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Abstract. In a recent work of the authors and Kim, we derived a com-

plete description of the largest component of the Erdős-Rényi random

graph G(n, p) as it emerges from the critical window, i.e. for p = (1+ε)/n

where ε3n→ ∞ and ε = o(1), in terms of a tractable contiguous model.

Here we provide the analogous description for the supercritical giant

component, i.e. the largest component of G(n, p) for p = λ/n where

λ > 1 is fixed. The contiguous model is roughly as follows: Take a

random degree sequence and sample a random multigraph with these

degrees to arrive at the kernel; Replace the edges by paths whose lengths

are i.i.d. geometric variables to arrive at the 2-core; Attach i.i.d. Poisson

Galton-Watson trees to the vertices for the final giant component. As

in the case of the emerging giant, we obtain this result via a sequence

of contiguity arguments at the heart of which are Kim’s Poisson-cloning

method and the Pittel-Wormald local limit theorems.

1. Introduction

The famous phase transition of the Erdős and Rényi random graph, in-

troduced in 1959 [14], addresses the double jump in the size of the largest

component C1 in G(n, p) for p = λ/n with λ > 0 fixed. When λ < 1 it is log-

arithmic in size with high probability (w.h.p.), when λ = 1 its size has order

n2/3 and when λ > 1 it is linear w.h.p. and thus referred to as the giant com-

ponent. Of the above facts, the critical behavior was fully established only

much later by Bollobás [9] and  Luczak [18], and in fact extends throughout

the critical window of p = (1± ε)/n for ε = O(n−1/3) as discovered in [9].

As far as the structure of C1 is concerned, when p = λ/n for fixed λ < 1

in fact this component is w.h.p a tree of a known (logarithmic) size. The

structure and size of the largest components was established in [20] and [2],

where in the latter work Aldous showed a remarkable connection between the

critical random graph, continuum random trees and Brownian excursions.

(See also the recent work [1] further studying the component structure at

criticality, as well as [8, 15] for further details.)

As opposed to the tree-like geometry at and below criticality, the struc-

ture of the largest component becomes quite rich as soon as it emerges from
1
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the critical window, i.e. at p = (1 + ε)/n where ε = o(1) and ε3n→∞. De-

spite many works devoted to the study of various properties of the largest

component in this regime, the understanding of its structure remained fairly

limited, illustrated by the fact that one of its most basic properties — the

diameter — was determined asymptotically only lately in [11] and indepen-

dently in [22]. In the context of our present work, out of the various decom-

position results on the structure of C1 it is important to mention those by

 Luczak [19], highlighting the kernel as a random graph with a given degree

sequence, and by Pittel and Wormald [21], featuring very precise estimates

on the distribution of the size of C1 and its 2-core (The 2-core of a graph is

its maximum subgraph where all degrees are at least 2. The kernel of C1 is

obtained from its 2-core by replacing every maximal path where all internal

vertices have degree 2 by an edge.).

Recently, the authors and Kim [10] established a complete characteriza-

tion of the structure of C1 throughout the emerging supercritical regime, i.e.

when p = (1+ε)/n with ε3n→∞ and ε = o(1). This was achieved by offer-

ing a tractable contiguous model C̃1, in other words, every graph property

An that is satisfied by C̃1 w.h.p. (that is, a sequence of simple graphs such

that P(C̃1 ∈ An) → 1) is also satisfied by C1 w.h.p. The contiguous model

has a particularly simple description in the early stage of the formation of

the giant, namely when p = (1 + ε)/n with ε3n→∞ and ε = o(n−1/4):

(i) Sample a random 3-regular multigraph on 2bZc vertices via the con-

figuration model, where Z is Gaussian with parameters N (2
3ε

3n, ε3n).

(ii) Subdivide each edge into a path of length i.i.d. Geometric(ε).

(iii) Attach i.i.d. Poisson(1−ε)-Galton-Watson trees to each of the vertices.

(In the above, a Poisson(µ)-Galton-Watson tree is the family tree of a

Galton-Watson branching process with offspring distribution Poisson(µ).

See §2.2 for the definition of the configuration model.)

The advantages of the aforementioned characterization were demonstrated

in two companion papers [11, 12]. The first of these settled the natural

question of the asymptotic behavior of the diameter throughout the emerg-

ing supercritical regime1, achieved by combining the structure result with a

straightforward analysis of first-passage-percolation. The second established

the order of the mixing time of the random walk on C1, previously known

only within the critical window and in the strictly supercritical regime, lack-

ing the interpolating regime between them. See [10] for other applications

of this result to easily read off key properties of C1.

1Prior to our work, [22] had independently and using a different method obtained the

asymptotic diameter in most but not all of the emerging supercritical regime. Following

our work they managed to close this gap. Note that the estimate there is quite precise,

whereas our work only aimed to obtain the leading order term throughout the regime.
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In this work we provide the analogous description for the strictly super-

critical giant component, i.e. p = (1 + ε)/n where ε > 0 is fixed.

Theorem 1. Let C1 be the largest component of G(n, p) for p = λ/n where

λ > 1 is fixed. Let µ < 1 be the conjugate of λ, that is µe−µ = λe−λ. Then

C1 is contiguous to the following model C̃1:

1. Let Λ be Gaussian N (λ− µ, 1/n) and let Du ∼ Poisson(Λ) for u ∈ [n]

be i.i.d., conditioned that
∑
Du1Du≥3 is even. Let

Nk = #{u : Du = k} and N =
∑

k≥3Nk .

Select a random multigraph K on N vertices, uniformly among all

multigraphs with Nk vertices of degree k for k ≥ 3.

2. Replace the edges of K by paths of i.i.d. Geom(1− µ) lengths.

3. Attach an independent Poisson(µ)-Galton-Watson tree to each vertex.

That is, P(C̃1 ∈ A)→ 0 implies P(C1 ∈ A)→ 0 for any set of graphs A.

(In the above, the notation Geom(1 − µ) denotes the geometric variable

assuming the value k ≥ 1 with probability µk−1(1 − µ).) We note that

conditioning that
∑
Du1Du≥3 is even can easily be realized by rejection

sampling. Alternatively, this requirement can be replaced by adding a self-

loop (counting 1 to the degree) to one of the vertices whenever the sum

is odd. Further note that in the above recipe for C̃1, Step 1 constructs the

kernel, Step 2 constructs the 2-core and finally the entire giant is constructed

in the Step 3.

To demonstrate how one can easily derive nontrivial properties of C1 from

the above theorem, observe for instance that one can immediately infer that

the longest path of degree-2 vertices in the 2-core is of size log1/µ n+OP(1).

Indeed, there are order n edges in the kernel, hence the above quantity is

simply the maximum of order n i.i.d. geometric variables with mean 1− µ.

As another example, we note that it was well-known prior to this work

that the giant component consists of an expander “decorated” using paths

and trees of at most logarithmic size (see [6] for a concrete example of

such a statement, used there to obtain the order of the mixing time on

the fully supercritical C1). This is immediately apparent from the above

description of C̃1: indeed, it is straightforward to show that the kernel is

typically an expander (see, e.g., [10, Lemma 3.5] where this was shown for

the kernel in the emerging supercritical regime). The decorations spoiling

its expansion as described in the decomposition results à la [6] are due to

(i) edges subdivided into arbitrarily large paths via the geometric variables

(ii) attached Poisson Galton-Watson trees of arbitrarily large size. In both

cases, the size of the decoration is constant in expectation (depending on λ)

and has an exponential tail, reproducing the above depicted picture.
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1.1. Main techniques and comparison with [10]. Our framework for

obtaining the description of the largest component in G(n, p), following the

framework of [10], consists of three main contiguity arguments. Our starting

point is the Poisson cloning model Gpc(n, p) due to [17], which is contiguous

to G(n, p) (see §2). The first step is to reduce the 2-core of Gpc(n, p) to a

random graph with a given (random) degree sequence (Theorem 3.2 in §3).

The second step reduces this to a model where a kernel is expanded to a

2-core by subdividing its edges via i.i.d. geometric variables (Theorem 4.2

in §4). The final step handles the attached trees and completes the proof of

the main theorem (§5).

It is already at the first step where the analysis of our previous work [10]

breaks when p = λ/n for fixed λ > 1. Our original approach at this stage

relied on showing that a certain stopping time τpc for a process that pro-

duces the 2-core (the so-called COLA algorithm due to Kim) is absolutely

continuous w.r.t. Lebesgue measure (after normalizing it by its standard de-

viation). However, crucial in that proof was the fact that the p = (1 + ε)/n

and ε = o(1), e.g. illustrated by the fact that the size of the 2-core given

the aforementioned τpc has a standard deviation smaller than the mean by

a factor of
√
ε, and as such is concentrated when ε → 0. New arguments

were required to establish Theorem 3.2, including the use of the powerful

Pittel-Wormald [21] local limit theorems already in this stage of the proof

(cf. [10] where this tool was applied only in the second stage of the reduc-

tions). Finally, various arguments were simplified, either in places where the

dependency in ε would no longer play a role or in situations where the fact

that 1/ε = O(1) allows direct application of standard local limit theorems.

2. Preliminaries

2.1. Cores and kernels. The k-core of a graph G, denoted by G(k), is its

maximum subgraph H ⊂ G where every vertex has degree at least k. This

subgraph is unique and can be obtained by repeatedly deleting any vertex

whose degree is smaller than k (in an arbitrary order). The kernel K of G is

obtained by taking its 2-core G(2) minus its disjoint cycles, then repeatedly

contracting any path where all internal vertices have degree-2 (replacing it

by a single edge). By definition, the degree of every vertex in K is at least

3. At times, the notation ker(G) will be used to denote a kernel w.r.t. some

specific graph G. Note that ker(G) is usually different from the 3-core of G.

2.2. Configuration model. This model, introduced first by Bollobás [7]

(a different flavor of it was implicitly used by Bender and Canfield [5]),

provides a remarkable method for constructing random graphs with a given

degree distribution, which is highly useful to their analysis. We describe this
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for the case of random d-regular graphs for d fixed (the model is similar for

other degree distributions); see [8, 15,23] for additional information.

Associate each of the n vertices with d distinct points (also referred to

as “half-edges”) and consider a uniform perfect matching on these points.

The random d-regular graph is obtained by contracting each cluster of the

d points corresponding to a vertex, possibly introducing multiple edges and

self-loops. Clearly, on the event that the obtained graph is simple, it is

uniformly distributed among all d-regular graphs, and furthermore, one can

show that this event occurs with probability bounded away from 0 (namely,

with probability about exp(1−d2
4 )). Hence, every event that occurs w.h.p.

for this model, also occurs w.h.p. for a random d-regular graph.

2.3. Poisson cloning. Following is a brief account on the Poisson cloning

model Gpc(n, p), introduced in [16, 17]. Let V be the set of n vertices, and

Po(λ) denote a Poisson random variable with mean λ. Let {d(v)}v∈V be a

sequence of i.i.d. Po(λ) variables with λ = (n− 1)p. Then, take d(v) copies

of each vertex v ∈ V and the copies of v are called clones of v or simply

v-clones. Define Nλ
4
=
∑

v∈V d(v). If Nλ is even, the multigraph Gpc(n, p)

is obtained by generating a uniform random perfect matching of those Nλ

clones (e.g., via the configuration model, where every clone is considered to

be a half-edge) and contracting clones of the same vertex. That is to say,

each matching of a v-clone and a w-clone is translated into the edge (v, w)

with multiplicity. In the case that v = w, it contributes a self-loop with

degree 2. On the other hand, if Nλ is odd, we first pick a uniform clone and

translate it to a special self-loop contributing degree 1 of the corresponding

vertex (this special self-loop plays no important role in the model and can

be neglected throughout the paper). For the remaining clones, generate a

perfect matching and contract them as in the Nλ even case.

The following theorem of [17] states that the Poisson cloning model is

contiguous with the Erdős-Rényi model. Hence, it suffices to study the

Poisson cloning model for establishing properties of the Erdős-Rényi model.

Theorem 2.1 ([17, Theorem 1.1]). Suppose p � 1/n. Then there exist

constants c1, c2 > 0 such that for any collection F of simple graphs, we have

c1P(Gpc(n, p) ∈ F) ≤ P(G(n, p) ∈ F) ≤ c2

(
P (Gpc(n, p) ∈ F))1/2 + e−n

)
.

Note that as p = λ/n for λ > 1 fixed we may clearly replace the rate

λ = (n− 1)p in the Poisson-cloning model definition simply by λ = np.

2.4. Local limit theorem. Throughout the proofs we will need to establish

local limit theorems for various parameters in the graph. To this end, we

will repeatedly apply the following special case of a result in [13].
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Theorem 2.2 ([13, Ch. 2, Theorem 5.2], reformulated). Let X be a random

variable on N with P(X = k) > 0 for all k ∈ N. Suppose that EX = ν <∞
and VarX = σ2 <∞. Let Xi be i.i.d distributed as X and Sm =

∑m
i=1Xi.

Then as m→∞, we have

sup
x∈Lm

∣∣∣∣√mP
(
Sm −mν√

m
= x

)
− 1

σ
√

2π
e−x

2/σ2

∣∣∣∣→ 0 ,

where Lm = {(z −mν)/
√
m : z ∈ Z}.

3. The 2-core of Poisson cloning

By Theorem 2.1, the random graph G(n, p) in our range of parameters is

contiguous to the Poisson cloning model, where every vertex gets an i.i.d.

Po(λ) number of half-edges (clones) and the final multigraph is obtained

via the configuration model. In this section we will reduce the 2-core of the

supercritical Poisson cloning model to a more tractable model — a random

graph uniformly chosen over all graphs with a given degree sequence.

Definition 3.1 (Poisson-configuration model with parameters n and λ).

(1) Let Λ ∼ N (λ− µ, 1/n), consider n vertices and assign an independent

variable Du ∼ Po(Λ) to each vertex u. Let Nk = #{u : Du = k} and

N =
∑

k≥2Nk.

(2) Construct a random multigraph on N vertices, uniformly chosen over

all graphs with Nk degree-k vertices for k ≥ 2 (if N is odd, choose a

vertex u with Du = k ≥ 2 with probability proportional to k, and give it

k − 1 half-edges and a self-loop).

Theorem 3.2. Let G ∼ Gpc(n, p) be generated by the Poisson cloning model

for p = λ/n, where λ > 1 is fixed. Let G(2) be its 2-core, and H be generated

by the Poisson-configuration model corresponding to n, p. Then for any set

of graphs A such that P(H ∈ A)→ 0, we have P(G(2) ∈ A)→ 0.

To prove the above Theorem 3.2 we outline a specific way to generate

Gpc(n, p) due to [17]. Let V be a set of n vertices and consider n horizontal

line segments ranging from (0, j) to (λ, j), for j = 1, . . . , n in R2. Assign a

Poisson point process with rate 1 on each line segment independently. Each

point (x, v) in these processes is referred to as a v-clone with the assigned

number x. The entire set of Poisson point processes is called a Poisson λ-cell.

Given the Poisson λ-cell, various schemes can be used to generate a perfect

matching on all points. One such way is the “Cut-Off Line Algorithm”

(COLA), defined in [16], which is useful in finding the 2-core G(2), described

as follows. The algorithm maintains the position of a “cut-off line”, a vertical

line in R2 whose initial x-coordinate equals λ, and gradually moves leftwards.

In the beginning the line is positioned at λ, and as the line progresses it
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matches previously unmatched clones. To describe the stopping rule of

the algorithm, we need the following definitions. At any given point, we

call a vertex v ∈ V (and its unmatched clones) light if it has at most one

unmatched clone (and heavy otherwise). At the beginning of the process,

all the light clones are placed in a stack. The order by which these clones

are inserted into the stack can be arbitrary, as long as it is oblivious of the

coordinates assigned to the clones. Define τpc to be the x-coordinate of the

cut-off line once the algorithm terminates, i.e., at the first time when there

are no light clones. We will argue that τpc is concentrated about λ−µ with

a standard deviation of 1/
√
n, yet before doing so we explain its role in

determining the structure of the 2-core of the graph. The above algorithm

repeatedly matches light clones until all of them are exhausted — precisely

as the cut-off line reaches τpc. As stated in §2, the 2-core of a graph can

be obtained by repeatedly removing vertices of degree at most 1 (at any

arbitrary order); thus it is precisely comprised of all the unmatched clones

at the moment we reach τpc.

Algorithm 1 Cut-Off Line Algorithm

1. Let (x, u) be the first clone in the stack. Move the cut-off line leftwards

until it hits an unmatched clone (y, v) 6= (x, u).

2. Remove (x, u) from the stack, as well as (y, v) (if it is there).

3. Match (x, u) and (y, v) and re-evaluate u and v as light/heavy.

4. Add any clone that just became light into the stack.

5. If the stack is nonempty return to Step 3, otherwise quit and denote

the stopping time by τpc (final x-coordinate of cut-off line).

The following theorem establishes concentration for τpc. Its proof will

follow from known estimates on the concentration of |C(2)
1 | in G(n, p).

Theorem 3.3 (Upper bound on the window of τpc). There exist constants

C, c > 0 so that for all γ > 0 with γ = o
(√
n
)
, the following holds:

P
(
|τpc − (λ− µ)| ≥ γ/

√
n
)
≤ Ce−cγ

2
. (3.1)

Proof. It is well known that in the supercritical random graph G(n, λ/n)

with λ > 1 fixed w.h.p. all components except one (the giant) are trees or

unicyclic (see e.g. [15, Theorem 5.12]) and in addition the total expected

number of vertices which belong to unicyclic components is bounded (see

e.g. [8, Theorem 5.23]). In particular this implies that the 2-core of G(n, λ/n)

for λ > 1 fixed consists of C(2)
1 , the 2-core of the giant component, plus

disjoint cycles whose total number of vertices is w.h.p. at most, say, O(log n).
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A special case of a powerful result of Pittel and Wormald [21] (the full

statement of this theorem appears later as Theorem 5.1) implies that

E|C(2)
1 | = (1− µ)(1− µ

λ )n

and in addition (|C(2)
1 |−E|C

(2)
1 |)/

√
n is in the limit Gaussian with variance of

O(1). Combining these facts, there exists some fixed c > 0 so that a random

graph F ∼ G(n, p) in our regime has a 2-core F (2) whose size satisfies

P
(∣∣|F (2)| − (1− µ)(1− µ

λ)n
∣∣ ≥ γ/√n) ≤ exp(−cγ2) .

By Theorem 2.1 it then follows that for G ∼ Gpc(n, p),

P
(∣∣|G(2)| − (1− µ)(1− µ

λ )n
∣∣ ≥ γ/√n) ≤ C exp(−cγ2) ,

where C = 1/c1 from that theorem.

To conclude the proof, observe on the event τpc = x, the size of G(2) is

binomial with parameters Bin(n, p+
2 (x)) where

p+
2 (x)

4
=
∑
k≥2

e−x
xk

k!
= 1− e−x − xe−x .

It is easy to verify that x = λ−µ is the unique positive solution of p+
2 (x) =

(1−µ)(1− µ
λ ). This function further has d

dxp
+
2 (x) = xe−x thus its derivative

is uniformly bounded away from 0 in the interval [1
2(λ − µ), 2(λ − µ)]. In

particular, shifting τpc by γ/
√
n would shift the mean of the above variable

by order γ/
√
n and the desired result follows. �

The above theorem established the concentration of τpc and as such re-

duced the Poisson-cloning model to the Poisson-configuration model given

the event τpc = λ− µ+ o(1). With this in mind, the argument in the proof

above stating that the disjoint cycles outside the giant component have

bounded expectation in G(n, p), along with the contiguity between G(n, p)

and Poisson-cloning, now immediately yields the following corollary:

Corollary 3.4. Let H be generated by the Poisson-configuration model given

Λ = `, where ` = λ− µ+ o(1). Define H ′ as the graph obtained by deleting

every disjoint cycle from H. Let N2 be the number of vertices with degree 2

in H, and N ′2 be the corresponding quantity for H ′. Then N ′2 = N2 +OP(1).

3.1. Contiguity of Poisson-cloning and Poisson-configuration. A key

part of showing the contiguity result is the following lemma which controls

the edge distribution in the Poisson-configuration model.

Lemma 3.5. Let Nk denote the number of degree-k vertices in the Poisson-

configuration model, and set Λ0 = λ − µ. For any fixed M > 0 there exist
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some c1, c2 > 0 such that the following holds: If n3, n4, . . . satisfy∣∣∣n(1− e−Λ0(1 + Λ0 +
Λ2
0

2 )
)
−
∑

k≥3 nk

∣∣∣ ≤M√n ,∣∣∣nΛ0

(
1− e−Λ0(1 + Λ0)

)
−
∑

k≥3 knk

∣∣∣ ≤M√n
and x satisfies |x− Λ0| ≤M/

√
n then

c1 ≤
P
(
Nk = nk for all k ≥ 3

∣∣Λ = x
)

P
(
Nk = nk for all k ≥ 3

∣∣Λ = Λ0

) ≤ c2 .

Proof. Throughout the proof of the lemma, the implicit constants in the

O(·) notation depend on M . Write m =
∑

k≥3 nk and r =
∑

k≥3 knk, and

let A = A(n3, n4, . . .) denote the event {Nk = nk for all k ≥ 3}. Setting

Ξ = Ξ(x,Λ0)
4
=

P
(
A
∣∣Λ = x

)
P
(
A
∣∣Λ = Λ0

) ,
we are interested in uniform bounds for Ξ from above and below. Let

pk(x) = P(Po(x) = k) = e−xxk/k! , and p−k (x) = P(Po(x) ≤ k) .

and observe that

Ξ =

(
p−2 (x)

p−2 (Λ0)

)n−m∏
k

(
pk(x)

pk(Λ0)

)nk

= e−n(x−Λ0)

(
1 + x+ x2

2

1 + Λ0 +
Λ2
0

2

)n−m( x
Λ0

)r
,

and so

log Ξ = n(Λ0 − x) + (n−m) log

(
1 + x+ x2

2

1 + Λ0 +
Λ2
0

2

)
+ r log

x

Λ0
.

Using Taylor’s expansion and recalling that x− Λ0 = O(1/
√
n),

log

(
1 + x+ x2

2

1 + Λ0 +
Λ2
0

2

)
=

1 + Λ0

1 + Λ0 +
Λ2
0

2

(x− Λ0) +O(1/n) ,

and we deduce that

log Ξ = n(Λ0 − x) + (n−m)
1 + Λ0

1 + Λ0 +
Λ2
0

2

(x− Λ0) + r
x− Λ0

Λ0
+O(1) .

Our assumptions on m, r now yield that

log Ξ = n(Λ0 − x) + ne−Λ0(1 + Λ0)(x− Λ0)

+ n
(
1− e−Λ0(1 + Λ0)

)
(x− Λ0) +O(1) = O(1) ,

completing the proof. �

Using the above estimate we are now able to conclude the main result

of this section, which reduces the 2-core of Poisson-cloning to the graph

generated by the Poisson-configuration model.
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Proof of Theorem 3.2. Recall that H is the random graph generated by

the Poisson-configuration model, and G(2) is the 2-core of Poisson-cloning.

Fix δ > 0, and with the statement of Theorem 3.3 in mind, as well as the

definition of Λ as Gaussian with parameters N (λ− µ, 1/n), set

B = (λ− µ−M/
√
n, λ− µ+M/

√
n) ,

where M = M(δ) is a sufficiently large constant such that

P(τpc ∈ B , Λ ∈ B) ≥ 1− δ .

Following the notation of Lemma 3.5, let Nk be the number of degree-k

vertices in H. Conditioned on Λ = x we have that
∑

k≥3Nk =
∑

u 1{Du≥3}
where the Du are i.i.d. Po(x), hence the Central Limit Theorem implies that∑

k≥3Nk is concentrated around n
(
1 − e−x(1 + x + x2

2 )
)

with a window of

O(
√
n). A similar statement holds for

∑
k≥3 kNk =

∑
uDu1{Du≥3}. Since

Λ is Gaussian with variance 1/n, removing the conditioning on Λ introduces

O(1/
√
n) fluctuations which translate to O(

√
n) fluctuations in the above

mentioned random variables. Altogether, if M(δ) > 0 is large enough then

each of the variables
∑

k≥3Nk and
∑

k≥3 kNk is within M
√
n of its mean,

except with probability δ.

Let Γ denote the set of all sequences {nk : k ≥ 3} which satisfy the

assumptions of Lemma 3.5. By the above discussion, we can restrict our

attention to degree-sequences in Γ at a cost of events whose probability

is at most δ. By the conclusion of that lemma, the probability to have

{Nk : k ≥ 3} ∈ Γ given Λ = x for some x ∈ B is uniformly bounded below

and above by the corresponding probability given Λ = λ− µ. In particular,

for any x ∈ B the event that H is in A ∩
{
{Nk : k ≥ 3} ∈ Γ

}
given Λ = x

has up to constants (that depend on δ) the same probability for any x in

this region.

Further fix δ′ > 0 and define

D
4
=
{
x ∈ B : P (H ∈ A , {Nk(H) : k ≥ 3} ∈ Γ | Λ = x) ≥ δ′

}
.

We claim that for any large enough n we have D = ∅. Indeed, this follows

immediately from the discussion above, since the existence of some x ∈ D
would imply that in particular

P (H ∈ A , {Nk(H) : k ≥ 3} ∈ Γ | Λ ∈ B) ≥ δ′/c(δ) ,

which, since P(Λ ∈ B) ≥ 1− δ, contradicts the fact that P(H ∈ A) = o(1).

With D = ∅, reiterating the argument on the uniformity for on x ∈ B of

the above probability given Λ = x we deduce that for any x ∈ B,

P (H ∈ A , {Nk(H) : k ≥ 3} ∈ Γ | Λ = x) ≤ δ′ .
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To complete the proof, observe that the Poisson-configuration model given

Λ = x is equivalent to the Poisson-cloning model given τpc = x. Therefore,

combining the arguments thus far we arrive at the following estimate, valid

for any x ∈ B:

P
(
G(2) ∈ A | τpc = x

)
= P (H ∈ A | Λ = x) ≤ δ′ + δ ,

where the δ-term accounted for the probability of {Nk(H) : k ≥ 3} /∈ Γ.

The proof is concluded by recalling that τpc ∈ B except with probability δ,

and letting δ′ → 0 followed by δ → 0. �

4. Constructing the 2-core of the random graph

So far we have reduced the 2-core of Poisson-cloning to the simpler Poisson-

configuration model as given in Definition 3.1. In this section we will reduce

the Poisson-configuration model to the Poisson-geometric model, defined as

follows. Recall that µ < 1 is the conjugate of λ > 1 as defined in Theorem 1.

Definition 4.1 (Poisson-geometric model for n and p = λ/n).

(1) Let Λ ∼ N
(
λ− µ, 1

n

)
and assign an independent Po(Λ) variable Du to

each vertex u. Let Nk = #{u : Du = k} and N =
∑

k≥3Nk.

(2) Construct a random multigraph K on N vertices, uniformly chosen over

all graphs with Nk degree-k vertices for k ≥ 3 (if
∑

k≥3 kNk is odd,

choose a vertex u with Du = k ≥ 3 with probability proportional to k,

and give it k − 1 half-edges and a self-loop).

(3) Replace the edges of K by paths of length i.i.d. Geom(1− µ).

Theorem 4.2. Let H be generated by the Poisson-configuration model w.r.t.

n and p = λ/n where λ > 1 is fixed. Let H̃ be generated by the Poisson-

geometric model corresponding to n, p. Then for any set of graphs A such

that P(H̃ ∈ A)→ 0, we have P(H ∈ A)→ 0.

Both models clearly share the same kernel and only differ in the way

this kernel is then expanded to form the entire graph (replacing edges by

paths). To prove the above theorem we need to estimate the distribution

of the total number of edges in each model and show that they are in fact

contiguous. A first step toward this goal is to control the number of edges

in each model. Fix some large M > 0, and let BM denote the following set

of “good” kernels:

BM
4
=

K :

∣∣∣|K| − n(1− e−Λ0(1 + Λ0 +
Λ2
0

2 )
) ∣∣∣ ≤M√n∣∣∣|E(K)| − 1

2nΛ0

(
1− e−Λ0(1 + Λ0)

) ∣∣∣ ≤M√n
 , (4.1)

where Λ0 = λ − µ. The next lemma estimates the number of edges in the

Poisson configuration model given that the kernel belongs to BM as above.



12 JIAN DING, EYAL LUBETZKY AND YUVAL PERES

Lemma 4.3. Define M > 0, IM ,BM as above and set Λ0 = λ−µ. Let H be

generated by the Poisson-configuration model. There exists some constant

c(M) > 0 so that for any K ∈ BM and s with
∣∣s−n

2

(
Λ0 − e−Λ0Λ0

) ∣∣ ≤M√n,

P
(
|E(H)| = s , Λ ∈ IM

∣∣ ker(H) = K
)
≤ c√

n
.

Proof. Let x ∈ IM and K ∈ BM , and write m = |K| and r = |E(K)| for the

number of vertices and the edges in the kernel respectively. We will first

estimate P(|E(H)| = s
∣∣Λ = x , ker(H) = K), and the required inequality

will then readily follow from an integration over x ∈ IM .

Note that, given Λ = x and ker(H) = K, the number of edges in H is the

r edges of K plus an added edge for each degree 2 variable out of the n−m
variables (i.i.d. Po(x)) that have {u : Du ≤ 2}. That is, in this case

|E(H)| ∼ r + Bin

(
n−m, x2/2

1 + x+ x2/2

)
.

It is straightforward to verify that for x ∈ IM and K ∈ BM , we have

E
(
|E(H)|

∣∣ Λ = x, ker(H) = K
)

= r + (n−m)
x2/2

1 + x+ x2/2

=
n

2

(
Λ0 − e−Λ0Λ0

)
+O(

√
n) = s+O(

√
n) .

The required estimate now follows immediately from Theorem 2.2. �

We now analyze the number of edges in the Poisson-Geometric model.

Lemma 4.4. Let M > 0 and BM be as in (4.1). Let H̃ be generated by the

Poisson-geometric model. There exists some constant c = c(M) > 0 so that

for any K ∈ BM and s with
∣∣s− n

2 (λ− µ)
(
1− µ

λ

) ∣∣ ≤M√n,

P
(
|E(H̃)| = s

∣∣ ker(H̃) = K
)
≥ c√

n
.

Proof. By definition, given that ker(H̃) = K, the variable |E(H̃)| is the sum

of |E(K)| i.i.d. geometric variables with mean 1/(1− µ).

Denote by r the number of edges in the kernel K, and let s be a candidate

for the number of edges in the expanded 2-core H̃. As stated in the lemma

(recall definition (4.1)), we are interested in the following range for r, s:

r =
n

2
(λ− µ)(1− µ

λ )(1− µ) + c1

√
n, (|c1| ≤M) ,

s =
n

2
(λ− µ)(1− µ

λ ) + c2

√
n, (|c2| ≤M) .

It is clear that given ker(H̃) = K with |E(K)| = r, the number of edges in H̃

is distributed as
∑r

i=1Xi, where the Xi’s are independent geometric random

variables with mean 1
1−µ , i.e., P(Xi = k) = µk−1(1−µ) for k = 1, 2, . . .. Since

s = r
1−µ +O(

√
r), the desired estimate now follows from Theorem 2.2. �
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We now establish the main result of this section, Theorem 4.2, reducing

the Poisson-configuration model to the Poisson-geometric model.

Proof of Theorem 4.2. For some constant M > 0 to be specified later,

define the event

AM
4
=
{

Λ ∈ IM , ker(H) ∈ BM ,
∣∣|E(H)| − n

2 (λ− µ)(1− µ
λ )
∣∣ ≤M√n } .

Fix δ > 0. We claim that for a sufficiently large M = M(δ) we have

P(AM ) ≥ 1− δ. To see this, note the following:

1. In the Poisson-configuration model, Λ ∼ N
(
λ− µ, 1

n

)
, and IM includes

at least M standard deviations about its mean.

2. Each of the variables |K| and E(K) is a sum of i.i.d. random variables

with variance O(n) and mean as specified in the definition of BM , hence

their concentration follows from the CLT.

3. Finally, E(H) is again a sum of i.i.d. variables and has variance O(n),

only here we must subtract the vertices that comprise disjoint cycles.

By Corollary 3.4, the number of such vertices is OP(1), which is negli-

gible compared to the O(
√
n) standard deviation of E(H).

Given an integer s and a kernel K, let Ds,K denote every possible 2-core with

s edges and kernel K. Crucially, the distribution of the Poisson-configuration

model given E(H) = s and ker(H) = K is uniform over Ds,K, and so is the

Poisson-geometric model given E(H̃) = s and ker(H̃) = K. Therefore, for

any graph D ∈ Ds,K,

P(H = D
∣∣ ker(H) = K)

P(H̃ = D
∣∣ ker(H̃) = K)

=
P(|E(H)| = s

∣∣ ker(H) = K)

P(|E(H̃)| = s
∣∣ ker(H̃) = K)

.

Combining Lemmas 4.3 and 4.4 we get that for some c = c(M) > 0,

P(|E(H)| = s , AM
∣∣ ker(H) = K)

P(|E(H̃)| = s
∣∣ ker(H̃) = K)

≤ c .

Recalling that P(AM ) ≥ 1 − δ and letting δ → 0, we deduce that for any

family of graphs A, if P(H̃ ∈ A)→ 0 then also P(H ∈ A)→ 0. �

5. Constructing the giant component

We begin by analyzing the trees that are attached to G(2), the 2-core of

G. As before, µ < 1 is the conjugate of λ > 1 as defined in Theorem 1.

Proof of Theorem 1. Write PGW(µ)-tree for a Poisson(µ)-Galton-Watson

tree, for brevity. Let Ĉ1 denote the graph obtained as follows:

• Let H be a copy of C(2)
1 (the 2-core of the giant component of G).

• For each v ∈ H, attach an independent PGW(µ) tree rooted at v.
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By this definition, C1 and Ĉ1 share the same 2-core H. For simplicity, we

will refer directly to H as the 2-core of the model, whenever the context of

either C1 or Ĉ1 is clear. We first establish the contiguity of C1 and Ĉ1.

Define the trees decorating the 2-core of C1 as follows:

Tu
4
= {v ∈ C1 : v is connected to u in C1 \H} for u ∈ H .

Clearly, each Tu is a tree as it is connected and has no cycles (its vertices

were not included in the 2-core). We go from H to C1 by attaching the tree

Tu to each vertex u ∈ H (while identifying the root of Tu with u). Similarly,

let {T̃u}u∈H be the analogous trees in Ĉ1.

We next introduce notations for the labeled and unlabeled trees as well

as their distributions. For t ∈ N, let Rt be the set of all labeled rooted

trees on the vertex set [t]
4
= {1, . . . , t}, and let Ut be chosen uniformly at

random from Rt. For T ∈ Rt and a bijection φ on [t], let φ(T ) be the tree

obtained by relabeling the vertices in T according to φ. Further let T ′ be the

corresponding rooted unlabeled tree: T ′
4
= {φ(T ) : φ is a bijection on [t]}.

Let {tu : u ∈ H} be some integers. Given that { |Tu| = tu for all u ∈ H },
we know by definition of G(n, p) that Tu is independently and uniformly

distributed among all labeled trees of size tu rooted at u. In particular,

given this event each T ′u is independently distributed as U ′tu (the unlabeled

counterparts of Tu and Utu). On the other hand, Aldous [3] (see [4]) observed

that if T is a PGW-tree then T ′ has the same distribution as U ′t on the event

{|T | = t}. Thus, conditioned on the event { |T̃u| = tu for all u ∈ H } we also

get that T̃ ′k has the same distribution as U ′tk .

We now turn to the sizes of the attached trees in C1 and Ĉ1. Letting

{tu : u ∈ H} be some integers and writing N =
∑

u∈H tu , we claim that

by definition of G(n, p) every extension of the 2-core H to the component

C1, using trees whose sizes sum up to N , has the same probability. To see

this argue as follows. Fix H and notice that the probability of obtaining a

component with a 2-core is H and an extension X connecting it to N − |H|
additional vertices only depends on the number of edges in H and X (and

the fact that this is a legal configuration, i.e., H is a valid 2-core and X is

comprised of trees). Therefore, upon conditioning on H the probabilities of

the various extensions X remain all equal. Cayley’s formula gives that there

are mm−1 labeled rooted trees on m vertices, and so,

P
(
|Tu| = tu for all u ∈ H

∣∣H) = P
(
|C1| = N

∣∣H) 1

Z(N)

N !∏
u∈H tu!

∏
u∈H

ttu−1
u

= P(|C1| = N
∣∣H)

1

Z ′(N)

∏
u∈H

[ ttu−1
u

µtu!
(µe−µ)tu

]
, (5.1)
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where Z(N) and Z ′(N) are the following normalizing constants

Z ′(N) =
∑

{ru}:
∑

u∈H ru=N

∏
u∈H

[rru−1
u

µru!
(µe−µ)ru

]
,

Z(N) = Z ′(N)µN−|H|e−µN .

It is well-known that the size of a Poisson(γ)-Galton-Watson tree T follows

a Borel(γ) distribution, namely

P(|T | = t) =
tt−1

γt!
(γe−γ)t . (5.2)

Recalling that T̃u are independent PGW(µ)-trees, it follows that

Z ′(N) =
∑

{ru}:
∑

u∈H ru=N

[ ∏
u∈H

P(|T̃u| = ru)
]

= P
(
|Ĉ1| = N

∣∣H) .
Combining this with (5.1) and (5.2), we obtain that

P(|Tu| = tu for all u ∈ H
∣∣H)

P(|T̃u| = tu for all u ∈ H
∣∣H)

=
P(|C1| = N

∣∣H)

P(|Ĉ1| = N
∣∣H)

. (5.3)

At this point, we wish to estimate the ratio on the right hand side above.

To this end, we need the following result of [21].

Theorem 5.1 ([21, Theorem 6], reformulated). Let b(λ) =

(
b1(λ)
b2(λ)
b3(λ)

)
where

b1(λ) = (1− µ)
(
1− µ

λ

)
, b2(λ) = µ

(
1− µ

λ

)
, b3(λ) = 1

2

(
1− µ

λ

)
(λ+ µ− 2) .

There exist positive definite matrices Kp(λ) and Km(λ) such that

(i) (|H|, |C1| − |H|, |E(H)| − |H|) is in the limit Gaussian with a mean

vector nb and a covariance matrix nKp.

(ii) If Am
4
= K−1

m and B denotes the event that |E(G)| = m for some

m = (1 + o(1))λn/2, and there is a unique component of size between
1
2(1− µ

λ )n and 2(1− µ
λ)n and none larger, then

P
(
|H| = n1, |C1| − |H| = n2, |E(H)| − |H| = n3

∣∣B)
=

√
det(Am) + o(1)

(2πn)3/2
exp

(
−1

2xTAmx
)
, (5.4)

uniformly for all (n1, n2, n3) ∈ N3 such that

(Kp(1, 1)−1/2x1,Kp(2, 2)−1/2x2,Kp(3, 3)−1/2x3)

is bounded, where xT = (x1, x2, x3) is defined by

xT =
1√
n

(n1 − b1n, n2 − b2n, n3 − b3n) . (5.5)
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By CLT it is clear that w.h.p. the total number of edges in G ∼ G(n, p) is

(1 +o(1))λn/2. Furthermore, by results of [9] and [18] (see also [15]), w.h.p.

our graph G has a unique giant component of size (1 + o(1))(1 − µ/λ)n.

Altogether, we deduce that the event B happens w.h.p.; assume therefore

that B indeed occurs. Recalling (5.5) where (x1, x2, x3) is given as a function

of (n1, n2, n3), define the event Q by

QM
4
=
{

(n1, n2, n3) ∈ N3 : |xi| ≤M for i = 1, 2, 3
}
,

Q
4
=
{

(|H|, |C1| − |H|, |E(H)| − |H|) ∈ QM
}
.

By part (i) of Theorem 5.1, for any fixed δ > 0 there exists some M > 0

such that P(Qc) < δ for a sufficiently large n. Next, define

Pmax = max
(n1,n2,n3)∈QM

P (|H| = n1, |C1| − |H| = n2, |E(H)| − |H| = n3) ,

Pmin = min
(n1,n2,n3)∈QM

P (|H| = n1, |C1| − |H| = n2, |E(H)| − |H| = n3) .

It follows from part (ii) of Theorem 5.1 that there exists some c = c(M) > 0

such that

Pmax ≤ c · Pmin , (5.6)

when n is sufficiently large. Notice that by definition of x,

#{n2 ∈ N : |x2| ≤M} ≥M
√
n .

Combined with (5.6), it follows that for any (n1, n2, n3) ∈ QM we have

P
(
|C1| = n1 + n2 , Q

∣∣ |H| = n1

)
≤ c

M
√
n
. (5.7)

With this estimate for P(|C1| = N
∣∣H), the numerator on the right-hand-side

of (5.3), it remains to estimate the denominator, P(|Ĉ1| = N
∣∣H).

Recall that, given H, the quantity |Ĉ1| is a sum of |H| i.i.d. Borel(µ)

random variables (each such variable is the size of a PGW(µ)-tree). We

now wish to derive a local limit theorem for |Ĉ1|, to which end we again

apply Theorem 2.2: It is well known (and easy to show, e.g. [12, Claim 4.2])

that a Borel(µ) variable has expectation 1/(1− µ) and variance µ/(1− µ)3

for any 0 < µ < 1. Recalling the definition of Qm, we are interested in the

following range for n1 and n2:

n1 = (1− µ)(1− µ
λ)n+ c1

√
n (|c1| ≤M) ,

n2 = µ(1− µ
λ )n+ c2

√
n (|c2| ≤M) .

Applying the local CLT now implies that for some δ′ > 0,

P(|Ĉ1| = n1 + n2

∣∣ |H| = n1) ≥ δ′/
√
n . (5.8)
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Combining (5.7) and (5.8), we obtain that when n is sufficiently large,

P
(
|C1| = N , Q

∣∣ |H|)
P
(
|Ĉ1| = N

∣∣ |H|) ≤ c

Mδ′
.

By (5.3) (and recalling that conditioned on |Ti| the tree Ti is uniformly

distributed among all unlabeled trees of this size, and similarly for T̃i), we

conclude that for some c′ = c′(M) > 0 and any unlabeled graph A

P(C1 = A ,Q ,B | H) ≤ c′ P(Ĉ1 = A | H) . (5.9)

We are now ready to conclude the proof of the main theorem. Let C̃1 be

defined as in Theorem 1. For any set of simple graphs A, define

H =
{
H : P(C1 ∈ A , Q ,B | C(2)

1 = H) ≥ (P(C̃1 ∈ A))1/2
}
. (5.10)

Recall that by definition, C̃1 is produced by first constructing its 2-core

(first two steps of the description), then attaching to each of its vertices

independent PGW(µ)-trees. Hence, for any H, the graphs Ĉ1 and C̃1 have

the same conditional distribution given Ĉ(2)
1 = C̃(2)

1 = H. It then follows

from (5.9),(5.10) that for some constant c′′ > 0 and any H ∈ H,

P(C̃1 ∈ A | C̃(2)
1 = H) ≥ c′′(P(C̃1 ∈ A))1/2 .

Since we have

P(C̃1 ∈ A) ≥ c′′(P(C̃1 ∈ A))1/2P(C̃(2)
1 ∈ H) ,

the assumption that P(C̃1 ∈ A)→ 0 gives that P(C̃(2)
1 ∈ H)→ 0.

At this point, we combine all the contiguity results thus far to claim that,

for any family of simple graphs F ,

P(C̃(2)
1 ∈ F) = o(1) implies that P(C(2)

1 ∈ F) = o(1) .

Indeed, by definition, the 2-core of C̃1 is precisely the Poisson-geometric

model, conditioned on the sum of the degrees (
∑

uDu1Du≥3) being even.

Thus, as F has only simple graphs, clearly we may consider the model con-

ditioned on producing a simple graph and in particular that
∑

uDu1Du≥3 is

even. Applying Theorem 4.2 (contiguity with Poisson-configuration), Theo-

rem 3.2 (contiguity with Poisson-cloning) and Theorem 2.1 (contiguity with

Erdős-Rényi graphs), in that order, now gives the above statement.

This fact and the arguments above now give that P(C(2)
1 ∈ H) → 0. By

the definition of H, we now conclude that

P(C1 ∈ A) ≤ P(Bc) + P(Qc) + P(C(2)
1 ∈ H) + (P(C̃1 ∈ A))1/2 ,

where the last term converges to 0 by assumption. Taking a limit, we get that

lim supn→∞ P(C1 ∈ A) ≤ δ and the proof is completed by letting δ → 0. �
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