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ABSTRACT. The East process is a 1D kinetically constrained interacting particle system,
introduced in the physics literature in the early 90’s to model liquid-glass transitions.
Spectral gap estimates of Aldous and Diaconis in 2002 imply that its mixing time on L
sites has order L. We complement that result and show cutoff with an O(

√
L)-window.

The main ingredient is an analysis of the front of the process (its rightmost zero
in the setup where zeros facilitate updates to their right). One expects the front to
advance as a biased random walk, whose normal fluctuations would imply cutoff with
anO(

√
L)-window. The law of the process behind the front plays a crucial role: Blondel

showed that it converges to an invariant measure ν, on which very little is known.
Here we obtain quantitative bounds on the speed of convergence to ν, finding that
it is exponentially fast. We then derive that the increments of the front behave as a
stationary mixing sequence of random variables, and a Stein-method based argument
of Bolthausen (‘82) implies a CLT for the location of the front, yielding the cutoff result.

Finally, we supplement these results by a study of analogous kinetically constrained
models on trees, again establishing cutoff, yet this time with an O(1)-window.

1. INTRODUCTION

The East process is a one-dimensional spin system that was introduced in the physics
literature by Jäckle and Eisinger [2121, 21] in 1991 to model the behavior of cooled
liquids near the glass transition point, specializing a class of models that goes back
to [1919, 19]. Each site in Z has a {0, 1}-value (vacant/occupied), and, denoting this
configuration by ω, the process attempts to update ωx to 1 at rate 0 < p < 1 (a param-
eter) and to 0 at rate q = 1 − p, only accepting the proposed update if ωx−1 = 0 (a
“kinetic constraint”).

It is the properties of the East process before and towards reaching equilibrium —
it is reversible w.r.t. π, the product of Bernoulli(p) variables — which are of interest,
with the standard gauges for the speed of convergence to stationarity being the inverse
spectral-gap and the total-variation mixing time (gap−1 and Tmix) on a finite interval
{0, . . . , L}, where we fix ω0 = 0 for ergodicity (postponing formal definitions to §2).
That the spectral-gap is uniformly bounded away from 0 for any p ∈ (0, 1) was first
proved in a beautiful work of Aldous and Diaconis [33, 3] in 2002. This implies that
Tmix is of order L for any fixed threshold 0 < ε < 1 for the total-variation distance from
π.

For a configuration ω with sup{x : ωx = 0} <∞, call this rightmost 0 its front X(ω);
key questions on the East process ω(t) revolve the law µt of the sites behind the front
at time t, basic properties of which remain unknown. One can imagine that the front
advances to the right as a biased walk, behind which µt ≈ π (its trail is mixed). Indeed,
if one (incorrectly!) ignores dependencies between sites as well as the randomness in
the position of the front, it is tempting to conclude that µt converges to π, since upon
updating a site x its marginal is forever set to Bernoulli(p). Whence, the positive vs.
negative increments to X(ω) would have rates q (a 0-update at X(ω) + 1) vs. pq (a
1-update at X(ω) with a 0 at its left), giving the front an asymptotic speed v = q2 > 0.

Of course, ignoring the irregularity near the front is problematic, since it is precisely
the distribution of those spins that governs the speed of the front (hence mixing). Still,
just as a biased random walk, one expects the front to move at a positive speed with
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Figure 1: Trajectory of the front of an East process for p = 1
4 along a time interval of

105, vs. its mean and standard deviation window.

normal fluctuations, whence its concentrated passage time through an interval would
imply total-variation cutoff — a sharp transition in mixing — within anO(

√
L)-window.

To discuss the behavior behind the front, let ΩF denote the set of configurations
ωF on the negative half-line Z− with a fixed 0 at the origin, and let ωF(t) evolve via
the East process constantly re-centered (shifted by at most 1) to keep its front at the
origin. Blondel [55, 5] showed (see Theorem 2.1) that the process ωF(t) converges to
an invariant measure ν, on which very little is known, and that 1

tX(ω(t)) converges in
probability to a positive limiting value v as t → ∞ (an asymptotic velocity) given by
the formula

v = q − pq∗ where q∗ := ν(ω−1 = 0).

(We note that q < q∗ < q/p by the invariance of the measure ν and the fact that v > 0.)
The East process ω(t) of course entails the joint distribution of ωF(t) and X(ω(t));

thus, it is crucial to understand the dependencies between these as well as the rate at
which ωF(t) converges to ν as a prerequisite for results on the fluctuations of X(ω(t)).

Our first result confirms the biased random walk intuition for the front of the East
process X(ω(t)), establishing a CLT for its fluctuations around vt (illustrated in Fig. 1).

Theorem 1. There exists a non-negative constant σ∗ = σ∗(p) such that for all ω ∈ ΩF,

lim
t→∞

1
tX(ω(t)) = v Pω-a.s, (1.1)

Eω [X(ω(t))] = vt+O(1), (1.2)

lim
t→∞

1
t Varω (X(ω(t))) = σ2

∗. (1.3)

Moreover, X(ω(t)) obeys a central limit theorem:

X(ω(t))− vt√
t

d→ N (0, σ2
∗) w.r.t. Pω as t→∞. (1.4)
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Figure 2: The invariant measure ν behind the front of the East process (showing
ν(ω−i = 0) simulated via Monte-Carlo for p ∈ {0.2, 0.3, 0.4}.)

A key ingredient for the proof is a quantitative bound on the rate of convergence to ν,
showing that it is exponentially fast (Theorem 3.1). We then show that the increments

ξn := X(ω(n))−X(ω(n− 1)) (n ∈ N) (1.5)

behave (after an initial burn-in time) as a stationary sequence of weakly dependent
random variables (Corollary 3.2), whence one can apply an ingenious Stein’s-method
based argument of Bolthausen [66,6] from 1982 to derive the CLT.

Moving our attention to finite volume, recall that the cutoff phenomenon (coined
by Aldous and Diaconis [22, 2]; see [11, 11616, 16] as well as [1414, 14] and the
references therein) describes a sharp transition in the convergence of a finite Markov
chain to stationarity: over a negligible period of time (the cutoff window) the distance
from equilibrium drops from near 1 to near 0. Formally, a sequence of chains indexed
by L has cutoff around tL with window wL = o(tL) if Tmix(L, ε) = tL +Oε(wL) for any
fixed 0 < ε < 1.

It is well-known (see, e.g., [1515; 15, Example 4.46]) that a biased random walk
with speed v > 0 on an interval of length L has cutoff at v−1L with an O(

√
L)-window

due to normal fluctuations. Recalling the heuristics that depicts the front of the East
process as a biased walk flushing a law µt ≈ π in its trail, one expects precisely the
same cutoff behavior. Indeed, the CLT in Theorem 1 supports a result exactly of this
form.

Theorem 2. The East process on Λ = {1, 2, . . . , L} with parameter 0 < p < 1 exhibits
cutoff at v−1L with an O(

√
L)-window: for any fixed 0 < ε < 1 and large enough L,

Tmix(L, ε) = v−1L+O
(

Φ−1(1− ε)
√
L
)
,

where Φ is the c.d.f. of N (0, 1) and the implicit constant in the O(·) depends only on p.

While these new results relied on a refined understanding of the convergence of
the process behind the front to its invariant law ν (shown in Fig. 2), various basic
questions on ν remain unanswered. For instance, are the single-site marginals of ν
monotone in the distance from the front? What are the correlations between adjacent
spins? Can one explicitly obtain q∗ = ν(ω−1 = 0), thus yielding an expression for the
velocity v? For the latter, we remark that the well-known upper bound on Tmix in terms



4 S. GANGULY, E. LUBETZKY, AND F. MARTINELLI

of the spectral-gap (Eq. (2.2)), together with Theorem 2, gives the lower bound (cf.
also [1111,11])

v ≥ lim sup
L→∞

gap(L[0,L])
log (1/(p ∧ q))

=
gap(L)

log (1/(p ∧ q))
.

Finally, we accompany the concentration for X(ω(t)) and cutoff for the East process
by analogous results — including cutoff with an O(1)-window — on the corresponding
kinetically constrained models on trees, where a site is allowed to update (i.e., to be
reset into a Bernoulli(p) variable) given a certain configuration of its children (e.g.,
all-zeros/at least one zero/etc.). These results are detailed in §5 (Theorems 5.1–5.2).

Remark. The concentration and cutoff results for the kinetically constrained models on
trees (Theorems 5.1–5.2) do not apply to every scale but rather to infinitely many scales,
as is sometimes the case in the context of tightness for maxima of branching random walks
or discrete Gaussian Free Fields; see, e.g., [77,71717,17] as well as the beautiful method
in [88, 899, 9] to overcome this hurdle for certain branching random walks. Indeed,
similarly to the latter, one of the models here gives rise to a distributional recursion involv-
ing the maximum of i.i.d. copies of the random variable of interest, plus a non-negative
increment. Unfortunately, unlike branching random walks, here this increment is not in-
dependent of those two copies, and extending our analysis to every scale appears to be
quite challenging.

2. PRELIMINARIES AND TOOLS FOR THE EAST PROCESS

2.1. Setup and notation. Let Ω = {0, 1}Z and let Ω∗ ⊂ Ω consist of those configura-
tions ω ∈ Ω such that the variable X(ω) := sup{x : ωx = 0} is finite. In the sequel, for
any ω ∈ Ω∗ we will often refer to X(ω) as the front of ω. Given Λ ⊂ Z and ω ∈ Ω we
will write ωΛ for the restriction of ω to Λ.

(i) The East process. For any ω ∈ Ω and x ∈ Z let cx(ω) denote the indicator of
the event {ωx−1 = 0}. We will consider the Markov process {ω(t)}t≥0 on Ω with
generator acting on local functions (i.e. depending on finitely many coordinates)
f : Ω 7→ R given by

Lf(ω) =
∑
x∈Z

cx(ω) [πx(f)(ω)− f(ω)] ,

where πx(f)(ω) := pf(ω(x,1)) + qf(ω(x,0)) and ω(x,1), ω(x,0) are the configurations
in Ω obtained from ω by fixing equal to 1 or to 0 respectively the coordinate at
x. In the sequel the above process will be referred to as the East process on Z and
we will write Pω(·) for its law when the starting configuration is ω. Average and
variance w.r.t. to Pω(·) will be denoted by Eω[·] and Varω(·) respectively. Similarly
we will write Ptω(·) and Etω[·] for the law and average at a fixed time t > 0. If the
starting configuration is distributed according to an initial distribution η we will
simply write Pη(·) for

∫
dη(ω)Pω(·) and similarly for Eη[·].

It is easily seen that the East process has the following graphical representation.
To each x ∈ Z we associate a rate-1 Poisson process and, independently, a family
of independent Bernoulli(p) random variables {sx,k : k ∈ N}. The occurrences of
the Poisson process associated to x will be denoted by {tx,k : k ∈ N}. We assume
independence as x varies in Z. That fixes the probability space. Notice that almost
surely all the occurrences {tx,k}k∈N,x∈Z are different. On the above probability we
construct a Markov process according to the following rules. At each time tx,n the
site x queries the state of its own constraint cx. If and only if the constraint is
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satisfied (cx = 1) then tx,n is called a legal ring and the configuration resets its
value at site x to the value of the corresponding Bernoulli variable sx,n. Using the
graphical construction it is simple to see that if ω ∈ Ω∗ then

Pω(ω(t) ∈ Ω∗ ∀t ≥ 0) = 1.

(ii) The half-line East process. Consider now a ∈ Z and let Ωa consist of those configu-
rations ω ∈ Ω with a leftmost zero at a. Clearly, for any ω ∈ Ωa, Pω(ω(t) ∈ Ωa ∀t >
0) = 1 because cx(ω) = 0 for any x 6 a. We will refer to the corresponding pro-
cess in Ωa as the East process on the half-line (a,∞). Notice that in this case the
variable at a + 1 will always be unconstrained because ca(ω) = 1 for all ω ∈ Ωa.
The corresponding generator will be denoted by L(a,∞).

(iii) The finite volume East process. Finally, if Λ ⊂ Z is a discrete interval of the form
Λ = [a+1, . . . a+L], the projection on ΩΛ ≡ {0, 1}Λ of the half-line East process on
(a,∞) is a continuous time Markov chain because each vertex x ∈ Λ only queries
the state of the spin to its left. In the sequel the above chain will be referred to as
the East process in Λ. Let LΛ denote the corresponding generator.

The main properties of the above processes can be summarized as follows (cf. [1818,
18] for a survey). They are all ergodic and reversible w.r.t. to the product Bernoulli(p)
measure π (on the corresponding state space). Their generators L,L(a,∞),LΛ are self-
adjoint operators on L2(π) satisfying the following natural ordering:

gap(L) 6 gap(L(a,∞)) 6 gap(LΛ).

Remark. By translation invariance the value of gap(L(a,∞)) does not depend on a and,
similarly, gap(LΛ) depends only on the cardinality of Λ.

As mentioned before, the fact that gap(L) > 0 (but only for p ∼ 1) was first proved
by Aldous and Diaconis [33,3], where it was further shown that

e
−( 1

log 2
+o(1)) log2(1/q) 6 gap(L) 6 e−( 1

2 log 2
+o(1)) log2(1/q) as q ↓ 0, (2.1)

the order of the exponent in the lower bound matching non-rigorous predictions in the
physics literature. The positivity of gap(L) was rederived and extended to all p ∈ (0, 1)
in [1010,10] by different methods, and the correct asymptotics of the exponent as q ↓ 0
— matching the upper bound in (2.1) — was very recently established in [1111,11]. It
is easy to check (e.g., from [1010,10]) that limp→0 gap(L) = 1, a fact that will be used
later on.

For the East process in Λ it is natural to consider its mixing times Tmix(L, ε), ε ∈ (0, 1),
defined by

Tmix(L, ε) = inf
{
t : max

ω∈ΩΛ

‖P tω(·)− π‖ 6 ε
}
,

where ‖ ·‖ denotes total-variation distance. It is a standard result for reversible Markov
chains (see e.g. [44,42222,222424,24]) that

Tmix(L, ε) 6
1
2

gap(LΛ)−1

(
2 + log

1
π∗Λ

)
log

1
ε
, (2.2)

where π∗Λ := minω∈ΩΛ
π(ω). In particular Tmix(L, ε) 6 c(p)L log 1/ε. A lower bound

which also grows linearly in the length L of the interval Λ follows easily from the
finite speed of information propagation: If we run the East model in Λ starting from the
configuration of ω ≡ 1 except for a zero at the origin, then, in order to create zeros
near the right boundary of Λ a sequence of order L of successive rings of the Poisson
clocks at consecutive sites must have occurred. That happens with probability O(1) iff
we allow a time which is linear in L (see §2.4 and in particular Lemma 2.6).
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2.2. The process behind the front. Given two probability measures ν, µ on Ω and
Λ ⊂ Z we will write ‖µ − ν‖Λ to denote the total variation distance between the
marginals of µ and ν on ΩΛ = {0, 1}Λ.

When the process starts from a initial configuration ω ∈ Ω∗ with a front, it is con-
venient to define a new process {ωF(t)}t≥0 on ΩF := {ω ∈ Ω∗ : X(ω) = 0} as the
process as seen from the front [55, 5]. Such a process is obtained from the original one
by a random shift −X(ω(t)) which forces the front to be always at the origin. More
precisely we define on ΩF the Markov process with generator LF = LE + LS given by

LEf(ω) =
∑
x<0

cx(ω) [πx(f)(ω)− f(ω)] ,

LSf(ω) = (1− p)
[
f(ϑ−ω)− f(ω)

]
+ p c0(ω)

[
f(ϑ+ω)− f(ω)

]
,

where (
ϑ±ω

)
x

=


0 if x = 0
1 if x > 0
ωx∓1 otherwise.

That is, the generator LF incorporates the moves of the East process behind the front
plus ±1 shifts corresponding to whenever the front itself jumps forward/backward.

Remark. The same graphical construction that was given for the East process ω(t) applies
to the process ωF(t): this is clear for the East part of the generator LE; for the shift part LS,
simply apply a positive shift ϑ+ when there is a ring at the origin and the corresponding
Bernoulli variable is one. If the Bernoulli variable is zero, operate a negative shift ϑ−.

With this notation, the main result of Blondel [55,5] can be summarized as follows.

Theorem 2.1 ([55, 5]). The front of the East process, X(ω(t)), and the process as seen
from the front, ωF(t), satisfy the following:

(i) There exists a unique invariant measure ν for the process {ωF(t)}t≥0. Moreover,
‖ν − π‖(−∞,−x] decreases exponentially fast in x > 0.

(ii) Let q∗ := ν(ω−1 = 0) and let v = q − pq∗. Then v > 0 and for any ω ∈ ΩF,

lim
t→∞

X(ω(t))
t

Pω−→ v.

Thus, if the East process has a front at time t = 0 then it will have a front at any later
time. The latter progresses in time with an asymptotically constant speed v.

2.3. Local relaxation to equilibrium. In this section we review the main technical
results on the local convergence to the stationary measure π for the (infinite volume)
East process. The key message here is that each vacancy in the starting configuration,
in a time lag t, induces the law π in an interval in front of its position of length pro-
portional to t. That explains why the distance between the invariant measure ν and π
deteriorates when we approach the front from behind.

Definition 2.2. Given a configuration ω ∈ Ω and an interval I we say that ω satisfies the
Strong Spacing Condition (SSC) in I if the largest sub-interval of I where ω is identically
equal to one has length at most 10 log |I|/(| log p| ∧ 1). Similarly, given δ, ε ∈ (0, 1/4), we
will say that ω satisfies the (δ, ε)-Weak Spacing Condition (WSC) in I if the largest
sub-interval of I where ω is identically equal to one has length at most δ|I|ε.

For brevity, we will omit the (δ, ε) dependence in WSC case when these are made
clear from the context.
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Proposition 2.3. There exist universal positive constants c∗,m independent of p such that
the following holds. Let Λ = [1, 2, . . . , `] and let ω ∈ Ω be such that ω0 = 0. Further let
∆(ω) be largest between the maximal spacing between two consecutive zeros of ω in Λ and
the distance of the last zero of ω from the vertex `. Then

‖Ptω − π‖Λ 6 ` (c∗/q)∆(ω) e−t (gap(L)∧m).

To prove this proposition, we need the following lemma.

Lemma 2.4. There exist universal positive constants c∗,m independent of p such that the
following holds. Fix ω ∈ Ω with ω0 = 0, let ` ∈ N and let f : Ω(−∞,` ] 7→ R with ‖f‖∞ 6 1.
Let also π`(f) denote the new function obtained by averaging f w.r.t. the marginal of π
over the spin at x = `. Then,

|Eω [f(ω(t))− π`(f)(ω(t))] | 6 (c∗/q)`e−t (gap(L)∧m). (2.3)

Remark. If we replaced the r.h.s. of (2.3) with
(
2
√

2/(p ∧ q)
)`
e−t gap(L), then the state-

ment would coincide with that in [55; 5, Proposition 4.3]. Notice that as p ↓ 0, the term
c∗/q does not blow up— unlike 2

√
2/(p∧ q)—and as remarked below (2.1), gap(L) stays

bounded away from 0. Hence, as p ↓ 0, the time after which the r.h.s. in (2.3) becomes
small is bounded from above by C0 × ` for some universal C0 > 0 not depending on p.
This fact will be crucially used in the proofs of some of the theorems to follow.

Proof of Lemma 2.4. As mentioned in the remark using [55; 5, Proposition 4.3] it suf-
fices to assume that p < 1/3. Fix ω as in the lemma and let Ωω

(−∞,` ] be the set of
all configurations ω′ ∈ Ω(−∞,` ] which coincides with ω on the half line (−∞, 0]. The
special configuration in Ωω

(−∞,` ] which is identically equal to one in the interval [1, `]
will be denoted by ω∗. Observe that, using reversibility together with the fact that the
updates in (−∞, 0] do not check the spins to the right of the origin,∑

ω′∈Ωω
(−∞,` ]

π[1,`](ω
′)Eω′

[
f(ω′(t)

]
= Eω

[
π[1,`](f)(ω(t)

]
∑

ω′∈Ωω
(−∞,` ]

π[1,`](ω
′)Eω′

[
π`(f)(ω′(t)

]
= Eω

[
π[1,`](f)(ω(t)

]
. (2.4)

Using the graphical construction as a grand coupling for the processes with initial con-
dition in Ωω

(−∞,` ], it is easy to verify that, at the hitting time τ` of the set {ω′ ∈ Ω(−∞,`] :
ω′` = 0} for the process started from ω∗, the processes starting from all possible initial
conditions in Ωω

(−∞,` ] have coupled. Let ω′ ∈ Ωω
(−∞,` ] be distributed according to π[1,`].

Then using the grand coupling,

|Eω [f(ω(t))− π`(f)(ω(t))] | = |Eω,π[1,`]

[
f(ω(t))− f(ω′(t)) + π`(f)(ω′(t))− π`(f)(ω(t))

]
|

6 4 sup
ω′∈Ωω

(−∞,` ]

P(∃x ∈ [1, `] : ωx(t) 6= ω′x(t))

6 4Pω∗(τ` > t)

6 4Pω∗(X(ω∗(t)) < `).

The first equality follows by adding and subtracting Eω
[
π[1,`](f)(ω(t)

]
from the l.h.s.

and then using (2.4). The rest of the inequalities are immediate from the above dis-
cussion. In order to bound the above probability, we observe that the front X(ω∗(t)),
initially at x = 0, can be coupled to an asymmetric random walk ξ(t), with q(resp.p) as
jump rate to the right(resp. left), in such a way that X(ω∗(t)) ≥ ξ(t) for all t ≥ 0. Since
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we have assumed that p < 1/3, by standard hitting time estimates for biased random
walk there exist universal constants c,m such that, for t ≥ c`, the above probability is
smaller than e−mt. �

Proof of Proposition 2.3. Let ω ∈ Ω be such that ω0 = 0. Then

max
f :ΩΛ 7→R
‖f‖∞ 6 1

|Eω [f(ω(t))− π(f)] |

6 max
f :ΩΛ 7→R
‖f‖∞ 6 1

|Eω [f(ω(t))− π`(f)(ω(t))] |+ max
f :ΩΛ 7→R
‖f‖∞ 6 1

|Eω [π`(f)(ω(t))− π(f)] |

6 (c∗/q)∆(ω)e−t (gap(L)∧m) + max
f :ΩΛ 7→R
‖f‖∞ 6 1

|Eω [π`(f)(ω(t))− π(f)] |,

where we applied the above lemma to the shifted configuration in which the origin
coincides with the rightmost zero in Λ of ω.
We now observe that the new function π`(f) depends only on the first `−1 coordinates
of ω and that ‖π`(f)‖∞ 6 1. Thus we can iterate the above bound (`− 1) times to get
that

‖Ptω − π‖Λ 6 2 max
f :ΩΛ 7→R
‖f‖∞ 6 1

|Eω [f(ω(t))− π(f)] | 6 `(c∗/q)∆(ω)e−t (gap(L)∧m). �

Corollary 2.5. Fix ω ∈ Ω∗ , ` ∈ N and let I`ω = [X(ω), X(ω) + `− 1]. Then

sup
ω∈Ω∗
‖Ptω − π‖I`ω 6 (c∗/q)`e−t (gap(L)∧m). (2.5)

sup
ω∈Ω∗

Pω
(
ω(t) does not satisfy SSC in I`ω

)
6 `(c∗/q)`e−t (gap(L)∧m) + `−9. (2.6)

sup
ω∈Ω∗

Pω
(
ω(t) does not satisfy WSC in I`ω

)
6 (c∗/q)`e−t (gap(L)∧m) + `pδ`

ε/2
. (2.7)

Proof. By construction, ∆I`ω
(ω) = ` for any ω ∈ Ω∗. Thus the first statement follows at

once from Proposition 2.3. The other two statements follow from the fact that

π ({ω : ω does not satisfy SSC in [1, . . . , `]}) 6 `−9

and
π ({ω : ω does not satisfy the WSC in [1, . . . , `]}) 6 `pδ`ε/2 . �

2.4. Finite speed of information propagation. As the East process is an interacting
particle system whose rates are bounded by one, it is well known that in this case
information can only travel through the system at finite speed. A quantitative statement
of the above general fact goes as follows.

Lemma 2.6. For x < y ∈ Z and 0 6 s < t, define the “linking event” F (x, y; s, t)
as the event that there exists a ordered sequence s 6 tx < tx+1 < · · · < ty < t or
s 6 ty < ty−1 < · · · < tx < t of rings of the Poisson clocks associated to the corresponding
sites in [x, y]∩Z. Then there exists a constant vmax such that, for all |y−x| ≥ vmax(t− s),

P(F (x, y; s, t)) 6 e−|x−y|.

Proof. The probability of F (x, y; s, t) is equal to the probability that a Poisson process
of intensity 1 has at least |x− y| instances within time t− s. �
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Remark 2.7. An important consequence of the above lemma is the following fact. Let
0 < s < t and let Fs be the σ-algebra generated by all the rings of the Poisson clocks
and all the coin tosses up to time s in the graphical construction of the East process. Fix
x < y < z and let A,B be two events depending on {ωa}a 6 x and {ωa}a≥z respectively.
Then

Pω ({ω(t) ∈ A ∩B} ∩ F (y, z; s, t)c | Fs)
= Pω ({ω(t) ∈ A} | Fs) Pω ({ω(t) ∈ B} ∩ F (y, z; s, t)c | Fs) .

This is because: (i) on the event F (y, z; s, t)c the occurrence of the event B does not depend
anymore on the Poisson rings and coin tosses to the left of y; (ii) the occurrence of the event
A depends only on the Poisson rings and coin tosses to the left of x because of the oriented
character of the East process.

The finite speed of information propagation, together with the results of [33, 3],
implies the following rough bound on the position of the front X(ω(t)) for the East
process started from ω ∈ Ω∗ (also see, e.g., [55; 5, Lemma 3.2]).

Lemma 2.8. There exists constants vmin > 0 and γ > 0 such that

sup
ω∈Ω∗

Pω (X(ω(t)) ∈ [X(ω) + vmint,X(ω) + vmaxt]) ≥ 1− e−γt.

Remark 2.9. When p ↓ 0 one can obtain the above statement with vmin → 1 and γ
uniformly bounded away from 0 by using our Proposition 2.3 instead of [55; 5, Proposi-
tion 4.3] in the proof of [55; 5, Lemma 3.2].

The second consequence of the finite speed of information propagation is a kind of
mixing result behind the front X(ω(t)) for the process started from ω ∈ Ω∗. We first
need few additional notation.

Definition 2.10. For any a ∈ Z, we define the shifted configuration ϑaω by

ϑaωx = ωx+a, ∀x ∈ Z.

Proposition 2.11. Let Λ ⊂ (−∞,−`]∩Z and let B ⊂ {0, 1}Λ. Assume ` ≥ 2vmax(t− s).
Then for any ω ∈ Ω∗ and any a ∈ Z the following holds:∣∣∣Eω [1{ϑX(ω(s))[ω(t)]∈B}1{X(ω(t))=a} | Fs

]
− Eω

[
1{ϑX(ω(s))[ω(t)]∈B} | Fs

]
Eω
[
1{X(ω(t))=a} | Fs

] ∣∣∣
= O(e−`).

To see what the proposition roughly tells we first assume that the front at time s is
at 0. Then the above result says that at a later time t any event supported on (−∞,−`]
is almost independent of the location of the front.

Proof. Recall the definition of the event F (x, y; s, t) from Lemma 2.6 and let

B1 := F (X(ω(s))− `,X(ω(s))− `/2− 1; s, t)

B2 := F (X(ω(s))− `/2, X(ω(s)); s, t) .

We now write

1{ϑX(ω(s))[ω(t)]Λ∈B}1{X(ω(t))=a} = 1{ϑX(ω(s))[ω(t)]Λ∈B}1{X(ω(t))=a}1{Bc1}1{Bc2}

+ 1{ϑX(ω(s))[ω(t)]Λ∈B}1{X(ω(t))=a}

[
1− 1{Bc1}1{Bc2}

]
.

We first note that given Fs for any a < X(ω(s))− `/2,

1{X(ω(t))=a}1{Bc2} = 0,
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and hence

Eω
[
1{X(ω(t))=a}1{Bc2} | Fs

]
= 0.

Thus, we may assume that a ≥ X(ω(s))− `/2. Now

Eω
[
1{ϑX(ω(s))[ω(t)]Λ∈B}1{X(ω(t))=a}1{Bc1}1{Bc2} | Fs

]
= Eω

[
1{ϑX(ω(s))[ω(t)]Λ∈B}1{Bc1} | Fs

]
Eω
[
1{X(ω(t))=a}1{Bc2} | Fs

]
because under the assumption that a ≥ X(ω(s)) − `/2, the two events are functions
of an independent set of variables in the graphical construction (cf. Remark 2.7). By
Lemma 2.6 we know that P(Bc

i | Fs) 6 e−`, i = 1, 2 and the proof is complete. �

3. THE LAW BEHIND THE FRONT OF THE EAST PROCESS

Our main result in this section is a quantitative estimate on the rate of convergence
as t → ∞ of the law µtω of the process seen from the front to its invariant measure ν.
Consider the process {ωF(t)}t≥0 seen from the front (recalling §2.2) and let µtω be its
law at time t when the starting configuration is ω.

Theorem 3.1. For any p ∈ (0, 1) there exist α ∈ (0, 1) and v∗ > 0 such that

sup
ω∈ΩF

‖µtω − ν‖[−v∗t, 0] = O(e−t
α
).

Moreover, α and v∗ can be chosen uniformly as p→ 0.

A corollary of this result — which will be key in the proof of Theorem 1 — is to
show that, for any ω ∈ ΩF, the increments in the position of the front (the variables ξn
below) behave asymptotically as a stationary sequence of weakly dependent random
variables with exponential moments.

Fix ∆1 > 0 and let tn = n∆ for n ∈ N. Define

ξn := X(ω(tn))−X(ω(tn−1)),

so that

X(ω(t)) =
Nt∑
n=1

ξn + [X(ω(t))−X(ω(tN ))] , N = bt/∆c. (3.1)

Recall also that α, v∗ are the constants appearing in Theorem 3.1.

Corollary 3.2. Let f : R 7→ [0,∞) be such that e−|x|f2(x) ∈ L1(R). Then

Cf ≡ sup
ω∈ΩF

Eω
[
f(ξ1)2

]
<∞. (3.2)

Moreover, there exists a constant γ > 0 such that

sup
ω∈ΩF

|Eω [f(ξn)]− Eν [f(ξ1)] | = O(e−γn
α
) ∀n ≥ 1, (3.3)

sup
ω∈ΩF

|Covω (ξj , ξn)− Covν (ξ1, ξn−j) | = O(e−γj
α
) ∧O(e−γ(n−j)α) ∀j < n (3.4)

and

sup
ω∈ΩF

|Covω (f(ξj), f(ξn)) | = O(e−γ(n−j)α), ∀j 6 n, (3.5)

1In the sequel we will always use the letter ∆ to denote a time lag. Its value will depend on the context
and will be specified in advance.
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where the constants in the r.h.s. of (3.3) and (3.5) depend on f only through the constant
Cf . Finally, for any k, n ∈ N such that v∗k > nvmax and for any bounded F : Rn 7→ R ,

sup
ω∈ΩF

∣∣∣Eω [F(ξk, ξk+1, . . . , ξk+n−1

)]
− Eν

[
F
(
ξ1, ξ2, . . . , ξn

)] ∣∣∣ = O
(
e−γt

α
k
)
. (3.6)

To prove Theorem 3.1 we will require a technical result, Theorem 3.3 below, which
can informally be summarized as follows:

• Starting from ω ∈ Ω∗, at any fixed large time t, with high probability the
configuration satisfies WSC apart from an interval behind the front X(ω(t))
of length proportional to tε .
• If the above property is true at time t, then at a later time t′ = t+ const× tε the

law of the process will be very close to π apart from a small interval behind the
front where the strong spacing property will occur with high probability.

Formally, fix a constant κ to be chosen later on and t > 0. Let ` ≡ tε, where ε appears
in the WSC and let t` = t − κ`/vmin. Let S` denotes the set of configurations which
fail to satisfy SSC in the interval [−3(vmax/vmin)κ `,−κ log `) ∩ Z and let W`,t be those
configurations which fail to satisfy WSC in the interval [−vmint,−`) ∩ Z.

Theorem 3.3. It is possible to choose δ small enough and κ large enough depending only
on p in such a way that for all t large enough the following holds:

sup
ω∈ΩF

µtω (W`,t) = O(e−t
ε/2

), (3.7)

sup
ω∈ΩF

µtω (S` | Ft`) = O(t−7ε) + 1W`,t
(ω(t`)), (3.8)

sup
ω∈ΩF

‖µtω(· | Ft`)− π‖[−vmint,−3(vmax/vmin)κ`] = O(e−t
ε/2

) + 1W`,t
(ω(t`)). (3.9)

Moreover, κ stays bounded as p ↓ 0.

3.1. Non-equilibrium properties of the law behind the front: Proof of Theorem 3.3.
We begin by proving (3.7). Bounding supω∈ΩF

µtω (W`,t) from above is equivalent to
bounding supω∈ΩF

Pω(ω(t) ∈ W∗`,t) from above, where W∗`,t denotes the set of configu-
rations ω ∈ Ω∗ which do not satisfy the spacing condition in [X(ω)− vmint,X(ω)− `].

Using Lemma 2.8, with probability greater than 1−e−γt we can assume thatX(ω(t)) ∈
[vmint, vmaxt]. Next we observe that, for any a ∈ [vmint, vmaxt], the events {X(ω(t)) = a}
and {ω(t) ∈ W∗`,t} imply that there exists x ∈ Z with the following properties:

• 0 6 x 6 a− `;
• The hitting time τx := inf{s > 0 : X(ω(s)) = x} is smaller than t;
• ω(t) is identically equal to one in the interval Ix := [x, x+ δ(vmin t)ε/2];
• The linking event F (x, a; τx, t) defined in Lemma 2.6 occurred.

In conclusion, using twice a union bound (once for the choice of a ∈ [vmint, vmaxt] and
once for the choice of x ∈ [0, a − `]) together with the strong Markov property at time
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τx, we get

Pω(ω(t) ∈ W∗`,t)

6 e−γt +
vmaxt∑
a=vmint

a−∑̀
x=0

P (F (x, a; τx, t))1{|x−a|≥vmax(t−τx)}

+
vmaxt∑
a=vmint

a−∑̀
x=0

[
‖Ptω(τx) − π‖Ix + p

δ
2

(vmint)
ε
]
1{|x−a| 6 vmax(t−τx)}

6 (vmaxt)2

[
e−γt + 2e−` +

√
2δ(vmint)ε

(
c∗

q

) δ
2

(vmint)
ε

e−
`

vmax
(gap(L)∧m) + p

δ
2

(vmint)
ε

]
.

Above we used Lemma 2.6 in the case |x− a| ≥ vmax(t− τx) and (2.5) of Corollary 2.5
otherwise. The statement (3.7) now follows by taking δ small enough.

We now prove (3.8). As before we give the result in the East process setting (i.e. for
the law Ptω(· | Fs) and S` replaced by its random shifted version S∗` ). We decompose
the interval [X(ω(t)) − 3(vmax/vmin)κ `,X(ω(t)) − κ log `)] ∩ Z where we want SSC to
hold into [X(ω(t`)), X(ω(t))− κ log `] and [X(ω(t))− 3(vmax/vmin)κ `,X(ω(t`))].
Note that by Lemma 2.8 we can ignore the events {X(ω(t`)) > X(ω(t)) − κ log `} and
{X(ω(t))− 3(vmax/vmin)κ ` > X(ω(t`))}.

We now proceed in two steps: (1) we show that SSC occurs with high probability in the
first interval. Here we do not use the condition that ω(t`) /∈ W∗`,t. (2) we prove the same
statement for the second interval. Here instead the fact that ω(t`) /∈ W∗`,t will be crucial.

- Step (1). Let ∆ ≡ 5 log `/(| log p| ∧ 1). For any intermediate time s ∈ [t`, t −
(κ/vmax) log `], Corollary 2.5 together with the Markov property at time s show that

Pω (ω(t)x = 1 ∀x ∈ [X(ω(s)), X(ω(s)) + ∆] | Fs)
6 ‖Pω(· | Fs)− π‖[X(ω(s)),X(ω(s))+∆] + π (ωx = 1 ∀x ∈ [X(ω(s)), X(ω(s)) + ∆])

6 ∆
(
c∗

q

)∆

e−(t−s)(gap(L)∧m) + p|∆| = O(t−10ε). (3.10)

Above we used the fact that t − s ≥ κ/vmax log `. Hence, κ can be chosen depending
only on p such that (3.10) holds and κ stays bounded as p ↓ 0.

We now take the union of the random intervals [X(ω(s)), X(ω(s)) + ∆] over discrete
times s of the form sj = t`+j/`2, j = 0, 1, . . . , n and n such that sn = t−(κ/vmax) log `.
Thus n = O(`3)=O(t3ε). The aim here is to show that, with high probability, the above
union is actually an interval containing the target one [X(ω(t`)), X(ω(t))−κ log `], with
the additional property that it does not contain a sub-interval of length ∆ where ω(t)
is constantly equal to one (which will then imply (3.8), with room to spare).

We now upper bound the probability that the set ∪nj=0[X(ω(sj)), X(ω(sj))+∆] is not an
interval. It is an easy observation that ifX(ω(sn)) > X(ω(s0)) then the aforementioned
event occurs if X(ω(sj+1))−X(ω(sj)) 6 ∆ for j = 0, 1, . . . n. Now by the lower bound
in Lemma 2.8

P(X(ω(sn)) > X(ω(s0))) ≥ 1− e−ctε
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for some constant c. Also∑
j

Pω(X(ω(sj+1))−X(ω(sj)) ≥ ∆)

6
∑
j

E
[
Pω
(
F (X(ω(sj)), X(ω(sj)) + ∆; sj , sj+1) | Fsj

)]
6 ne−∆ = O(t−8ε).

Above F (X(ω(sj)), X(ω(sj))+∆; sj , sj+1) is the linking event and we used Lemma 2.6
because ∆� (sj+1 − sj).

Moreover, Lemma 2.8 implies that κ can be chosen (bounded as p ↓ 0), such that
with probability greater than

1− e−γ(t−s0) − e−γ(t−sn) = 1−O(t−10ε),

the front X(ω(t)) satisfies

X(ω(t)) 6 X(ω(sn)) + vmax(t− sn) 6 X(ω(sn)) + κ log `.

Thus
[X(ω(t`)), X(ω(t))− κ log `] ⊂ ∪nj=0[X(ω(sj)), X(ω(sj)) + ∆].

with probability 1−O(t−10ε).
Finally, using (3.10) and union bound, the probability that there exists j 6 n such

that ω(t) is identically equal to one in [X(ω(sj)), X(ω(sj)) + ∆] is O(t−7ε) uniformly in
the configuration at time t`.

In conclusion we proved that SSC holds with probability 1 − O(t−8ε) in an interval
containing [X(ω(t`)), X(ω(t)− κ log `]. The first step is complete.

- Step (2). Let x∗ = max{x 6 X(ω(t`)) − 3κ(vmax/vmin)` : ω(t`)x = 0}. Since
ω(t`) /∈ W∗`,t such a zero exists. Moreover, ω(t`) /∈ W∗`,t implies that ω(t`) has a zero
in every sub-interval of [x∗, X(ω(t`)) − `] of length δtε = δ`. Hence we can apply
Proposition 2.3 to the interval [x∗, X(ω(t`))] to get that

‖Ptω(· | Ft`)− π‖[x∗,X(ω(t`))] = O(e−t
ε/2

),

by choosing κ large enough. Since by Remark 2.9 vmin → 1 as p ↓ 0, we can choose κ
to be bounded as p ↓ 0. Also

π (ω : ω violates SSC in [x∗, X(ω(t`))]) = O(t−7ε).

Thus we have proved that SSC holds in [x∗, X(ω(t`))] with probability 1−O(t−7ε).
Finite speed of propagation in the form of Lemma 2.8 guarantees that, with proba-

bility 1−O(e−γ(t−t`)), x∗ < X(ω(t))− 2κ(vmax/vmin)`. The proof of (3.8) is complete.

It remains to prove (3.9). Let Λ := [−vmint,−3(vmax/vmin)κ`]∩Z and letA ⊂ {0, 1}Λ.
Recall Definition 2.10 of the shifted configuration ϑaω and that t` = t− κ`/vmin. Then
(3.9) follows once we show that

|Pω(ϑX(ω(t)ω(t)Λ ∈ A | Ft`)− π(A)| 6 e−tε/2

whenever ω(t`) satisfies WSC in the interval I = [X(ω(t`))− vmint,X(ω(t`))− `]. This
property is assumed henceforth. Let us decompose Pω(ϑX(ω(t)ω(t)Λ ∈ A | Ft`) accord-
ing to the value of the front:

Pω
(
ϑX(ω(t))ω(t) ∈ A | Ft`

)
=
∑
a∈Z

Eω
[
1{ϑaω(t)Λ∈A} 1{X(ω(t))=a} | Ft`

]
.
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Using Lemma 2.8, 0 < X(ω(t))−X(ω(t`)) 6 vmax(t−t`) occurs with probability greater
than 1− e−γ(t−t`). Thus∑

a∈Z
Eω
[
1{ϑaω(t)Λ∈A} 1{X(ω(t))=a} | Ft`

]
=

∑
a∈Z

0<a−X(ω(t`)) 6 vmax(t−t`)

Eω
[
1{ϑaω(t)Λ∈A} 1{X(ω(t))=a} | Ft`

]
+ e−γ(t−t`).

By definition, the event {ϑaω(t)Λ ∈ A} is the same as the event {ω(t)Λ+a ∈ A}. Using
the restriction that |a − X(ω(t`))| 6 vmax(t − t`), the choice of Λ and the fact that
(vmax/vmin)κ` ≥ vmax(t− t`), we get Λ + a ⊂ (−∞, X(ω(t`))− 2(vmax/vmin)κ`]. Thus,
the event {ω(t)Λ+a ∈ A} satisfies the hypothesis of Proposition 2.11, which can then
be applied to each term in the above sum to get∑

a∈Z
0<a−X(ω(t`)) 6 vmax(t−t`)

Eω
[
1{ϑaω(t)Λ∈A} 1{X(ω(t))=a} | Ft`

]
=

∑
a∈Z

0<a−X(ω(t`)) 6 vmax(t−t`)

Eω
[
1{ϑaω(t)Λ∈A} | Ft`

]
Eω
[
1{X(ω(t))=a} | Ft`

]
+O(` e−`).

Finally we claim that, for any a such that 0 < a−X(ω(t`)) 6 vmax(t− t`), if δ is chosen
small enough and κ large enough depending on p (bounded as p ↓ 0),

Eω
[
1{ϑaω(t)Λ∈A} | Ft`

]
= π(A) +O(e−t

ε/2
). (3.11)

To prove it we apply Proposition 2.3 to the interval I = [X(ω(t`))−vmint,X(ω(t`))−`])
to get that

‖Ptω(· | Ft`)− π‖I 6 |I|
(
c∗

q

)δ|I|ε
e−(t−t`)(gap(L)∧m), (3.12)

where |I| = O(t) is the length of I, since by assumption ω(t`) satisfies WSC in I.
Because of our choice of the parameters (`, t`) the r.h.s. of (3.12) is O(e−t

ε/2
) if δ, κ

are chosen small enough and large enough respectively depending on p. Since by Re-
mark 2.9 vmin → 1 as p ↓ 0, κ can be chosen to be bounded as p ↓ 0.

The claim now follows because {ω : ϑaω ∈ A} ⊂ {0, 1}Λ+a, with

Λ + a = [−vmint+ a,−3(vmax/vmin)κ`+ a]

⊂ [X(ω(t`))− vmint`, X(ω(t`))− (vmax/vmin)κ` ] ⊂ I,

together with the translation invariance of π expressed by π ({ω : ϑaω ∈ A}) = π(A).
This establishes (3.9) and concludes the proof of Theorem 3.3. Notice that at all points
in the proof, κ was chosen to be bounded as p ↓ 0. �

3.2. On the rate of convergence to the invariant measure ν: Proof of Theorem 3.1.
The proof is based on a coupling argument. There exists v∗ > 0 such that, for any t
large enough and for any pair of starting configurations (ω, ω′) ∈ ΩF × ΩF,

‖µtω − µtω′‖[−v∗t, 0] 6 c
′e−t

α
, (3.13)

with (c′, α) independent of (ω, ω′). Also v∗, α can be chosen uniformly as p ↓ 0. Once
this step is established and using the invariance of the measure ν under the action of
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the semigroup etL
F
,

‖µtω − ν‖[−v∗t, 0] = ‖µtω −
∫
dν(ω′)µtω′ ‖[−v∗t, 0]

6
∫
dν(ω′)‖µtω − µtω′ ‖[−v∗t, 0] 6 c

′e−t
α
.

We now prove (3.13). We first fix a bit of notation.
Given ε ∈ (0, 1) and a large t > 0, let ∆1 = (κ/vmin)tε where κ is the constant

appearing in Theorem 3.3, let ∆2 = κε log t and define ∆ = ∆1 + ∆2. We then set

t0 = (1− ε)t, tn = tn−1 + ∆, n = 1, . . . N, N = bε t/∆c.

It will be convenient to refer to the time lag [tn−1, tn) as the nth-round. In turn we split
each round into two parts: from tn−1 to sn := tn−1 +∆1 and from sn to tn. We will refer
to the first part of the round as the burn-in part and to the second part as the mixing
part. We also set In = [−vmintn + 2vmax∆n, 0]. Observe that In 6= ∅ for any n 6 N + 1
if ε is chosen smaller than vmin/vmax and t is large enough depending on ε.

Next, for any pair (µ, µ′) of probability measures on a finite set, we denote by
MC(µ, µ′) their maximal coupling, namely the one that achieves the variation distance
between µ, µ′ in the variational formula (see, e.g., [2222,22])

‖µ− µ′‖ = inf{M(ω 6= ω′) : M a coupling of µ, µ′}.

If (µ, µ′) are probability measures on Ω and Λ is a finite subset of Z, we define the
Λ-maximal coupling MCΛ(µ, µ′) as follows:

a) first sample (ωΛ, ω
′
Λ) according to the maximal coupling of the marginals of µ, µ′ on

ΩΛ;
b) then sample independently (ωZ\Λ, ω

′
Z\Λ) according to their respective conditional

distribution µ(· | ωΛ), µ′(· | ω′Λ).

Finally the basic coupling for the East process will be the one in which two configura-
tions evolve according to the graphical construction using the same Poisson clocks and
the same coin tosses.

We are now ready to recursively construct the coupling M t
ω,ω′ of µtω, µ

t
ω′ satisfying

(3.13). For lightness of notation, in the sequel the starting configurations (ω, ω′) will
be sometimes omitted.

Definition 3.4 (The coupling M t
ω,ω′). We first define a family {M (n)} of couplings for

{
(
µtnω , µ

tn
ω′
)
}Nn=0 as follows. M (0) is the trivial product coupling. Given M (n), the coupling

M (n+1) at time tn+1 is constructed according to the following algorithm:

(a) Sample (ω(tn), ω′(tn)) from M (n). If they coincide in the interval In then let them
evolve according to the basic coupling for a time lag ∆;

(b) otherwise, sample (ω(sn), ω′(sn)) at the end of the burn-in part of round(n + 1) via
the Λn-maximal coupling MCΛn for the laws µsnω (· | Ftn) and µsnω′ (· | Ftn) at the con-
figurations (ω(tn), ω′(tn)) from step (a). Here Λn = [−vminsn,−3 (vmax/vmin)κtε].

(i) If (ω(sn), ω′(sn)) are not equal in the interval Λn, then let them evolve for the
mixing part of the round (i.e., from time sn to time tn+1) via the basic coupling.
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(ii) If instead they agree on Λn, then search for the rightmost common zero of
(ω(sn), ω′(sn)) in Λn and call x∗ its position. If there is no such a zero, de-
fine x∗ to be the right boundary of Λn. Next sample a Bernoulli random variable
ξ with Prob(ξ = 1) = e−2∆2 . The value ξ = 1 has to be interpreted as cor-
responding to the event that the two Poisson clocks associated to x∗ and to the
origin in the graphical construction did not ring during the mixing part of the
round.
(1) If ξ = 1, set ω(tn+1)x∗ = ω(sn)x∗ and similarly for ω′. The remaining part

of the configurations at time tn+1 is sampled using the basic coupling to
the left of x∗ and the maximal coupling for the East process in the interval
[x∗ + 1,−1] with boundary condition at x∗ equal to ω(sn)x∗ .

(2) If ξ = 0 we let evolve (ω(sn), ω′(sn)) with the basic coupling conditioned to
have at least one ring either at x∗ or at the origin or both.

The final coupling M t
ω,ω′ will be obtained by first sampling (ω(tN ), ω′(tN )) from M (N)

and then by applying the basic coupling for the time lag (t− tN ).

It is easy to check that {M (n)} is indeed a family of couplings for {
(
µtnω , µ

tn
ω′
)
}Nn=0.

Define now
pn := M (n)

(
ω 6= ω′ in the interval In

)
and recall that ε is the exponent entering in the definition of the round length ∆.

Claim 3.5. There exist ε0 > 0 such that, for all ε < ε0 and all t large enough depending
on ε,

pN = O(e−t
α
),

for some positive α = α(ε).

Proof. The claim follows from the recursive inequality:

pn+1 6 Ce
−tε/2 + pn(1− e−2∆2/2), (3.14)

for some constant C. In fact, if we assume (3.14) and recall that e−2∆2 = t−2κε, we get

pN 6 Ce
−tε/2 [1 + (1− e−2∆2/2) + (1− e−2∆2/2)2 + . . .] +

(
1− e−2∆2/2

)N
6 2Ce−t

ε/2
t2κε +

(
1− e−2∆2/2

)N
= O(e−t

ε/3
),

provided that 1− ε(1+2κ) > ε/3, i.e. ε < 3/(4+6κ), since N > ct1−ε for some constant
c. Notice crucially that since κ was bounded as p ↓ 0 in the statement of Theorem 3.3,
ε0 and α(ε) can be chosen uniformly as p ↓ 0.

To prove (3.14) we use Lemma 2.6 together with Theorem 3.3. We begin by examining
the possible occurrence of two very unlikely events each of which will contribute to the
constant term in (3.14).
• The first possibility is that ω(tn) = ω′(tn) in the interval In and F (an, an+1; tn, tn+1)

occurred. Here an = −vmintn + 2vmax∆n is the left boundary of In and simi-
larly for an+1. The linking event could in fact move possible discrepancies be-
tween ω(tn), ω′(tn) sitting outside In to the inside of In+1. Since |an − an+1| ≥
vmax(tn+1 − tn), Lemma 2.6 shows that this case gives a contribution to pn+1 which
is O(e−|an−an+1|) = O(e−vmaxtε).
• The second possibility is that either ω(tn) or ω′(tn) do not satisfy the (δ, ε)-weak

spacing condition in [−vmintn,−tεn]. The bound (3.7) of Theorem 3.3 shows that the
contribution of such a case is O(e−t

ε/2
).
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Having discarded the occurrence of the above “extremal” situations, we now assume
that (ω(tn), ω′(tn)) are such that: (i) they are different in the interval In; (ii) they
satisfy the (δ, ε)-weak spacing condition in [−vmintn,−tεn]. It will be useful to denote by
Gn the set of pairs (ω, ω̃) fulfilling (i) and (ii) above.

We will show that, uniformly in (ω, ω̃) ∈ Gn, the probability that at the end of
the round (ω(∆), ω̃(∆)) are not coupled inside the interval In+1 is smaller than (1 −
1
2e
−2∆2). That clearly proves the second term in (3.14).
To prove that, recall the definition of the Λn-maximal couplingMCΛn , fix (ω, ω̃) ∈ Gn

and consider the event B that:
(i) at the end of the burn-in part of the round ω(∆1) = ω̃(∆1) in Λn,

(ii) the vertex x∗ appearing in (ii) of step (b) of Definition 3.1 is within ε log t from
the right boundary of Λn and ω(∆1)x∗ = ω̃(∆1)x∗ = 0,

(iii) ω(∆1) and ω̃(∆1) satisfy SSC in the interval [−3(vmax/vmin)κtε,−κε log t].
Theorem 3.3 proves that, uniformly in ω, ω̃ ∈ Gn,

MCΛn(B) ≥ 1−O(e−t
ε/2

)−O(t−7ε)− pε log t = 1−O(pε log t).

The first error term takes into account the variation distance from π of the marginals
in Λn of P∆1

ω and P∆1
ω̃ , the second error term bounds the probability that either ω(∆1)

or ω̃(∆1) do not satisfy the SSC condition in the interval [−3(vmax/vmin)κtε,−κε log t]
and the third term bounds the π-probability that the event in item (ii) does not occur.

Next we claim that, for any κ large enough and any z ∈ Λn at distance at most ε log t
from the right boundary of Λn,

sup
ω,ω̃∈Gn

P (ω(∆) 6= ω̃(∆) in In+1 | B, {x∗ = z}, {ξ = 1})

6 e−|an−an+1| + 3κtε
(
c∗

q

)ε log t

e−∆2(gap(L)∧m) = O(t−2ε). (3.15)

The first term in the r.h.s. is the probability that the linking event F (an, an+1; ∆1,∆)
occurred. The second term comes from Proposition 2.3 and it bounds from above
the probability that, under the maximal coupling for the East process in the interval
[x∗ + 1,−1] and in a time lag ∆2, we see a discrepancy.

In conclusion, the probability that ω(∆) = ω̃(∆) in In+1 is larger than

MCΛn(B)(1− o(1))P(ξ = 1) ≥ 1
2
e−2∆2 ,

thus proving the claim. �

We are now in a position to finish the proof of Theorem 3.1. Let v∗ ≡ vmin − 3εvmax

and let aN = −vmintN + εvmaxt be the left boundary of the interval IN = [aN , 0]. Since
by Remark 2.9, vmin converges to 1 as p ↓ 0, v∗ can be chosen uniformly as p ↓ 0.

Pick two configurations ω(tN ), ω′(tN ) at time tN and make them evolve under the basic
coupling until time t. Clearly the events {ω(tN )x = ω′(tN )x ∀x ∈ IN} and {∃x ∈
[−v∗t, 0] : ωx(t) 6= ω′x(t)} imply the linking event F (aN ,−v∗t; tN , t) from Lemma 2.6.
By construction |v∗t− aN | = εvmaxt ≥ vmax(t− tN ) for large enough t. Therefore,

M t
ω,ω′(∃x ∈ [−v∗t, 0] : ωx 6= ω′x) 6 pN + P (F (aN ,−v∗t; tN , t))

6 O(e−t
α
) + e−εvmaxt,

as required. Moreover, by the proof of Claim 3.5, α can be chosen uniformly as p ↓ 0.
Thus we are done. �
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3.3. Mixing properties of the front increments: Proof of Corollary 3.2. To prove
(3.2) we observe that, for any n ≥ vmax∆, the event |ξ1| ≥ n implies the occurrence of
the linking event F (0, n; 0,∆). Lemma 2.6 now gives that

Eω
[
f(ξ1)2

]
6 max
|x| 6 vmax∆

f(x)2 +
∑

n≥vmax∆

f(n+ 1)2e−n <∞. (3.16)

In order to prove (3.3) we apply the Markov property at time tn−1 and write

Eω [f(ξn)] =
∫
dµtn−1

ω (ω′) Eω′ [f(ξ1)] .

At this stage we would like to appeal to Theorem 3.1 to get the sought statement.
However Theorem 3.1 only says that, for any t large enough, µtω is very close to the
invariant measure ν in the interval [−v∗t, 0]. In order to overcome this problem, for
any ω ∈ ΩF and any t > 0 we define Φt(ω) ∈ ΩF as that configuration which is equal
to ω in [−v∗t, 0] and identically equal to 1 elsewhere. Then, under the basic coupling,
the front at time t starting from Φt(ω) is different from the front starting from ω iff the
linking event F (−v∗t, 0; 0,∆) occurred.

In conclusion, if v∗tn−1 ≥ vmax∆,

sup
ω∈ΩF

∣∣∣∣ ∫ dµtn−1
ω (ω′) Eω′ [f(ξ1)]−

∫
dµtn−1

ω (ω′) EΦtn−1 (ω′) [f(ξ1)]
∣∣∣∣

6 P(F (−v∗tn−1, 0; 0,∆))1/2 sup
ω∈ΩF

Eω
[
f(ξ1)2

]1/2
6 e−v

∗tn−1/2 sup
ω∈ΩF

Eω
[
f(ξ1)2

]1/2
.

We can now apply Theorem 3.1 to get that∣∣∣∣ ∫ dµtn−1
ω (ω′) EΦtn−1 (ω′) [f(ξ1)]− Eν [f(ξ1)]

∣∣∣∣
6

[
sup
ω∈ΩF

‖µtn−1
ω − ν‖1/2[−v∗tn−1,0] + e−v

∗tn−1/2

]
sup
ω∈ΩF

Eω
[
f(ξ1)2

]1/2 = O(e−t
α
n−1/2).

To prove (3.4) suppose first that v∗(j − 1) ≥ vmax(n − j) where v∗ is the constant
appearing in Theorem 3.1. Then we can use the Markov property at time tj−1 and
repeat the previous steps to get the result. If instead v∗(j − 1) 6 vmax(n− j) it suffices
to write

Covω (ξj , ξn) = Covω
(
ξj ,Eω[ξn | Ftj ]

)
and apply (3.3) to Eω[ξn | Ftj ] to get that in this case

sup
ω∈ΩF

|Covω (ξj , ξn)| = O(e−γ(n−j)α) (3.17)

for some constant γ depending on v∗, vmax. Following the exact steps as above after
replacing ξj , ξn by f(ξj), f(ξn) yields (3.5). Finally, (3.6) follows from exactly the same
steps leading to the proof of (3.3). �

4. PROOFS OF MAIN RESULTS

4.1. Proof of Theorem 1. We begin with the proofs of (1.1) and (1.2).
As far as (1.2) is concerned, this follows directly from observing that

d

dt
Eω [X(ω(t))] = q − pµtω(ω(−1) = 0) = v +O(e−t

α
).
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Appealing to (3.1) and Corollary 3.2 we get immediately that for any ω ∈ ΩF

Eω
[
((X(ω(t))− vt)/t)4

]
= O(t−2)

and (1.1) follows at once.

We next prove (1.3). Using Corollary 3.2 with f(x) = x2, we get that, for any n large
enough,

Varω(ξn) = Varν(ξ1) +O(e−n
α
).

Hence

lim
t→∞

1
t

[
Nt∑
n=1

Varω(ξn) + Varω(X(ω(t))−X(ω(tN )))

]
= ∆−1 Varν(ξ1).

Moreover, (3.4) implies that

lim
t→∞

2
t

[
Nt∑
j<n

Covω(ξj , ξn) +
Nt∑
n=1

Covω(ξn, X(ω(t))−X(ω(tN )))

]

=
2
∆

∑
n≥2

Covν (ξ1, ξn) ,

the series being absolutely convergent because of (3.17). In conclusion, for any ω ∈ ΩF

lim
t→∞

1
t

Varω (X(ω(t))) = ∆−1

[
Varν(ξ1) + 2

∑
n≥2

Covν (ξ1, ξn)

]
. (4.1)

Next we show that for p small enough the r.h.s. of (4.1) is positive. We first observe
that there exists c = c(p) such that lim supp→0+ c(p) <∞ and

sup
∆

∑
n≥2

|Covν (ξ1, ξn) | 6 c(p). (4.2)

To prove (4.2) assume without loss of generality that ∆ ∈ N and write ξ1 =
∑∆

i=1 ξ
′
i

and ξn =
∑n∆

i=(n−1)∆+1 ξ
′
i, where the increments ξ′i ’s refer to a unit time lag. Thus

∑
n≥2

|Covν (ξ1, ξn) | 6
∑
n≥2

∆∑
i=1

n∆∑
j=(n−1)∆+1

|Covν
(
ξ′i, ξ

′
j

)
|

The claim now follows from (3.4) together with the fact that the constants α, v∗ are
uniformly bounded away from zero as p→ 0.

Thus, in order to show that the r.h.s. of (4.1) is positive, it is enough to show that it
is possible to choose ∆ and p such that Varν (ξ1) > lim sup c(p).

Recall that q∗ = ν(ω−1 = 0). Then a little computation shows that

d

dt
Varν (X(ω(t))) = q + pq∗ − 2pCovν

(
X(ω(t)),1{ω(t)∈Ω∗∗}

)
≥ q + pq∗ − 2pVarν (X(ω(t)))1/2 (q∗(1− q∗))1/2 (4.3)

≥ q + pq∗ − pVarν (X(ω(t)))1/2 , (4.4)

where Ω∗∗ = {ω ∈ Ω∗ : ωX(ω)−1 = 0}.
If [Varν (ξ1)]1/2 6 q+pq∗

2p for all ∆ > 0, then (4.4) implies that

lim
∆→∞

Varν (ξ1) =∞.
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Otherwise there exists ∆ > 0 such that [Varν (ξ1)]1/2 ≥ q+pq∗

2p ; hence, the desired
inequality (1.3) follows by taking p small enough.

It remains to prove (1.4). If σ∗ = 0, then necessarily

sup
∆

Varν (ξ1) <∞.

In this case the Chebyshev inequality suffices to prove that, for any ω ∈ ΩF,

(X(ω(t))− vt)/
√
t

Pω−→ 0, as t→∞.

If instead σ∗ > 0, we appeal to an old result on the central limit theorem for mixing
stationary random fields [66, 6]. Unfortunately our mixing result, as expressed e.g. in
Corollary 3.2 (cf. (3.6)), is not exactly what is needed there and we have to go through
some of the steps of [66,6] to prove the sought statement.

Consider the sequence {ξj} defined above (with e.g. ∆ = 1) and let ξ̄j := ξj − v∆.
Further let Sn =

∑n
j=1 ξ̄j . It suffices to prove that, for all ω ∈ ΩF, the law of Sn/σ∗

√
n

converges to the normal law N (0, 1). As in [66, 6] let fN (x) = max [min(x,N),−N ]
and let f̃N (x) := x− fN (x). Clearly Var(f̃N (ξ̄j))→ 0 as N →∞ uniformly in j.

Then Corollary 3.2 (3.5) implies that

Eω

[∑n
j=1 f̃N (ξ̄j)− Eω[f̃N (ξ̄j)]

n1/2

]2

=
1
n

n∑
j,k=1

Covω
(
f̃N (ξ̄j), f̃N (ξ̄k)

)
converges to 0 as N → ∞ uniformly in n. Hence it is enough to prove the result for
the truncated variables fN (ξ̄j). For lightness of notation we assume henceforth that the
ξ̄j ’s are bounded.

Let now `n = n1/3 and let

Sj,n =
n∑
k=1

1|k−j| 6 `n ξ̄k, αn =
n∑
j=1

Eω
[
ξ̄jSj,n

]
, j ∈ {1, . . . , n}.

The decay of covariances (3.4) implies that αn = Varω(Sn) + o(1). Hence it is enough
to show that Sn/

√
αn is asymptotically normal. The main observation of [66,6], in turn

inspired by the Stein method [2525,25], is that the latter property of Sn/
√
αn follows

if

lim
n→∞

Eω
[
(iλ− Sn)eiλ

Sn√
αn

]
= 0, ∀λ ∈ R. (4.5)

In turn (4.5) follows if (see [66; 6, Eqs. (4)–(5)])

lim
n→∞

Eω
[(

1− 1
√
αn

n∑
j=1

ξ̄jSj,n
)2] = 0 (4.6)

lim
n→∞

1
√
αn

Eω
[∣∣∣ n∑

j=1

ξ̄j
(
1− e−iλ

Sn√
αn − iλSj,n

)∣∣∣] = 0 (4.7)

lim
n→∞

1
√
αn

n∑
j=1

Eω
[
ξ̄j e

iλ
(Sn−Sj,n)
√
αn

]
= 0. (4.8)

As in [66, 6], the mixing properties (3.4) and (3.6) easily prove that (4.6) and (4.7)
hold. As far as (4.8) is concerned the formulation of Theorem 3.1 forces us to argue a
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bit differently than [66,6]. We first observe that, using the boundedness of the variables
ξ̄j ’s, (4.8) is equivalent to

lim
n→∞

1
√
αn

n∑
j=`n

Eω
[
ξ̄j e

iλ
(Sn−Sj,n)
√
αn

]
= 0, ∀λ ∈ R. (4.9)

Fix two numbers M and L with L 6M/10 (eventually they will be chosen logarithmi-
cally increasing in n) and write

e
iλ

(Sn−Sj,n)
√
αn =

M∑
m=0

(iλ)m

m!

(
(Sn − Sj,n)
√
αn

)m
+

∞∑
m=M+1

(iλ)m

m!

(
(Sn − Sj,n)
√
αn

)m
1
{|

(Sn−Sj,n)
√
αn

| 6 L}

+

[
e
iλ

(Sn−Sj,n)
√
αn −

M∑
m=0

(iλ)m

m!

(
(Sn − Sj,n)
√
αn

)m]
1
{|

(Sn−Sj,n)
√
αn

|>L}

=: Y (j)
1 + Y

(j)
2 + Y

(j)
3 .

Let us first examine the contribution of Y (j)
2 and Y

(j)
3 to the covariance term (4.9).

Using the boundedness of the variables {ξ̄j}nj=1 there exists a positive constant c such
that:

1
√
αn

n∑
j=`n

|Eω
[
ξ̄j Y

(j)
2

]
| 6 c

√
n
LM+1

M !
,

1
√
αn

n∑
j=`n

|Eω
[
ξ̄j Y

(j)
3

]
| 6 c

√
nmax

j
Eω
[
e

2|λ|
|Sn−Sj,n|√

αn

]1/2

Pω
(
|(Sn − Sj,n)
√
αn

| > L

)
.

Lemma 4.1. There exists c > 0 such that, for all n large enough and any β = O(log n),

Eω
[
e
β
|Sn−Sj,n|√

αn

]
6 2ecβ

2
. (4.10)

Moreover, there exists c′ > 0 such that, for all n large enough and all L 6 log n,

Pω
(
|(Sn − Sj,n)
√
αn

| > L

)
6 e−c

′L2
. (4.11)

Assume for the moment the lemma and choose L = M/10 and M = log n. We can
conclude that

1
√
αn

n∑
j=`n

|Eω
[
ξ̄j (Y (j)

2 + Y
(j)

3 )
]
| 6 C

√
n

[
e−c

′L2
+
LM+1

M !

]
,

so that

lim
n→∞

1
√
αn

n∑
j=`n

|Eω
[
ξ̄j (Y (j)

2 + Y
(j)

3 )
]
| = 0.

We now examine the contribution of Y (j)
1 to (4.9). Recall

Sn − Sj,n =
∑

1 6 i 6 n
|i−j|>`n

ξ̄i.
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Thus clearly,

1
√
αn

n∑
j=`n

Eω
[
ξ̄j (Y (j)

1 )
]

=
1
√
αn

n∑
j=`n

M∑
m=1

(
iλ√
n

)m ∑
i1,...,im

mink |ik−j|≥`n

Eω

[
ξ̄j

m∏
i=k

ξ̄ik

]
,

where the labels i1, . . . im run in {1, 2, . . . , n}.

Lemma 4.2. Let M = log n. Then, for any m 6 M , any j ∈ {`n, . . . , n} and any
{i1, . . . im} satisfying mink |ik − j| ≥ `n , it holds that

|Eω
[
ξ̄j

m∏
i=k

ξ̄ik

]
| = O(e−n

α/6
).

Here α is the mixing exponent appearing in Theorem 3.1.

Assuming the lemma we get immediately that also

lim
n→∞

1
√
αn

n∑
j=`n

Eω
[
ξ̄j (Y (j)

1 )
]

= 0

and (4.9) is established. In conclusion, (1.4) would follow from Lemmas 4.1–4.2.

Proof of Lemma 4.1. Let us begin with (4.10). For simplicity we prove that, for any
constant β = O(log n), Eω [exp(βSn/

√
n)] 6 ecβ

2
for some constant c > 0. Similarly

one could proceed for Eω [exp(−βSn/
√
n)] and get that

Eω
[
exp(β|Sn|/

√
n)
]
6 Eω

[
exp(βSn/

√
n)
]

+ Eω
[
exp(−βSn/

√
n)
]
6 2ecβ

2
.

We partition the discrete interval {1, 2, . . . , n} into disjoints blocks of cardinality n1/3.
Given a integer κ, by applying the Cauchy-Schwarz inequality a finite number of times
depending on κ, it is sufficient to prove the result for Sn replaced by the sum S

(κ)
B of

the ξ̄j ’s restricted to an arbitrary collection B of blocks with the property that any two
blocks in B are separated by at least κ blocks.

Fix one such collection B and let B be the rightmost block in B. Let nB be the
largest label in B which is not in the block B and let tB = nB∆ be the corresponding
time. Further let ZB =

∑
j∈B ξ̄j . If cκ > vmax where c is the constant appearing in

Theorem 3.1, we can appeal to (3.6) to obtain

Eω
[
exp(βZB/

√
n) | FtB

]
= Eν

[
exp(βZB/

√
n)
]

+O(e−n
α/3
eβn

−1/6
).

Using the trivial bound ZB/
√
n = O(n−2/3) we have

Eν
[
exp(cZB/

√
n)
]

= 1 +
β2

2n
Varν(ZB) +O(β3n−7/6) Varν(ZB),

where Varν(ZB) = O(n1/3) thanks to (3.4). Above we used the trivial bound

Eν
[
|ZB|3

]
6 c n1/3 Varν(ZB).

In conclusion, using the apriori bound β 6 log n, we get that

Eω
[
exp(βZB/

√
n) | FtB

]
6 1 + c

β2

n2/3
.

The Markov property and a simple iteration imply that,

Eν
[
exp

(
βS

(κ)
B /
√
n
)]
6

[
1 + c

β2

n2/3

]|B|
6 exp(c′β2),
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uniformly in the cardinality |B| of the collection. The bound (4.10) is proved.
The bound (4.11) follows at once from (4.10) and the exponential Chebyshev in-

equality

Pω
(
|(Sn − Sj,n)
√
αn

| > L

)
6 e−βL Eω

[
exp(|(Sn − Sj,n)

√
αn

|)
]
,

with β = εL, ε being a sufficiently small constant. �

Proof of Lemma 4.2. Fix j ∈ [1, . . . , n] and m 6 log n, together with a choice of labels
1 6 i1 6 i2 6 . . . 6 im 6 n such that mink |ik − j| ≥ `n. Let tik = ik∆.
• If im 6 j − `n then we can apply the Markov property at time tim together with
Corollary 3.2 to get∣∣∣∣Eω[ξ̄j m∏

i=k

ξ̄ik

]∣∣∣∣ 6 e−nα/3Eω
[ m∏
i=k

|ξ̄ik |
]
6 cme−n

α/3
.

• If instead there exists b 6 m − 1 such that ib < j < ib+1 we need to distinguish
between two sub-cases.

(a) For all k ≥ b+2 it holds that ik− ik−1 6 n1/6 and in particular tm− tb+1 6 n1/6∆.
In this case the fact that tb+1 − j∆ ≥ `n and vmax(tm − tb+1)� `n together with (3.6),
imply that

Eω
[
ξ̄j

m∏
i=k

ξ̄ik

]
= Eω

[
ξ̄j

b∏
i=k

ξ̄ik

] [
Eν
[ m∏
i=b+1

ξ̄ik

]
+O

(
e−n

α/3
poly(n)

)]
.

The conclusion of the lemma then follows from the previous case im 6 j − `n.
(b) We now assume that k∗ := max{k ≥ b+ 1 : ik+1 ≥ ik + n1/6} < n. By repeating

the previous step with the Markov property applied at time tik∗ we get

Eω
[
ξ̄j

m∏
i=k

ξ̄ik

]
= Eω

[
ξ̄j

k∗∏
i=k

ξ̄ik

](
Eν
[ m∏
i=k∗+1

ξ̄ik

]
+O

(
e−n

α/3
poly(n)

))
.

By iterating the above procedure we can reduce ourselves to case (a) and get the sought
result. �

As Lemmas 4.1–4.2 imply (1.4), this concludes the proof of Theorem 1. �

Remark 4.3. The above proof also established that the limiting variance σ2
∗ is strictly

positive for all p small enough.

4.2. Proof of Theorem 2. Given the interval Λ = [1, . . . , L] and ω ∈ ΩΛ, let PΛ,t
ω be

the law of the process started from ω. Recall that

‖PΛ,t
ω − PΛ,t

ω′ ‖ = inf{M(ω(t) 6= ω′(t)) : M a coupling of PΛ,t
ω and PΛ,t

ω′ },

and introduce the hitting time

τ(L) = inf{t : X(ω(t)) = L},

where the initial configuration is identically equal to one (in the sequel 1). It is easy to
check (see, e.g., [1818,18]) that at time τ(L) the basic coupling (cf. §2.1) has coupled
all initial configurations. Thus

dTV(t) 6 sup
ω,ω′
‖PΛ,t

ω − PΛ,t
ω′ ‖ 6 PΛ(τ(L) > t).
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Using the graphical construction, up to time τ(L) the East process in Λ started from the
configuration 1 coincides with the infinite East process started from the configuration
ω∗ ∈ ΩF with a single zero at the origin. Therefore

PΛ
1 (τ(L) > t) 6 Pω∗(X(ω(t)) < L),

thus establishing a bridge with Theorem 1. Recall now the definition of σ∗ from Theo-
rem 1 and distinguish between the two cases σ∗ > 0 and σ∗ = 0.

• The case σ∗ > 0. Here we will show that

Tmix(L, ε) = v−1L+ (1 + o(1))
σ∗

v3/2
Φ−1(1− ε)

√
L . (4.12)

For s ∈ R, let t? = L/v + s
√
L. Then (1.3) implies that

Pω∗ (X(ω(t?)) < L) = Pω∗
(X(ω(t?))− vt?√

L/v
< −v3/2s

)
→ Φ

(
−v

3/2s

σ∗

)
as L→∞. Hence,

lim sup
L→∞

dTV(L/v + s
√
L) 6 Φ

(
−v

3/2s

σ∗

)
. (4.13)

To prove a lower bound on the total variation norm, set aL = logL (any diverging
sequence which is o(

√
L) would do here) and define the event

At =
(
ωx(t) = 1 for all x ∈ (L− aL, L]

)
.

Then
PΛ

1 (At) ≥ Pω∗ (X(ω(t)) 6 L− aL) and π(At) = paL = o(1),

and so any lower bound on Pω∗(X(ω(t?)) 6 L− aL) would translate to a lower bound
on dTV(t?) up to an additive o(1)-term. Again by (1.3),

Pω∗
(
X(ω(t?)) 6 L−aL

)
= Pω∗

(
X(ω(t?))− vt?√

L/v
6 −v3/2s−aL

√
v/L

)
→ Φ

(
−v

3/2s

σ∗

)
as L→∞. Thus we conclude that

lim inf
L→∞

dTV(L/v + s
√
L) ≥ Φ

(
−v

3/2s

σ∗

)
. (4.14)

Eq. (4.12) now follows from (4.13) and (4.14) by choosing s = σ∗v
−3/2Φ−1(1− ε).

• The case σ∗ = 0. Here a similar argument shows that

Tmix(L, ε) = v−1L+Oε(1),

using the fact (following the results in §3) that supω supt Varω(X(ω(t))) <∞ if σ∗ = 0.

This concludes the proof of Theorem 2. �

5. CUTOFF AND CONCENTRATION FOR CONSTRAINED MODELS ON TREES

In this section we consider constrained oriented models on regular trees and prove
strong concentration results for hitting times which are the direct analog of the hitting
time τ(L) define in §4.2 for the East process. As a consequence we derive a strong
cutoff result for the “maximally constrained model” (see below).
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5.1. Kinetically constrained models on trees. Let T be the k-ary rooted tree, k ≥ 2,
in which each vertex x has k children. We will denote by r the root and by TL the
subtree of T consisting of the first L-levels starting from the root.

In analogy to the East process, for a given integer 1 6 j 6 k consider the constrained
oriented process OFA-jf on Ω = {0, 1}T (cf. [2323, 23]) in which each vertex waits an
independent mean one exponential time and then, provided that j among its children
are in state 0, updates its spin variable ωx to 1 with probability p and to 0 with proba-
bility q = 1− p. It is known that this process exhibits an ergodicity breakdown above a
certain critical probability p = pc(k, j) (defined more precisely later). In this paper we
will only examine the two extreme cases j = 1 and j = k which will be referred to in
the sequel as the minimally and maximally constrained models.

The finite volume version of the OFA-jf process is a continuous time Markov chain
on ΩTL = {0, 1}TL . In this case, in order to guarantee irreducibility, the variables at
leaves of TL are assumed to be unconstrained. As in the case of the East process,
the product Bernoulli(p) measure π is the unique reversible measure and the same
graphical construction described in §2.1 holds in this new context.

5.2. New Results. We are now in a position to state our results for the minimally and
maximally constrained finite volume OFA-jf models. Recall that

Tmix(L, ε) := inf{t : max
ω∈ΩTL

‖µtω − π‖ 6 ε}, ε ∈ (0, 1)

and define Thit(L) := E [τ(L)], where τ(L) is the first legal ring for the root for the
OFA-jf process on ΩTL started from the configuration identically equal to one. Our first
result addresses the concentration of τ(L). Recall that Oδ(·) denotes that the implicit
constant may depend on δ.

Theorem 5.1. The following hold for the centered variable τ(L)− Thit(L), denoted τ̄(L).
(i) Consider either the minimally or the maximally constrained model and fix p < pc.

For any fixed δ > 0, if n ∈ N is large enough there exists Ln ∈ [n, (1 + δ)n] such that

E|τ̄(Ln)| = Oδ(1).

(ii) Consider the maximally constrained model and choose p = pc. For any fixed δ > 0,
if n ∈ N is large enough then there exists Ln ∈ [n, (1 + δ)n] such that

E|τ̄(Ln)| = Oδ
(
L−1
n Thit(Ln)

)
.

The second result concerns the cutoff phenomenon.

Theorem 5.2. Consider the maximally constrained model.
(i) If p < pc then for any δ > 0 and any large enough n there exists Ln ∈ [n, (1 + δ)n]

such that
|Tmix(Ln, ε)− Thit(Ln)| = Oε,δ(1) ∀ε ∈ (0, 1).

(ii) If p = pc then for any δ > 0 and any large enough n there exists Ln ∈ [n, (1 + δ)n]
such that

|Tmix(Ln, ε)− Thit(Ln)| = Oε,δ
(
L−1
n Thit(Ln)

)
∀ε ∈ (0, 1).

5.3. Previous work. Before proving our results we recall the main findings of [2323,
23] and [1212,12]. We now formally define the critical density for the OFA-jf model:

pc = sup{p ∈ [0, 1] : 0 is simple eigenvalue of L},
where L is the generator of the process. The regime p < pc is called the ergodic regime
and we say that an ergodicity breaking transition occurs at the critical density pc.
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Let

gp(λ) := p

k∑
i=k−j+1

(
k

i

)
λi(1− λ)k−i

be the natural bootstrap percolation recursion map (cf. [2323, 23]) associated to the
OFA-jf process and let

p̃ := sup{p ∈ [0, 1] : λ = 0 is the unique fixed point of gp(λ)}.
In [2323, 23] it was proved that pc = p̃ and that pc ∈ (0, 1) for j ≥ 2 and pc = 1 for
j = 1. Notice that, for j = k, the value p̃ coincides with the site percolation threshold
on T so that pc = p̃ = 1/k.

Consider now the finite volume OFA-jf process on ΩTL and let µtω be the law of the
process at time t when the initial configuration is ω. Further let htω be the relative
density of µtω w.r.t the reversible stationary measure π. Define the family of mixing
times {Ta(L)}a≥1 by

Ta(L) := inf
{
t ≥ 0 : max

ω
π
(
|htω − 1|a

)1/a
6 1/4

}
.

Notice that T1(L) coincides with the usual mixing time Tmix(L) of the chain (see,
e.g., [2222,22]) and that, for any a ≥ 1, one has T1(L) 6 Ta(L). Further let Trel(L) be
the relaxation time of the chain, ie the inverse of the spectral gap of the generator LTL .

Theorem 5.3 ([2323,23]).
(i) Assume p < pc and consider the finite volume OFA-jf model on ΩTL . Then

sup
L
Trel(L) <∞.

If instead p > pc then Trel(L) is exponentially large in L.
(ii) For all p ∈ (0, 1) there exists a constant c > 0 such that

T2(L+ 1)− T2(L) 6 c Trel(L).

In particular
Tmix(L) 6 T2(L) 6 c Trel(L)L

The second result concerns the critical behavior p = pc.

Theorem 5.4 ([1212,12]). Consider the maximally constrained model j = k and choose
p = pc. Then there exists β ≥ 2 and c > 0 such that

c−1L2 6 Trel(L) 6 cLβ.

Moreover,
c−1LTrel(L) 6 Tmix(L) 6 T2(L) 6 cLTrel(L).

5.4. Proof of Theorem 5.1. We first need a preliminary result saying that, for infinitely
many values of L, the increments of Thit(L) can be controlled by the corresponding
relaxation time.

Lemma 5.5. There exists a constant c1 such that, for all δ > 0 and all n large enough,
the following holds.
(a) In the maximally constrained model at p 6 pc

max
(
Thit(Ln)− Thit(Ln − 1), Thit(Ln + 1)− Thit(Ln)

)
6
c1

δ
Trel((1 + δ)n),

for some Ln ∈ [n, (1 + δ)n].
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(b) In the minimally constrained model

Thit(Ln + 1)− Thit(Ln) ≥ −c1

δ
Trel((1 + δ)n)

for some Ln ∈ [n, (1 + δ)n].

Proof. Fix δ and n ≥ 1/δ and consider the maximally constrained model. Using part
(ii) of Theorem 5.3,

Tmix(n) 6 T2(n) 6 c
n∑
i=1

Trel(i) 6 c nTrel(n), (5.1)

where we used the fact that Trel(i) 6 Trel(n) for all i 6 n. Fix now c1 > 0 and suppose
that, for all i ∈ [n, (1 + δ)n− 1],

max
(
Thit(i+ 1)− Thit(i), Thit(i+ 1)− Thit(i)

)
≥ c1

δ
Trel ((1 + δ)n) .

In particular
Thit((1 + δ)n) ≥ c1nTrel ((1 + δ)n) /2.

On the other hand, using the results in[11, 1], there exists a constant λ = λ(p) such
that

Thit((1 + δ)n) 6 λTmix((1 + δ)n). (5.2)

In conclusion, using Theorem 5.3,

Trel ((1 + δ)n) 6
2
c1n

Thit((1 + δ)n) 6
2λ
c1n

Tmix((1 + δ)n)

6
2λc(1 + δ)

c1
Trel((1 + δ)n),

and we reach a contradiction by choosing c1 > 2λc(1 + δ).
Similarly, in the minimally constrained case, assume

Thit(i+ 1)− Thit(i) 6 −
c1

δ
Trel ((1 + δ)n) , ∀i ∈ [n, (1 + δ)n− 1],

so that
0 6 Thit((1 + δ)n) 6 Thit(L)− c1nTrel ((1 + δ)n) .

Using again Theorem 5.3 together with (5.2) we get

Trel ((1 + δ)n) 6
1
c1n

Thit(L)

6
λ

c1n
Tmix(L) 6

cλ

c1n
LTrel(L) 6

λc(1 + δ)
c1

Trel((1 + δ)n).

and again we reach a contradiction by choosing c1 > λc(1 + δ). �

5.4.1. Proof of theorem 5.1 for the maximally constrained model. The key observation
here is that, for any L ∈ N, the hitting time τ(L + 1) is stochastically larger than the
maximum between k independent copies {τ (i)(L)}ki=1 of the hitting time τ(L). That
follows immediately by noting that:

• starting from the configuration identically equal to 1, a vertex x can be updated
only after the first time at which all its k-children have been updated;
• the projection of the OFA-jf process on the sub-trees rooted at each one of the

children of the root of TL+1 are independent OFA-jf processes on TL.
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Henceforth, the proof follows from a beautiful argument of Dekking and Host that was
used in [1717, 17] to derive tightness for the minima of certain branching random
walks.

Thit(L+ 1) ≥ E
[

max
i=1,...,k

τ (i)(L)
]

≥ 1
2

E
[
τ (1)(L) + τ (2)(L) + |τ (1)(L)− τ (2)(L)|

]
= Thit(L) +

1
2

E
[
|τ (1)(L)− τ (2)(L)|

]
≥ Thit(L) +

1
2

E
[
|τ̄ (1)(L)|

]
,

since whenever X ′, X ′′ are i.i.d. copies of a variable one has E|X ′−X ′′| > E |X ′ − EX ′|
by conditioning on X ′′ and then applying Cauchy-Schwarz. Altogether,

E
[
|τ̄ (1)(L)|

]
6 2 (Thit(L+ 1)− Thit(L)) . (5.3)

The conclusion of the theorem now follows from Lemma 5.5 and Theorem 5.3. �

5.4.2. Proof of theorem 5.1 for the minimally constrained model. In this case we define

τmin(L) := min
i=1,...,k

τ (i)(L),

where τ (i)(L) is the first time that the ith-child of the root of TL+1 is updated and we
write

Thit(L+ 1) 6 E
[
τmin(L)

]
+ sup

L
sup
ω∈GL

Eω
[
τ(L)

]
,

with GL the set of configurations in ΩTL with ωr = 1 and at least one zero among the
children of the children of the root r.

Lemma 5.6. supL supω∈GL Eωτ(L) <∞.

Assuming the lemma we write

Thit(L+ 1) 6 E
[
τmin(L)

]
+ c

6
1
2

E
[
τ (1)(L) + τ (2)(L)− |τ (1)(L)− τ (2)(L)|

]
+ c

= Thit(L)− 1
2

E
[
|τ (1)(L)− τ (2)(L)|

]
+ c.

Thus
E
[
|τ̄(L)|

]
6 E

[
|τ (1)(L)− τ (2)(L)|

]
6 2
(
Thit(L)− Thit(L+ 1)

)
+ 2c.

Hence, if Ln ∈ [n, (1 + δ)n] satisfies property (b) of Lemma 5.5, we get

E
[
|τ̄ (1)(L)|

]
6 2

c1

δ
Trel ((1 + δ)n) + 2c.

The conclusion of the theorem now follows from Theorem 5.3. �

Proof of Lemma 5.6. Fix L and ω ∈ GL and observe that

Pω(ωr(t) = 1)

= Pω(ωr(t) = 1 | τ(L) ≥ t)Pω(τ(L) ≥ t) + Pω(ωr(t) = 1 | τ(L) < t)Pω(τ(L) < t)

= (1− p)Pω(τ(L) ≥ t) + p.
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That is because ωr = 1 at time t = 0 while it is a Bernoulli(p) random variable given
that the root has been updated at least once. Thus

Eω[τ(L)] 6
1

1− p

∫ ∞
0

dt |Pω(ωr(t) = 1)− p|.

In order to bound from above the above integral we closely follow the strategy of [1313;
13, §4]. In what follows, for any finite subtree T of T, we will refer to the children of
T as the vertices of T \ T with their parent in T . Using the graphical construction, for
all times t ≥ 0 we define a (random) distinguished tree Tt according to the following
algorithm:

(i) T0 coincides with the root together with those among its children which have at
least one zero among their children (i.e. they are unconstrained).

(ii) Tt = T0 until the first “legal” ring at time t1 at one of the children of T0, call it x0.
(iii) Tt1 = T0 ∪ {x0}.
(iv) Iterate.

Exactly as in [1313; 13, §4.1], one can easily verify the following key properties of the
above construction:
(a) for all t ≥ 0 each leaf of Tt is unconstrained i.e. there is a zero among its children;
(b) if at time t = 0 the variables {ωx}x∈T0 are not fixed by instead are i.i.d with law π,

then, conditionally on {Ts}s 6 t, the same is true for the variables {ωx(t)}x∈Tt .
(c) For all i ≥ 1, given Tti and ti, the law of the random time ti+1− ti does not depend

on the variables (clock rings and coin tosses) of the graphical construction in Tti .
As in [1313; 13, Eqs. (4.8) and (4.10)], the above properties imply that

Varπ(Eω [ωr(t) | {Ts}s 6 t] 6 e−2t/Trel(L).

Therefore,

sup
ω∈GL

∣∣Eω [ωr(t)− p]
∣∣ 6 sup

ω∈GL
Eω
∣∣∣Eω [ωr(t)− p | {Ts}s 6 t]

∣∣∣
6

(
1

p ∧ q

)|T0|
sup
ω∈GL

Eω
[ ∑
ω∈ΩT0

π(ω)
∣∣Eω (ωr(t)− p | {Ts}s 6 t)

∣∣]

6

(
1

p ∧ q

)|T0|
sup
ω∈GL

Eω
[
Varπ (Eω (ωr(t) | {ξs}s 6 t))

1/2
]

6

(
1

p ∧ q

)|T0|
e−t/Trel(L) .

By Theorem 5.3 we have that supL Trel(L) <∞, and the proof is complete. �

Consider the maximally constrained process on ΩTL+1
and let τmax(L) be the first

time at which all the children of the root have been updated at least once starting from
the configuration identically equal to one. For a given ω ∈ ΩTL+1

and x ∈ TL+1, further
let Cω(x) be the maximal subtree rooted at x where ω is equal to one. Finally, recall
that P(·) denotes the basic coupling given by the graphical construction and that ω(t)
denotes the process at time t started from the initial configuration ω.

Lemma 5.7. There exists some c > 0 such that

max
ω∈ΩTL+1

P
(
|Cω(τmax(L))(r)| ≥ n

)
6 c π

(
|Cω(r)| ≥ n− 2

k − 1

)
,
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and in particular,

max
ω∈ΩTL+1

E
∣∣Cω(τmax(L))(r)

∣∣ 6 c∑
ω

π(ω)|Cω(r)|.

Proof. Recall that under the basic coupling all the starting configurations have coupled
by time τmax(L). Hence,

P
(
∃ω ∈ ΩTL+1

: |Cω(τmax(L))(r)| ≥ n
)

=
∑
ω

π(ω)P
(
|Cω(τmax(L))(r)| ≥ n

)
6 k

∑
ω

π(ω)P
(
|Cω(τ (1)(L))(r)| ≥ n , τ

max(L) = τ (1)(L)
)

6 k
∑
ω

π(ω)P
(
|Cω(τ (1)(L))(r)| ≥ n

)
,

where τ (1)(L) is the first time that the first (in some chosen order) child of the root
has been updated starting from all ones. By construction, at time τ (1)(L) the first child
has all its children equal to zero. Therefore the event {Cω(τ (1)(L))(r)| ≥ n} implies that
there exists some other child x of the root such that Cω(τ (1)(L))(x) has cardinality at
least (n − 2)/(k − 1). Using reversibility and the independence between τ (1)(L) and
the process in the subtree of depth L rooted at x together with a union bound over the
choice of x, we conclude that∑

ω

π(ω)P
(
|Cω(τ (1)(L))(r)| ≥ n

)
6 (k − 1)π

(
|Cω(r)| ≥ n− 2

k − 1

)
.

The statement of the lemma follows at once by summing over n. �

Using the lemma we can now prove the analogue of Lemma 5.6

Lemma 5.8. Fix any positive integer `. For all p 6 pc there exists c = c(`, p) such that

(i) Thit(L+ `) 6 E [τmax(L)] + c Trel(L) if p < pc,

(ii) Thit(L+ `) 6 E [τmax(L)] + cLTrel(L) if p = pc.

Moreover, for any d > 0,

P
(
τ(L+ `)− τmax(L) ≥ d Trel

)
=

{
O(d−1) if p < pc,

O(d−1/3) if p = pc.
(5.4)

Proof. For simplicity we give a proof for the case ` = 1. The general proof is similar
and we omit the details. We first claim that, starting from ω ∈ ΩTL+1

, one has

Eω[τ(L+ 1)] 6 c |Cω|Trel(L) (5.5)

for some constant c, where |Cω| denotes the cardinality of Cω. If we assume the claim,
the strong Markov property implies that

Thit(L+ 1) 6 E [τmax(L)] + cE
[
|Cω(τmax(L))|

]
Trel(L)

where all expectations are computed starting from all ones. Using Lemma 5.7,

E
[
|Cω(τmax(L))|

]
6 c′

∑
ω

π(ω)|Cω(r)|

for some constant c′ and parts (i) and (ii) of the lemma follow by standard results on
percolation on regular trees (see, e.g., [2020,20]).
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To prove (5.5) we proceed exactly as in Lemma 5.6. We first write

Eω [τ(L+ 1)] 6
1

1− p

∫ ∞
0

dt |Pω(ωr(t) = 1)− p|

and then we apply the results of [1313; 13, §4] to get that

|Pω(ωr(t) = 1)− p| 6 min

[
1,
(

1
p ∧ q

)|Cω |
e−t/Trel(L)

]
.

Thus,
1

1− p

∫ ∞
0

dt |Pω(ωr(t) = 1)− p| 6 c|Cω|Trel(L)

for some constant c and (5.5) follows.
Lastly we prove (5.4). The subcritical case p < pc follows easily from (i) and

Markov’s inequality, while the critical case follows from (5.5). To see this, write

P
(
τ(L+ 1)− τmax(L) ≥ d Trel(L)

)
= P

(
τ(L+ 1)− τmax(L) ≥ d Trel(L) , |Cω(τmax(L))| 6 d2/3

)
+ P

(
τ(L+ 1)− τmax(L) ≥ d Trel(L) , |Cω(τmax(L))| > d2/3

)
.

Using Markov’s inequality and (5.5),

P
(
τ(L+ 1)− τmax(L) ≥ d Trel(L) , |Cω(τmax(L))| 6 d2/3

)
6

1
dTrel(L)

E
[
1{|Cω(τmax(L))| 6 d2/3}Eω(τmax(L)) [τ(L+ 1)]

]
6
c

d
E
[
1{|Cω(τmax(L))| 6 d2/3}|Cω(τmax(L))|

]
6 cd−1/3.

The second term is also O
(
d−1/3

)
using Lemma 5.7 and the fact that, for p = pc,

π (|Cω| ≥ n) = O(1/
√
n). �

5.5. Proof of Theorem 5.2. Fix ε ∈ (0, 1/2). Let {Ln} be a sequence such that, for all
n large enough,

max
(
Thit(Ln)− Thit(Ln − 1), Thit(Ln + 1)− Thit(Ln)

)
6 cTrel(Ln), (5.6)

for some constant c independent of n. The existence of such a sequence is guaranteed
by Lemma 5.5. We begin by proving that

Tmix(Ln, ε) 6 Thit(Ln) +Oε(Trel(Ln)). (5.7)

Exactly as for the East process, one readily infers from the graphical construction that
at time τ(Ln) all initial configurations ω ∈ ΩTLn have coupled. Therefore (cf. §4.2),

max
ω,ω′

∥∥∥PTLn ,t
ω − PTLn ,t

ω′

∥∥∥ 6 P(τ(Ln) > t).

If t = Thit(Ln) + ∆, Markov’s inequality together with (5.3) imply that

P (τ(Ln) > Thit(Ln) + ∆) 6
1
∆

E (|τ̄(Ln)|) 6 2
∆
[
Thit(Ln + 1)− Thit(Ln)

]
6

2
∆
c Trel(Ln).

Inequality (5.7) now follows by choosing ∆ = 2c Trel(Ln)/ε.
Next we prove the lower bound

Tmix(Ln, 1− ε) ≥ Thit(Ln)−Oε(Trel(Ln)). (5.8)



32 S. GANGULY, E. LUBETZKY, AND F. MARTINELLI

Start the process from the configuration ω identically equal to one and let τmax(Ln− `)
be the time when all the vertices at distance ` from the root have been updated at least
once. Conditionally on τmax(L− `) > t, the root is connected by a path of 1′s to some
vertex at distance ` at time t. On the other hand, standard percolation results for p 6 pc
imply that the π-probability of the above event is smaller than ε/2 provided that ` is
chosen large enough. Therefore, for such value of `,

‖µtω − π‖ ≥ P(τmax(Ln − `) > t)− ε/2.

It remains to show that
P(τmax(Ln − `) > t) ≥ 1− ε

2
,

for t = Thit(Ln)−Oε(Trel(L)).
We prove this by contradiction. Let t = Thit(Ln) − DTrel, where D is a constant to

be specified later, and suppose that P(τmax(Ln − `) > t) < 1− ε
2 . Using Lemma 5.8 we

can choose a large constant ∆ independent of Ln such that

P(τ(Ln)− τmax(Ln − `) ≥ ∆Trel) 6 ε/4,

and hence, by a union bound,

P
(
τ(Ln) < t+ ∆Trel

)
> ε/4.

However, for large enough D, this contradicts Theorem 5.1. Theorem 5.2 now follows
from (5.7), (5.8), Theorems 5.3 and 5.4, and Lemma 5.5. �
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