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Abstract. The cutoff phenomenon describes a sharp transition in the

convergence of an ergodic finite Markov chain to equilibrium. Of par-

ticular interest is understanding this convergence for the simple random

walk on a bounded-degree expander graph. The first example of a fam-

ily of bounded-degree graphs where the random walk exhibits cutoff

in total-variation was provided only very recently, when the authors

showed this for a typical random regular graph. However, no example

was known for an explicit (deterministic) family of expanders with this

phenomenon. Here we construct a family of cubic expanders where the

random walk from a worst case initial position exhibits total-variation

cutoff. Variants of this construction give cubic expanders without cutoff,

as well as cubic graphs with cutoff at any prescribed time-point.

1. Introduction

A finite ergodic Markov chain is said to exhibit cutoff in total-variation

if its L1-distance from the stationary distribution drops abruptly from near

its maximum to near 0. In other words, one should run the Markov chain

until the cutoff point for it to even slightly mix in L1 whereas running it

any further is essentially redundant.

Let (Xt) be an aperiodic irreducible discrete-time Markov chain on a finite

state space Ω with stationary distribution π. The worst-case total-variation

distance to stationarity at time t is defined as

d(t)
4
= max

x∈Ω
‖Px(Xt ∈ ·)− π‖TV ,

where Px denotes the probability given X0 = x and where ‖µ − ν‖TV, the

total-variation distance of two distributions µ, ν on Ω, is given by

‖µ− ν‖TV
4
= sup

A⊂Ω
|µ(A)− ν(A)| = 1

2

∑
x∈Ω

|µ(x)− ν(x)| .

Define tmix(ε), the total-variation mixing-time of (Xt) for 0 < ε < 1, to be

tmix(ε)
4
= min {t : d(t) < ε} .

Let
(
X

(n)
t

)
be a family of such chains, each with its total-variation distance

from stationarity dn(t), its mixing-time t
(n)
mix, etc. This family exhibits cutoff

iff the following sharp transition in its convergence to equilibrium occurs:

lim
n→∞

t
(n)
mix(ε)

/
t
(n)
mix(1− ε) = 1 for any 0 < ε < 1 . (1.1)

1
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The rate of convergence in (1.1) is addressed by the following notion of a

cutoff window : For two sequences tn, wn with wn = o(tn) we say that
(
X

(n)
t

)
has cutoff at time tn with window wn if and only if

t
(n)
mix(s) = (1 +O(wn)) tn = (1 + o(1))tn for any fixed 0 < s < 1 ,

or equivalently, cutoff at time tn with window wn occurs if and only if{
limλ→∞ lim infn→∞ dn(tn − λwn) = 1 ,

limλ→∞ lim supn→∞ dn(tn + λwn) = 0 .

The cutoff phenomenon was first identified for random transpositions on

the symmetric group in [10] and for random walks on the hypercube in [2].

The term “cutoff” was coined by Aldous and Diaconis in [3], where cutoff was

shown for the top-in-at-random card shuffling process. While believed to be

widespread, there are relatively few examples where the cutoff phenomenon

has been rigorously confirmed. Even for fairly simple chains, determining

whether there is cutoff often requires the full understanding of their deli-

cate behavior around the mixing threshold. See [8, 9, 19] and the references

therein for more on the cutoff phenomenon.

A specific Markov chain which found numerous applications in a wide

range of areas in mathematics over the last quarter of a century is the simple

random walk (SRW) on a bounded-degree expander graph. A finite graph is

called an expander if every small subset of the vertices has a relatively large

edge boundary. Formally, the Cheeger constant of a d-regular graph G on

n vertices (also referred to as the edge isoperimetric constant) is defined as

ch(G) = min
∅6=S$V (G)

|∂S|
|S| ∧ |V (G) \ S|

,

where ∂S is the set of edges with exactly one endpoint in S. We say that

G is a c-edge-expander for some fixed c > 0 if it satisfies ch(G) > c. The

well-known discrete analogue of Cheeger’s inequality [5, 6, 12, 20] implies

that the spectral-gap of the SRW on a family of c-edge-expander graphs on

n vertices is uniformly bounded away from 0, hence these chains rapidly

converge to equilibrium within O(log n) steps. See the survey [14] for more

on the applications of random walks on expanders.

In 2004, Peres[16] observed that for any family of reversible Markov

chains, total-variation cutoff can only occur if the inverse spectral-gap has

smaller order than the mixing time. Note that this condition clearly holds

for the simple random walk on an n-vertex expander, where the inverse-gap

is O(1) whereas tmix � log n. It was shown by Chen and Saloff-Coste [8]

that when measuring convergence in Lp-distance for p > 1 this criterion

does ensure cutoff, however the case p = 1 (cutoff in total-variation) has

proved to be significantly more complicated. There are known examples
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where the above condition does not imply cutoff (see [8, Section 6]), yet it

was conjectured by Peres to be sufficient in many natural families of chains

(e.g. [11] confirming this for birth-and-death chains). In particular, this was

conjectured for the lazy random walk on bounded-degree transitive graphs.

The first example of a family of bounded-degree graphs where the random

walk exhibits cutoff in total-variation was provided only very recently [15],

when the authors showed this for a typical random regular graph. It is

well known that for any fixed d ≥ 3, a random d-regular graph is with

high probability (w.h.p.) a very good expander, hence the simple random

walk on almost every d-regular expander exhibits worst-case total-variation

cutoff. However, to this date there were no known examples for an explicit

(deterministic) family of expanders with this phenomenon.

In Section 2.1 we provide what is, to the best of our knowledge, the first

explicit construction of a family of bounded-degree expanders where the

simple random walk has worst-case total-variation cutoff.

Theorem 1. There is an explicit family of 3-regular expanders on which

the SRW from a worst case initial position exhibits total-variation cutoff.

The construction mimics the behavior of the SRW on random regular

graphs, whose mixing was shown in [15] (as conjectured by Durrett [13] and

Berestycki [7]) to resemble that of a walk started at a root of a d-regular

tree. Two smaller expanders that are embedded into the graph structure

allow careful control over the mixing time from all possible initial positions.

A straightforward modification of the above construction yields an explicit

family of cubic expanders where the SRW from a worst-case initial position

does not exhibit cutoff in total-variation (despite Peres’ cutoff criterion).

Note that Peres and Wilson [17] had already sketched an example for a

family of expanders without total-variation cutoff. We describe our simple

construction achieving this in Section 2.2 for completeness.

A final variant of the construction, presented in Section 2.3, provides cubic

graphs with cutoff occurring at essentially any prescribed order of location.

Namely, there is an explicit family of cubic graphs where the SRW has cutoff

at any specified order between [log n, n2) whereas for tmix � n2 there cannot

be cutoff (it is well-known that on any family of bounded-degree graphs on

n vertices the SRW has c log n ≤ tmix ≤ c′n2 for some fixed c, c′ > 0).

Theorem 2. Let tn be a monotone sequence with tn ≥ log n and tn = o(n2).

There is an explicit family (Gn) of 3-regular graphs with |Gn| � n vertices

where the SRW from a worst-case initial position exhibits total-variation

cutoff at tmix � tn.

Furthermore, for any family of bounded-degree n-vertex graphs where the

SRW has tmix � n2 (largest possible order of mixing) there cannot be cutoff.
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2. Explicit constructions achieving cutoff

2.1. Proof of Theorem 1: explicit expanders with cutoff. To simplify

the exposition, we will first construct a family of 5-regular expanders where

the SRW from a worst initial position exhibits cutoff. Subsequently, we will

describe how to modify the construction to yield a family of cubic expanders

with this property (as per the statement of Theorem 1).

The graph we construct will contain a smaller explicit expander on a

fixed proportion of its vertices, connected to what is essentially a product

of another expander with a “stretched” regular tree (one where the edges in

certain levels are replaced by paths).

Let h→∞ and let H1, H2 be two explicit expanders as follows (cf. e.g. [1]

for an explicit construction of a 3-regular graph, as well as [18] and the

references therein for additional explicit constructions of constant-degree

expander graphs):

• H1 : An explicit 3-regular expander on 20 · 22h vertices.

• H2 : An explicit 4-regular expander on 20 · 26h vertices.

Let λ(Hi) denote the largest absolute-value of any nontrivial eigenvalue of

Hi for i = 1, 2. Finally, let L be some sufficiently large fixed integer whose

value will be specified later.

Our final construction for 5-regular expander will be based on a (modified)

regular tree, hence it will be convenient to describe its structure according

to the various levels of its vertices. Let the vertex ρ denote the root of the

tree, and construct the graph G as follows:

1. Levels 0, 1, 2: First levels of a 5-regular tree rooted at ρ.

• Denote by U = {u1, . . . , u20} the vertices comprising level 2.

2. Levels 3, . . . , h+ 2: Stretched 4-ary trees rooted at U :

• For each ui ∈ U place an h-level 4-ary tree Tui rooted at ui and

identify the vertices of Tui and Tuj via the trivial isomorphism.

• Replace every edge of each Tui by a (disjoint) path of length L.

Connect T ∗u1 , the new interior vertices in Tu1 (with initial degree 2) to

their isomorphic counterparts in T ∗u2 , T
∗
u3 , T

∗
u4 (add 4-cliques between

identified interior vertices) and similarly for {T ∗u5 , . . . , Tu∗8} etc.

• Let A denote the final 20 · 4h vertices comprising level h + 2, and

associate the vertices of A with those of H1.

3. Levels h+ 3, . . . , 2h+ 2: Product of H1 and a stretched 4-ary tree.

• For each a ∈ A place an h-level L-stretched 4-ary tree Ta.
Connect vertices in T ∗a with their counterparts in T ∗b for ab ∈ E(H1).

• Let B denote the final 20 · 42h vertices comprising level 2h+ 2.

4. Levels 2h+ 3, . . . , 3h+ 2: A forest of 4-ary trees rooted at B.

5. Last level: Associate leaves with H2 and interconnect them accordingly.
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u1 u2 u3  .  .  .  .  . u17 u18 u19 u20U

A .  .  . (H1)

u4

.  .  .

B

(H2)

L

L

 .  .  .  .  .

 .  .  .  .  .

 .  .  .  .  .

.  .  .

.  .  . .  .  .

Figure 1. Explicit construction of a 5-regular graph on

which the random walk exhibits total-variation cutoff.

Finally, the aforementioned parameter L is chosen as follows: Denote by

gap1 = inf
|H1|

(1− λ(H1)/3) , gap2 = inf
|H2|

(1− λ(H2)/4)

the minimum spectral-gaps in the explicit expanders that were embedded

in our construction (recalling from the introduction that gapi > 0 for both

i = 1, 2 by the definition of expanders together with the discrete analogue

of Cheeger’s inequality), and define

L =

⌈
2

√
gap1

∨ 16

gap2

∨ 32

⌉
. (2.1)

See Fig. 1 for an illustration of the above construction.

We begin by establishing the expansion of the above constructed G.

Throughout the proof we omit ceilings and floors in order to simplify the

exposition.

Lemma 2.1. Let κ = (ch(H2)∧1)/3 for H2 our explicit 4-regular expander.

For any integer L > 0, the Cheeger constant of the above described 5-regular

graph G with parameter L satisfies ch(G) ≥ κ/25L. Moreover, the induced

subgraph G̃ on the last h levels (i.e., levels 2h+2, . . . , 3h+2) has ch(G̃) ≥ κ.

Proof. First consider the entire graph G. Since we are only interested in

a lower bound on ch(G), clearly it is valid to omit edges from the graph,

in particular we may erase the cross edges between any subtrees T ∗u , T ∗v
described in Items 2,3 of the construction. This converts every stretched
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edge of the 5-regular tree of G simply into a 2-path (one where all interior

vertices have degree 2) of length L.

Next, we contract all the above mentioned 2-paths into single edges and

denote the resulting graph by F . The next simple claim shows that this

decreases the Cheeger constant by at most O(L).

Claim 2.2. Let F be a connected graph with maximal degree ∆ and let G

be a graph on at most 3
2 |F | vertices obtained via replacing some of the edges

of F by 2-paths of length L. Then ch(G) ≥ ch(F )/∆2L.

Proof. Let X ⊂ V (G) be a set of cardinality at most |G|/2 achieving the

Cheeger constant of G. We may assume that ∆ ≥ 3 otherwise F is a disjoint

union of paths and cycles and the result holds trivially.

Notice that if X contains two endpoints of a 2-path P = (x0, . . . , xL)

while only containing k < L − 1 interior vertices of P then we can assume

that X ∩ P = {x0, . . . , xk, xL}, i.e. all the interior vertices are adjacent

(this maintains the same cardinality of X while not increasing ∂X). With

this in mind, modify the set X into the set X ′ by repeating the following

operation: As long as there is a 2-path P as above (with x0, . . . , xk and

xL in X for some k < L − 1) we replace xL by xk+1. This maintains the

cardinality of the set while increasing its edge-boundary by at most ∆−2 (as

xL formerly contributed at least 1 edge to this boundary due to xL−1 /∈ X).

Altogether, this yields a set X ′ where no 2-path P = (x0, . . . , xL) * X ′ has

both x0, xL ∈ X ′, while X ′ satisfies

|∂X ′|/|X ′| ≤ (∆− 1) ch(G) .

The obtained subset X ′ is possibly disconnected, and we will next argue that

its connected components satisfy an appropriate isoperimetric inequality.

Consider X ′′, the connected component of X ′ that minimizes |∂X ′′|/|X ′′|.
If X ′′ is completely contained in the interior of one of the new 2-paths then

the statement of the claim immediately holds since

ch(G) ≥ |∂X ′|
(∆− 1)|X ′|

≥ |∂X ′′|
(∆− 1)|X ′′|

≥ 2

(L− 1)(∆− 1)
≥ ch(F )

∆2L
,

with the last inequality due to the fact ch(F ) ≤ ∆. Suppose therefore that

this is not the case hence we may now assume that X ′′ contains at least one

endpoint of any 2-path it intersects.

Let Y = X ′′∩V (F ), i.e. the subset of the vertices of F obtained from X ′′

by excluding any vertex that was created in G due to subdivision of edges.

Observe that our assumption on X ′ implies that

|∂Y | = |∂X ′′| ,
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since either a 2-path P is completely contained in X ′′ (not contributing

to ∂X ′′) or P ∩ X = {x0, . . . , xk} for some k < L (contributing the edge

xk, xk+1 to ∂X ′′, corresponding to the edge x0, xL in ∂Y ).

It remains to consider |Y |. Clearly, X ′′ can be obtained from Y by adding

at most ∆ new 2-paths with L− 1 new interior points per vertex, hence

|Y | ≥ |X ′′|/∆L .

On the other hand, since |Y | ≤ |X ′′| ≤ |G|/2 and |G| ≤ 3
2 |F | we have

|Y |/|F | ≤ 3
2 |X

′′|/|G| ≤ 3
4 ,

which together with the fact that |X ′′| ≤ |G|/2 implies that

|V (F ) \ Y | ≥ 1
4 |F | ≥

1
6 |G| ≥

1
3 |X

′′| ≥ |X ′′|/∆L .

Altogether,

ch(F ) ≤ |∂Y |
|Y | ∧ |V (F ) \ Y |

≤ ∆L
|∂X ′′|
|X ′′|

≤ ∆2L ch(G) . �

In light of the above claim we have ch(G) ≥ ch(F )/25L where the graph

F is the result of taking a complete 5-regular tree of height 3h+2 levels and

connecting its 5 ·43h+1 leaves, denoted by F ′, via the 4-regular expander H2.

It therefore remains to show that ch(F ) ≥ κ.

Let S be a set of size s ≤ |F |/2 vertices that achieves ch(F ). Define its

subset of the leaves S′ = S ∩ F ′ and set s′ = |S′|. Since |F ′| ≥ 3
4 |F | we

clearly have s′ ≤ s ≤ 2
3 |F

′| hence (|S′| ∧ |F ′ \ S′|) ≥ s′/2. We thus have the

following two options:

(1) s′ ≥ 2
3s: In this case

|∂FS| ≥ |∂F ′S′| ≥ ch(H2)s′/2 ≥ ch(H2)s/3 .

(2) s′ < 2
3s: Letting T5 denote the infinite 5-regular tree (whose Cheeger

constant equals 3) we get

|∂FS| ≥ ch(T5)(s− s′)− s′ = 3s− 4s′ > s/3 .

Altogether we deduce that

ch(G) ≥ ch(F ) ≥ (ch(H2) ∧ 1)/3 = κ .

The second part of the lemma (the statement on the subgraph G̃) follows

from essentially the same argument given above for ch(F ), as G̃ is precisely

a forest of 5-regular trees of height h where all the leaves are connected via

the expander H2. Again we get ch(G̃) ≥ κ, completing the proof. �

Consider the SRW started k ≤ h levels above the bottom (i.e. at level

3h+2−k) of the graph G. The height of the walk is then a one-dimensional
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biased random walk with positive speed 3
5 , implying that it would reach the

bottom after 5
3k + o(h) steps with high probability.

On the other hand, if the SRW is started closer to the root, i.e. at level

2h+ 2−k, then the one-dimensional random walk is delayed by two factors,

horizontal (cross-edges) and vertical (stretching the edges into paths). Until

reaching level 2h+2 (after which the previous analysis applies), these delays

are encountered along 5
3k + o(h) stretched edges with the following effect:

• The former incurs a laziness delay with probability 3
5 whenever the

walk is positioned on an interior vertex of a 2-path.

• The latter delays the walk by the passage time of a SRW through an

L-long 2-path, where the walk leaves the origin with probability 1.

It is well-known (and easy to derive) that the expected passage time of

the one-dimensional SRW from 0 to ±L is precisely L2 and the expected

number of visits to the origin by then (including the starting position) is

exactly L. It thus follows that the expected delay of the one-dimensional

walk representing our height in the tree along a single stretched edge is

5
2(L2 − L) + L = 1

2L(5L− 3) .

Combining the above cases we arrive at the following conclusion:

Claim 2.3. Consider the SRW on the graph G started at a vertex on level

s ∈ {0, . . . , 3h + 1}. Set α = s/h and let τ` be the hitting time of the walk

to the leaves (i.e. to level 3h+ 2). Then w.h.p.

τ` =

{
(5

3 + o(1))
[
L(5L− 3)(1− α

2 ) + 1
]
h If 0 ≤ α ≤ 2 ,

5
3(3− α)h+ o(h) If α ≥ 2 .

The next lemma relates τ`, the hitting time to the leaves (addressed by

the above claim), and the mixing of the SRW on the graph.

Lemma 2.4. Let ε > 0, let s0 be some vertex on level l0 ∈ {0, . . . , h + 2}
and T = (1+δ)Es0τ` for δ > 0 fixed, where τ` is the hitting time of the SRW

to the leaves. Then ‖Ps0(ST ∈ ·)− π‖TV < ε for any sufficiently large h.

Proof. Let (St) denote the SRW started at some vertex s0 in level l0 ≤ h+2

and π be the uniform distribution on V (G). Let (S̃t) be a random walk

started from the uniform distribution S̃0 ∼ π. Write Li for i ∈ {0, . . . , 3h+2}
for the vertices of level i in G (accounting for all the vertices except interior

ones along the 2-paths of length L corresponding to stretched edges) and

let ψ : G → {0, . . . , 3h + 2} map vertices in the graph to their level (while

mapping interior vertices of 2-paths to the lower of their endpoint levels).

Further let Ω = {2h+ 3, . . . , 3h+ 2}. Clearly, for large enough h we have

P
(
ψ(S̃0) /∈ Ω

)
<

ε

10
.
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Furthermore, due to the bias of the SRW towards the leaves and the fact

that τ` = (1 + o(1))Eτ` � h (recall Claim 2.3 and that L is fixed) we deduce

that ψ(ST ) > 5
2h except with probability exponentially small in h, and in

particular for any sufficiently large h

P
(
ψ(ST ) /∈ Ω

)
<

ε

10
.

Therefore, an elementary calculation shows that if ψ(ST ) and ψ(S̃T ) are close

in total-variation and so are ST given ψ(ST ) = i and S̃T given ψ(S̃T ) = i

for all i ∈ Ω, then the required statement on ‖P(ST ∈ ·)− π‖ would follow.

Namely, if we should show that at time t = T we have∥∥∥P(St ∈ · | ψ(St) = i
)
− P

(
S̃t ∈ · | ψ(S̃t) = i

)∥∥∥
TV

<
ε

5
for all i ∈ Ω , (2.2)∥∥∥P(ψ(St) ∈ ·

)
− P

(
ψ(S̃t) ∈ ·

)∥∥∥
TV

<
ε

5
, (2.3)

then we would get that ‖P(St ∈ ·)− π‖TV < ε (with room to spare).

Examine the period spent by (St) in levels {h + 2, . . . , 2h + 2}. The

graph in these levels is essentially a product of a 4-ary tree whose edges

are stretched into L-long 2-paths and the expander H1. Let ϕ : G → H1

map the vertices in these levels to their corresponding vertices in H1, and

let τ0, τ1 be the hitting times of (St) to levels 3
2h and 2h+ 2 respectively.

As argued above, the SRW started at level 2h+2−k is a one-dimensional

biased random walk that w.h.p. passes through (1+o(1))5
3k+o(h) stretched

edges until reaching level 2h + 2 for the first time. In particular, between

times τ0, τ1 the walk w.h.p. passes through (1 + o(1))5
6h stretched edges.

Along each stretched edge among levels {h + 2, . . . , 2h + 2}, the walk

traverses a cross-edge in H1 (that is, ϕ(St+1) is uniformly distributed over

the neighbors of ϕ(St) in H1) with probability 3
5 whenever it is in an interior

vertex in the 2-path, for a total expected number of 3
2(L2 − L) such moves.

Finally, due to its bias towards the leaves, with high probability the SRW

from level 3
2h reaches level 2h+ 2 (the vertices B) before hitting level h+ 2.

Applying CLT we conclude that the SRW w.h.p. traverses

(5
4 + o(1))L(L− 1)h > L2h

cross-edges (each corresponding to a single step of the SRW on H1) between

times τ0, τ1, where the last inequality holds for L > 5 and large enough h.

This amounts to at least L2h consecutive steps of a SRW along H1.

Aiming for a bound on the total-variation mixing, we may clearly condi-

tion on events that occur with high probability: Condition therefore through-

out the proof that indeed the above statement holds.
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In particular, letting (Xt) be the SRW on the expander H1 and recalling

that |A| = |H1| = 20 · 22h and r = L2h it follows that

max
s0

∥∥Ps0 (ϕ(Sτ1) ∈ ·)− |A|−1
∥∥

TV
≤ max

x0

∥∥Px0 (Xr ∈ ·)− |A|−1
∥∥

TV

≤ 1

2
max
x0

∥∥Px0 (Xr ∈ ·)− |A|−1
∥∥

2
.

Recalling that H1 is a 3-regular with second largest (in absolute value)

eigenvalue λ(H1) and writing γ
4
= 1− λ(H1)

3 ,

max
x0

∥∥Px0 (Xr ∈ ·)− |A|−1
∥∥

2
≤
√
|A| exp (−γr)

< 5 exp
[
−(γL2 − log 2)h

]
< |A|−2 ,

with the last inequality justified for any sufficiently large h provided that

L >

√
5 log 2√

1− λ(H1)/3
, (2.4)

a fact inferred from the choice of L in (2.1). In this case, for any s0

Ps0 (Sτ1 = u) =
1 + o(1)

|A|
for every u ∈ A .

By symmetry we now conclude that for any i ∈ Ω and t ≥ τ1 we have

Ps0 (St ∈ · | ψ(St) = i) =
1 + o(1)

|Li|
for every i ∈ {2h+ 2, . . . , 3h+ 2} .

This immediately establishes (2.2).

To obtain (2.3), note that S̃t for t = τ1 w.h.p. satisfies ψ(S̃0) > 5
2h.

Conditioned on this event we can apply a monotone-coupling to successfully

couple (St) and (S̃t) such that ψ(Sτ`) = ψ(S̃τ`), yielding (2.3).

The concentration of τ` established in Claim 2.3 carries the above two

bounds to time T , thus completing the proof. �

Let tmix(ε;x) denote the total-variation mixing time from a given starting

position x. That is, if (Xt) is an ergodic Markov chain on a finite state space

Ω with stationary distribution π then

tmix(ε;x)
4
= min {t : ‖Px(Xt ∈ ·)− π‖TV < ε} .

The above lemma gives an upper bound on this quantity for the SRW started

at one of the levels {0, . . . , h+2}, which we now claim is asymptotically tight:

Corollary 2.5. Consider the SRW on G started at some vertex s0 on level

l0 ∈ {0, . . . , h + 2} and let τ` be the hitting time of the walk to the leaves.

Then for any fixed 0 < ε < 1 we have tmix(ε; s0) = (1 + o(1))Es0τ`.
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Proof. The upper bound on tmix(ε; s0) was established in Lemma 2.4.

For a matching lower bound on tmix(1 − ε; s0) choose some fixed integer

K = O(log(L/ε)) such that the bottom K levels of the graph comprise at

least a (1− ε)-fraction of the vertices of G, i.e.∑
i>3h+2−K

|Li| > (1− ε)|G| .

The lower bound now follows from observing that, by the same arguments

that established Claim 2.3, the hitting time from level l0 to level 3h+ 2−K
is w.h.p. (1− o(1))Eτ` for any sufficiently large h. �

Having established the asymptotic mixing time of the SRW started at the

top h levels, we next wish to show that from all other vertices the mixing

time is faster.

Claim 2.6. Let (St) be the SRW started at some vertex x in level ψ(x) > h.

For every 0 < ε < 1 and any sufficiently large h we have tmix(ε;x) < 6L2h.

Proof. Let G′ denote the induced subgraph on the bottom h+1 levels of the

graph (i.e., levels 2h + 2, . . . , 3h + 2). Since |G′| = (1 − o(1))|G| it clearly

suffices to show that (St) mixes within total-variation distance ε on G′.

By Claim 2.3 (taking the worst case α = 1 corresponding to ψ(x) = h)

with high probability we have

τ` ≤ (5
6 + o(1))[L(5L− 3) + 2]h < 5L2h

4
= t1 ,

where the above strict inequality holds for any sufficiently large h (as L ≥ 1).

Recall that ch(G′) ≥ κ = (ch(H2) ∧ 1)/3 by Lemma 2.1, where H2 is the

explicit 4-regular expander with second largest (in absolute value) eigenvalue

λ(H2). Further consider the graph G′′ obtained by adding to G′ a perfect

matching on level 2h+2, thus making it 5-regular. Clearly, adding edges can

only increase the Cheeger constant and so ch(G′′) ≥ κ as well. Moreover,

the discrete form of Cheeger’s inequality ([5,6,12,20]), which for a d-regular

expander H with second largest (in absolute value) eigenvalue λ states that

d− λ
2
≤ ch(H) ≤

√
2d(d− λ) ,

here gives the following:

4− λ(H2)

6
∧ 1

3
≤ κ ≤ ch(G′′) ≤

√
10(5− λ(G′′)) .

In particular we obtain that γ
4
= 1− λ(G′′)

5 satisfies

γ >

(
4− (λ(H2) ∨ 2)

6
√

50

)2

(2.5)
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while a simple random walk (Xt) on G′′ is well-known to satisfy

max
x0

∥∥Px0 (Xt ∈ ·)− |G′′|−1
∥∥

2
≤
√
|G′′| exp (−γt) .

As |G′′| � 26h we infer that after

3 log 2

γ
h+

O(log(1/ε))

γ
<

9

4γ
h
4
= t2

(the strict inequality holding for large enough h) steps we have

max
x0

∥∥Px0 (Xt2 ∈ ·)− |G′′|−1
∥∥

TV
≤ ε/2 .

Recall that our choice of t1 is such that τ` < t1 w.h.p., i.e. the SRW reaches

level 3h+ 2 by that time, and thereafter (due to its bias towards the leaves)

it does not revisit level 2h + 2 until time t1 + t2 except with a probability

that is exponentially small in h. Since G and G′′ are identical on levels

2h + 3, . . . , 3h + 2 we deduce that w.h.p. the SRW performs at least t2
consecutive steps in G′′ following τ`. Altogether, for large enough h we have

‖Px (St1+t2 ∈ ·)− π‖TV < ε and so tmix(ε;x) < t1 + t2.

Finally, bearing (2.5) and the choice of L in (2.1) in mind,

L ≥ 64

4− (λ(H2) ∨ 2)
>

√
9
4 · 6
√

50

4− (λ(H2) ∨ 2)
, (2.6)

hence L2 > 9/4γ and so t2 ≤ L2h and t1 + t2 ≤ 6L2h, as required. �

We now claim that the worst-case mixing time within any 0 < ε < 1 is

attained by an initial vertex at distance o(h) from the root. Fix 0 < ε < 1,

let x be the initial vertex maximizing tmix(ε;x) and recall that ψ(x) denotes

its level in the graph. The combination of Claim 2.3 and Corollary 2.5

ensures that if ψ(x) ≤ h then necessarily ψ(x) = o(h), in which case

tmix(ε;x) =
(

5
3 + o(1)

)
(5L2 − 3L+ 1)h

4
= t? . (2.7)

An immediate consequence of the requirement 2.6 on L is that L ≥ 50, hence

t? > 8L2h for any sufficiently large h. Therefore, we cannot have ψ(x) > h

since by Claim 2.6 that would imply that tmix(ε;x) < 6L2h contradicting

the fact that x achieves the worst-case mixing time.

Overall we deduce that for any 0 < ε < 1 we have

tmix(ε) = max
x

tmix(ε;x) = (1 + o(1))t? ,

thus confirming that the SRW on the above constructed family of 5-regular

expanders exhibits total-variation cutoff from a worst starting location.

It remains to describe how our construction can be (relatively easily)

modified to be 3-regular rather than 5-regular.
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The immediate step is to use binary trees instead of 4-ary trees, after

which we are left with the problem of embedding the explicit expanders

H1 and H2 without increasing the degree. This will be achieved via the

line-graphs of these expanders, hence our explicit expanders will now have

slightly different parameters:

• H1 : An explicit 3-regular expander on 2h+1 vertices.

• H2 : An explicit 3-regular expander on 23h+1 vertices.

Recall that given a tree rooted at some vertex u, denoted by Tu, its edge-

stretched version is obtained by replacing each edge by a 2-path of length L,

and the collection of all new interior vertices (due to subdivision of edges)

is denoted by T ∗u . The modified construction is as follows:

1. Levels 0,1,2: First levels of a binary tree.

• Denote by U = {u1, . . . , u6} the vertices in level 2.

2. Levels 3, . . . , h+ 2: Stretched binary trees rooted at U :

• Connect vertices from T ∗ui (interior vertices along 2-paths) to the

corresponding (isomorphic) vertices in T ∗u2i , i.e. inter-connect the

interior vertices via perfect matchings.

• Denote by A the 6 · 2h vertices in level h+ 2.

3. Levels h+ 3, . . . , 2h+ 2: Edge-stretched binary trees rooted at A and

inter-connected via the line-graph of H1 using auxiliary vertices:

• Associate each binary tree Tai rooted at A to an edge of H1.

• For each x ∈ T ∗ai (interior vertex on a 2-path) we connect it to a

new auxiliary vertex x′ and associate x′ with a unique edge of H1.

• We say that x ∈ T ∗ai and y ∈ T ∗aj are isomorphic if the isomorphism

from Tai to Taj maps x to y. Add |H1| new auxiliary vertices per

equivalence class of |A| such isomorphic vertices, identify them

with the vertices of H1 and connect every new vertex v to the

auxiliary vertices x′, y′, z′ representing the edges incident to it.

4. Levels 2h+ 3, . . . , 3h+ 2: A forest of binary trees.

5. Last level: leaves are inter-connected via the line-graph of H2:

• Associate the 6 · 23h vertices with the edges of H2.

• Add |H2| new auxiliary vertices, each connected to the leaves cor-

responding to edges that are incident to it in H2.

It is easy to verify that the walk along the cross-edges of the T ∗ai ’s now

corresponds to a lazy (unbiased) random walk on the edges of H1. Similarly,

the walk along the cross-edges connecting the leaves corresponds to the SRW

on the edges of H2. Hence, all of the original arguments remain valid in this

modified setting for an appropriately chosen fixed L. This completes the

proof of Theorem 1. �
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2.2. Explicit expanders without total-variation cutoff. The explicit

cubic expanders with cutoff constructed in the previous section (illustrated

in Fig. 1) can be easily modified so that the SRW on them from a worst

starting position would not exhibit total-variation cutoff.

To do so, recall that in the above-described family of graphs, each vertex

of the subset U was the root of a regular tree of height h whose edges

were stretched into L-long 2-paths (see Item 2 of the construction). We

now tweak this construction by stretching some of the edges into 2-paths

of length L′. Namely, for subtrees rooted at the odd vertices in level h/2

of these trees we stretch the edges into paths of length L′ > L. Under this

modified stretching the trees Tui are clearly still isomorphic, hence the cross

edges are inter-connecting 2-paths of the same lengths.

By the arguments above, starting from any level ` > h/2 the mixing is

faster compared to the root, and if L′/L is sufficiently small then the root

remains the asymptotically worst starting position. However, starting from

the root (and in fact, starting from any level ` ≤ h/2) the hitting time to

the set A is no longer concentrated due to the odd/even choice of subtree

at level h/2. Therefore, from the worst starting position we have that the

hitting time to the leaves is concentrated on two distinct values (differing by

a fixed multiplicative constant), each with probability 1
2−o(1). This implies

that the ratio tmix(1
4)/tmix(3

4) is bounded away from 1 and in particular this

explicit family of expanders does not have total-variation cutoff.

2.3. Proof of Theorem 2: cutoff at any prescribed location order.

Suppose H is an explicit 3-regular expander on m vertices provided by The-

orem 1, and recall that the SRW on this graph exhibits cutoff at C logm

where C > 0 is some absolute constant. Our graph G will be the result of

replacing every edge of H by the 3-regular analogue of a 2-path, which we

refer to as a “cylinder”, illustrated in Fig. 2. The length of each cylinder is

set to be L = L(m) satisfying L ≡ 1 (mod 4). Notice that the total number

of vertices in G is

n = |V (H)|+ |E(H)|32(L− 1) =
(
1 + 9

4(L− 1)
)
m. (2.8)

Since m→∞ and the SRW on H, started at a worst-case starting position,

traverses (C + o(1)) logm edges until mixing, we infer from CLT, as well as

the fact that the expected passage-time through an L-long cylinder is L2,

that the analogous random walk on G has cutoff at

tmix = CL2 logm = (C + o(1))L2 log(n/L) . (2.9)

When L(m) = O(1) we have tmix � log n. On the other extreme end, when

L grows arbitrarily fast as a function of m we obtain that it approaches n

arbitrarily closely but we must still having L = o(n) since n/L � m → ∞.
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G

. . .

Figure 2. Extension of the explicit expanders with cutoff

to graphs with prescribed order of cutoff location.

In that case tmix approaches n2 arbitrarily closely while having a strictly

smaller order.

To complete the construction it remains to observe that we may choose

L and m so that |Gn| � n and tmix � tn. This can be achieved by first

selecting L so that tn � (C + o(1))L2 log(n/L) and then selecting a graph

constructed through Theorem 1 on m vertices for some m � n/L (note that

in the theorem we construct graphs of size essentially (c + o(1))23h so this

is always possible).

To show that there is no cutoff whenever tmix � n2 we will argue that in

that case we have gap = O(n−2), in contrast to the necessary condition for

cutoff gap−1 = o(tmix) due to Peres (cf. [16]), discussed in the introduction.

Lemma 2.7. Let G be a graph on n vertices with degrees bounded by some

∆ fixed on which the SRW has tmix � n2. Then the spectral-gap of the walk

satisfies gap � n−2. In particular, the SRW on G does not exhibit cutoff.

Proof. Observe that the above graph must satisfy diam(G) ≥ cn for some

fixed c > 0 as it is well-known (cf., e.g., [4]) that the lazy walk on any graph

H has tmix = O(diam(H) vol(H)) and in our case vol(G) ≤ ∆n = O(n).

Let x, y ∈ V (G) be two vertices whose distance in G is

N
4
= distG(x, y) = diam(G) ≥ cn .

Our lower bound on the gap will be derived from its representation via the

Dirichlet form, according to which

gap = inf
f

E(f)

Var(f)
= inf

f

1
2

∑
x,y∈Ω [f(x)− f(y)]2 π(x)P (x, y)

Varπ f
, (2.10)
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where π is the (uniform) stationary measure and P is the transition kernel

of the SRW. As a test-function f : V (G)→ R in the above form choose

f(v)
4
= distG(x, v) .

Clearly we have E(f) ≤ 1 and a lower bound of order n2 on the variance

follows from the fact that two sets of linear size each have a linear discrepancy

according to f . Namely,

π
(
f−1({0, . . . , bN/4c})

)
≥ c

4
, π
(
f−1({d3N/4e, . . . , N})

)
≥ c

4
,

as a result of which

Var(f) ≥ (c/4)(N/4)2 > c′n2 .

We conclude that gap = O(n−2), thus completing the proofs of Lemma 2.7

and Theorem 2. �

3. Concluding remarks and open problems

• Recent results in [15] showed that almost every regular expander graph

has total-variation cutoff (prior to that there were no known examples

for bounded-degree graphs with this phenomenon); here we provided a

first explicit construction for bounded-degree expanders with cutoff.

• The expanders constructed in this work are non-transitive. Moreover,

our proof exploits their highly asymmetric structure in order to control

the mixing time of the random walk from various starting locations.

It would be interesting to obtain an explicit construction of transitive

expanders with total-variation cutoff.

• A slight variant of our construction gives an example of a family of

expanders where the SRW does not exhibit cutoff, thereby disagreeing

with Peres’ cutoff-criterion. Both here and in another such example

due to Peres and Wilson [17] the expanders are non-transitive (hence

the restriction to transitive graphs in Peres’ conjecture stated next).

• While it is conjectured by Peres that the random walk on any family

of transitive bounded-degree expanders exhibits total-variation cutoff,

there is not even a single example of such a transitive family where

cutoff was proved (or disproved).

• For general (not necessarily expanding) bounded-degree graphs on n

vertices it is well-known that tmix = O(n2). Here we showed that cutoff

can occur essentially anywhere up to o(n2) by constructing cubic graphs

with cutoff at any such prescribed location. Furthermore, this is tight

as we prove that if tmix � n2 then cutoff cannot occur.
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