P(Tu ≥ tn + `2
∣∣u ∈ B , Hu) ≤ O(e−(1+O(ε))ε`2) +O(N−3/2) .

We next wish to bound the upper tail of Hu + Tu. To this end, let W be a

random variable with P(W ≥ x) = e−(1+O(ε))εx and Z be a random variable

on {0, n} with P(Z = n) = O(N−3/2). Pick independent variables W1 and

W2 distributed as W and suppose Z is independent of W1,W2. Observe that

our previous results give that

(Hu | u ∈ B , Tu) �W1 and (Tu − tn | u ∈ B , Hu) �W2 + Z . (4.2)

By our assumption on W ,

P(e(1−δ)εW ≥ x) = P(W ≥ log x/((1− δ)ε)) ≤ x−
1+O(ε)
1−δ

and therefore Ee(1−δ)εW ≤ O(1/δ) assuming ε = o(δ). We now obtain that

Ee(1−δ)ε(W1+W2) ≤ O(1/δ2) and thus P(W1 + W2 ≥ x) ≤ O(e−(1−δ)εx/δ2).

This implies that

P(W1 +W2 + Z ≥ x) ≤ O(e−(1−δ)εx/δ2) +O(N−3/2) .

and plugging this in (4.2) we conclude that

P(Hu + Tu ≥ tn + `
∣∣u ∈ B) ≤ O(e−(1−δ)ε`/δ2) +O(N−3/2) .
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Taking

` = (1 + 2δ)(1/ε) log(ε3n)

and recalling the bound (4.1) on |B|, we conclude that w.h.p. every u ∈ B
satisfies

Hu + Tu ≤
(
(3

2 + 3δ)ε−1 log(ε3n)
)
.

It remains to treat vertices not in B. Again applying (3.10), w.h.p. we have

Tu ≤ (1 + δ)(1/ε) log(ε3n) for all u ∈ C(2)
1 , and thus for all u ∈ C(2)

1 \B,

Hu + Tu ≤ (1/ε) + (1 + δ)(1/ε) log(ε3n) .

Altogether, we conclude that w.h.p. every u ∈ C(2)
1 satisfies

Hu + Tu ≤
(
(3

2 + 3δ)(1/ε) log(ε3n)
)
,

and Eq. (3.12) now concludes the proof of the upper bound. �

5. Diameters in the supercritical giant component

The goal of this section is to extend the proofs of Theorem 1,2, provided

in the previous section for the special case of ε = o(n−1/4), to any ε = o(1).

The proofs follow from essentially the same arguments, by replacing The-

orem 4.1 with its following more general form:

Theorem 5.1 ([10, Theorem 2]). Let C1 be the largest component of G(n, p)

for p = 1+ε
n , where ε3n→∞ and ε→ 0. Let µ < 1 denote the conjugate of

1 + ε, that is, µe−µ = (1 + ε)e−(1+ε). Then C1 is one-sided contiguous to the

following model C̃1:

1. Let Λ ∼ N
(
1 + ε− µ, 1

εn

)
and assign i.i.d. variables Du ∼ Poisson(Λ)

(u ∈ [n]) to the vertices, conditioned that
∑
Du1Du≥3 is even.

Let Nk = #{u : Du = k} and N =
∑

k≥3Nk. Select a random

multigraph K on N vertices, uniformly among all graphs with Nk ver-

tices of degree k for k ≥ 3.

2. Replace the edges of K by paths of lengths i.i.d. Geom(1− µ).

3. Attach an independent Poisson(µ)-Galton-Watson tree to each vertex.

That is, P(C̃1 ∈ A)→ 0 implies P(C1 ∈ A)→ 0 for any set of graphs A.

Indeed, a Taylor-expansion of the above defined parameter µ shows that

µ = 1−ε+O(ε2), hence our treatment of the re-scaling of the weighted graph

by paths of length i.i.d. Geom(1 − µ) will be essentially the same as in the

case of i.i.d. Geom(ε) variables, and the same applies to the PGW(µ)-trees

(rather than PGW(1 − ε)-trees). Step 1, however, is somewhat different

here, as the degree distribution of the kernel is richer. Nevertheless, with

only minor modifications the original proofs will hold for this case as well.

We next address these adjustments that one needs to make.
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5.1. The 2-core and kernel. To extend the upper bounds from the case

ε = o(n−1/4) to the general case, consider the kernel K. While before K was

a random 3-regular graph, now it has a degree distribution of a truncated

Poisson, resulting in an order εkn expected number of vertices of degree k

for k ≥ 3. As we will now show, this will only assist us in establishing the

upper bound on the diameter.

Consider the weighted graph G studied in Section 3. A crucial element

in the proofs of all the upper bounds was the decay of the distance of two

typical vertices in the 2-core. This was achieved by analyzing the exploration

process starting from a uniformly chosen vertex. While previously every

vertex had 3 half-edges, now the degree distribution is more complicated:

• On one hand, encountering a vertex of large degree in the explo-

ration process would contribute extra half-edges to our boundary,

and hence accelerate the exposure speed (by increasing the rate of

the exponential waiting times τi).

• On the other hand, larger degrees might result in a larger tree-excess,

slowing down the growth of the number of exposed vertices.

We now show that the effect of the second item is negligible. First, notice

that w.h.p. the largest degree in the kernel is at most logN (in fact, it is

O( logN
log logN ) w.h.p.). Assuming that this holds, (3.5) can be replaced by

P(tx(Bτr) ≥ 1) ≤ P
(

Bin
(
r logN, (r + 2) logN

N

)
≥ 1
)

= O
(
r2 log2N

N

)
= O

( log7N
N

)
,

P(tx(Bτr) ≥ 2) ≤ P
(

Bin
(
r logN, (r + 2) logN

N

)
≥ 2
)

= O
(
r4 log3N

N2

)
= o
(
N−3/2

)
,

which is indeed sufficient. Therefore, the probabilities of the events we con-

dition on to control the tree-excess have the same effect. A straightforward

stochastic domination argument for the first item above (where the larger

degrees are in our favor) now completes the upper bounds specified in Sec-

tion 3 for the new degree distribution.

Establishing the lower bounds is slightly more delicate. Fix δ > 0. By

standard large deviation arguments, there exists some c = c(δ) > 1 such

that, with probability at least 1− δ,

N3 =
(

4
3 + o(1)

)
ε3n , Nk ≤ c

(3ε)k

k!
n for all k ≥ 4 . (5.1)

Set z =
√
N/ logN . Let Si be the number of unmatched half-edges in our

explored set at time τi (where τi denotes the time of the i’th step) and let

Xi = Si − Si−1. Recall that after i ≤ z steps we have at least N3 − z

vertices of degree 3 and at most Nk vertices of degree k for k ≥ 4, and

that each matching samples a half-edge uniformly at random. With this in

mind, the following variable Y would stochastically dominate the degree of
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this random half-edge, then

P(Y = 3) =
3(N3 − z)

3(N3 − z) +
∑

j≥4 jNj
,

P(Y = k) =
kNk

3(N3 − z) +
∑

j≥4 jNj
(k = 4, 5, . . .) .

Since each matching to a newly exposed degree-k vertex costs one half-edge

and introduces k − 1 new ones, it follows that Xi � Yi − 2 where the Yi’s

are i.i.d. with Yi ∼ Y . Setting S̃t =
∑t

i=1(Yi − 2) we get that St � S0 + S̃t
for all t.

By our assumption (5.1), for every k ≥ 2

P(Yi − 2 = k) ≤ c(k + 2)(3ε)k+2n/(k + 2)!

(4− o(1))ε3n
≤ c′ (3ε)

k−1

(k + 1)!

for some constant c′ > 1. Hence, the Laplace transform for Yi − 2 satisfies

Eeλ(Yi−2) ≤ eλ +
∞∑
k=2

eλkc′
(3ε)k−1

(k + 1)!
≤ c′eλ exp(eλ3ε) .

Setting λ = log(1/ε), we arrive at EeλXi ≤ c′e3/ε. Now, an application of

Markov’s inequality gives that for large n,

P
(
S̃t ≥

(
1 +

1

log log(1/ε)

)
t

)
≤
(c′e3

ε

)t
exp

(
−λt

(
1 +

1

log log(1/ε)

))
≤
(
c′e3 exp

(
− log(1/ε)

log log(1/ε)

))t
≤ 2−t ,

where the last inequality holds for any large n. We can now infer that∑
t≥
√

1/ε

P
(
S̃t ≥

(
1 +

1

log log(1/ε)

)
t

)
= O(2−1/

√
ε) = o(1) .

On the other hand, as P(Xi ≥ 2) ≤ P(Yi ≥ 4) = O(ε), it follows that

P (Xi = 1 for all 1 ≤ i ≤ 1/
√
ε) ≥ 1−O(

√
ε) = 1− o(1) .

Altogether, we conclude that given (5.1), we have that w.h.p.

St ≤ S0 + t+
t

log log(1/ε)
= (1 + o(1))t+ 3 for all k = 1, 2, . . . , z , (5.2)

where we used the fact that S0 is the degree of the starting vertex for the

exploration and is thus equal to 3 w.h.p.

Letting δ → 0 (recall its definition above (5.1)), we obtain that (5.2) holds

w.h.p. Therefore, we may perform the exploration process according to the

argument of Lemma 3.5, and at every step t condition that the event in

(5.2) indeed holds up to that point, and so the estimate on τz immediately

follows in the same manner as before. Finally, recall that the lower bound for
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the distance between kernel points was obtained from the above ingredients

together with the asymptotics of the number of kernel vertices via a simple

second moment argument. These asymptotics are the same in our new

setting, thus completing the proof of the lower bound for the kernel. An

analogous argument gives the corresponding lower bound for the metric

graph and the 2-core (here the asymptotic number of edges plays a part in

the second moment argument).

Finally, note that, as µ = 1−ε+O(ε2), writing the final estimate involving

the term 1/ε rather than 1/(1 − µ) results in a multiplicative factor of

1 +O(ε) = 1 + o(1), keeping the statement valid.

5.2. The giant component. Having extended the treatment of the 2-core

and kernel to the case of ε = o(1), it remains to address the attached trees.

Note that Lemma 4.2 applies directly for the value of µ as defined in The-

orem 5.1, hence our estimates for Hu, the height of the tree attached to a

vertex u of the 2-core, remain unchanged. As the rest of the arguments are

applications of the results for weighted graphs and metric graphs (already

discussed in the previous subsection), they hold without modification.
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[11] P. Erdős and A. Rényi, On random graphs. I, Publ. Math. Debrecen 6 (1959), 290–

297.

[12] D. Fernholz and V. Ramachandran, The diameter of sparse random graphs, Random

Structures Algorithms 31 (2007), no. 4, 482–516.

[13] S. Janson, T.  Luczak, and A. Rucinski, Random graphs, Wiley-Interscience Series in

Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000.

[14] H. Kesten, Aspects of first passage percolation, École d’été de probabilités de Saint-
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