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Abstract. In the study of Markov chain mixing times, analysis has centered on the performance from a

worst-case starting state. Here, in the context of Glauber dynamics for the one-dimensional Ising model,

we show how new ideas from information percolation can be used to establish mixing times from other

starting states. At high temperatures we show that the alternating initial condition is asymptotically

the fastest one, and, surprisingly, its mixing time is faster than at infinite temperature, accelerating as

the inverse-temperature β ranges from 0 to β0 = 1
2
arctanh( 1

3
). Moreover, the dominant test function

depends on the temperature: at β < β0 it is autocorrelation, whereas at β > β0 it is the Hamiltonian.

1. Introduction

In the study of mixing time of Markov chains, most of the focus has been on determining the asymp-

totics of the worst-case mixing time, while relatively little is known about the relative effect of different

initial conditions. The latter is quite natural from an algorithmic perspective on sampling, since one

would ideally initiate the dynamics from the fastest initial condition. However, until recently, the tools

available for analyzing Markov chains on complex systems, such as the Ising model, were insufficient

for the purpose of comparing the effect of different starting states; indeed, already pinpointing the

asymptotics of the worst-case state for Glauber dynamics for the Ising model can be highly nontrivial.

In this paper we compare different initial conditions for the Ising model on the cycle. In earlier

work [11], we analyzed three different initial conditions. The all-plus state is provably the worst

initial condition up to an additive constant. Another is a quenched random condition chosen from ν,

the uniform distribution on configurations, which with high probability has a mixing time which is

asymptotically as slow. A third initial condition is an annealed random condition chosen from ν, i.e.,

to start at time 0 from the uniform distribution, which is asymptotically twice as fast as all-plus.

Here we consider two natural deterministic initial configurations. The first is the alternating sequence

xalt(i) =

{
1 i ≡ 0 (mod 2)

−1 i ≡ 1 (mod 2) ,

which we will show is asymptotically the fastest deterministic initial condition—yet strictly slower than

starting from the annealed random condition—for all β < β0 := 1
2 arctanh(1

3) (at β = β0 they match).

The second is the bi-alternating sequence

xblt(i) =

{
1 i ≡ 0, 3 (mod 4)

−1 i ≡ 1, 2 (mod 4) .

For convenience we will assume that n is a multiple of 4, which ensures that the configurations are

semi-translation invariant and turns both sequences into eigenvectors of the transition matrix of simple

random walk on the cycle. (This is not necessary for the main result but leads to cleaner analysis.)
1
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Figure 1. Asymptotic mixing time from the alternating and bi-alternating initial conditions as per

Theorem 1, compared to the known behavior of worst-case (all-plus) and random initial conditions.

In what follows, set θ = θβ = 1− tanh(2β), and let tx0mix(ε) denote the time it takes the dynamics to

reach total variation distance at most ε from stationarity, starting from the initial condition x0.

Theorem 1. For every β > 0 and 0 < ε < 1 there exist C(β) and N(β, ε) such that the following hold

for Glauber dynamics for the Ising model on the cycle Z/nZ at inverse-temperature β for all n > N .

(i) Alternating initial condition:∣∣∣txaltmix(ε)−max
{

1
4−2θ ,

1
4θ

}
log n

∣∣∣ ≤ C log log n .

(ii) Bi-alternating initial condition:∣∣∣txbltmix (ε)−max
{

1
2 ,

1
4θ

}
log n

∣∣∣ ≤ C log logn .

Surprisingly, the mixing time for the alternating initial condition begins as actually faster than the

infinite temperature model: it decreases as a function of β before increasing when β > 1
2 arctanh(1

3).

The following theorem summarizes the bounds we proved in [8,11] for the all-plus and random initial

conditions. See Figure 1 for the relative performance of all these different initial conditions.

Theorem 2 ([8, 11]). In the same setting of Theorem 1, the following hold.

(i) All-plus initial condition x+ ≡ 1:∣∣∣tx+mix(ε)− 1
2θ log n

∣∣∣ ≤ C log logn .

(ii) Quenched random initial condition:

ν
({
x0 :

∣∣tx0mix(ε)− 1
2θ log n

∣∣ ≤ C log log n
})
→ 1 as n→∞ .

(iii) Annealed random initial condition:∣∣tνmix(ε)− 1
4θ log n

∣∣ ≤ C log logn .
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(Note that, in the case of the all-plus initial conditions, the mixing time tx
+

mix(ε) is known in higher

precision: it was shown [8,11] to be within an additive constant (depending on ε and β) of 1
2θ log n.)

The upper bounds on the mixing times in Theorem 1 rely on the information percolation framework

introduced by the authors in [11]. The asymptotically matching lower bounds in that theorem are

derived from two test functions: the autocorrelation function, which for instance matches our upper

bound on the alternating initial condition for β > β0; and the Hamiltonian test function, which gives

rise to the following lower bound on every deterministic initial condition.

Proposition 3. Let Xt be Glauber dynamics for the Ising model on Z/nZ at inverse-temperature β.

For every sequence of deterministic initial conditions x0, the dynamics at time

t? = 1
4−2θ log n− 8 log log n

is at total variation distance 1− o(1) from equilibrium; that is,

lim
n→∞

inf
x0
‖Px0 (Xt? ∈ ·)− π‖tv = 1 .

As a consequence of this result and Theorem 1, Part (i), we see that the initial condition xalt is

indeed the optimal deterministic one in the range β < β0, and that β0 marks the smallest β where a

deterministic initial condition can first match the performance of the annealed random condition.

The mixing time estimates in Theorem 1 (as well as those in Theorem 2) imply, in particular,

that Glauber dynamics for the Ising model on the cycle, from the respective starting configurations,

exhibits the cutoff phenomenon—a sharp transition in its distance from stationarity, which drops along

a negligible time period known as the cutoff window (here, O(log log n), vs. tmix which is of order log n)

from near its maximum to near 0. Until recently, only relatively few occurrences of this phenomenon,

that was discovered by Aldous and Diaconis in the early 1980’s (see [1,2,4,5]), were rigorously verified,

even though it is believed to be widespread (e.g., Peres conjectured [6, Conjecture 1],[7, §23.2] cutoff for

the Ising model on any sequence of transitive graphs when the mixing time is of order log n); see [7, §18].

For the Ising model on the cycle, the longstanding lower and upper bounds on tmix from a worst-case

initial condition differed by a factor of 2—in our notation, 1−o(1)
2θ log n and 1+o(1)

θ log n—while cutoff was

conjectured to occur (see, e.g., [7, Theorem 15.4], as well as [7, pp. 214,248 and Question 8 in p. 300]).

This was confirmed in [8], where the above lower bound was shown to be tight, via a proof that relied

on log-Sobolev inequalities and applied to Zd, for any dimension d ≥ 1, so long as the system features a

certain decay-of-correlation property known as strong spatial mixing. This result was reproduced in [11]

(with a finer estimate for the cutoff window) via the new information percolation method. Soon after,

a remarkably short proof of cutoff for the cycle—crucially hinging on the correspondence between the

one-dimensional Ising model and the “noisy voter” model—was obtained by Cox, Peres and Steif [3].

It is worthwhile noting that the arguments both in [3] and in [8] are tailored to worst-case analysis, and

do not seem to be able to treat specific initial conditions as examined here. In contrast, the information

percolation approach does allow one to control the subtle effect of various initial conditions on mixing.

To conclude this section, we conjecture that Proposition 3 also holds for t? = max{1−o(1)
4−2θ ,

1−o(1)
4θ } log n,

i.e., that xalt is asymptotically fastest among all the deterministic initial conditions at all β > 0. We

further conjecture that the obvious generalization of xalt to (Z/nZ)d for d ≥ 2 (a checkerboard for

d = 2) is the analogous fastest deterministic initial condition throughout the high-temperature regime.



4 EYAL LUBETZKY AND ALLAN SLY

2. Update support and information percolation

In this section we define the update support and use the framework of information percolation (see

the papers [9,12] as well as the survey paper [10] for an exposition of this method) to upper bound the

total variation distance with alternating and bi-alternating initial conditions.

2.1. Basic Notation. The Ising model on a finite graph G with vertex-set V and edge-set E is a

distribution over the set of configurations Ω = {±1}V ; each σ ∈ Ω is an assignment of plus/minus spins

to the sites in V , and the probability of σ ∈ Ω is given by the Gibbs distribution

π(σ) = Z−1eβ
∑
uv∈E σ(u)σ(v) , (2.1)

where Z is a normalizer (the partition-function) and β is the inverse-temperature, here taken to be

non-negative (ferromagnetic). The (continuous-time) heat-bath Glauber dynamics for the Ising model

is the Markov chain—reversible w.r.t. the Ising measure π—where each site is associated with a rate-1

Poisson clock, and as the clock at some site u rings, the spin of u is replaced by a sample from the

marginal of π given all other spins. See [13] for an extensive account of this dynamics. In this paper

we focus on the graph G = Z/nZ and will let Xt denote the Glauber dynamics Markov chain on G.

An important notion of measuring the convergence of a Markov chain (Xt) to its stationarity measure

π is its total-variation mixing time, denoted tmix(ε) for a precision parameter 0 < ε < 1. From initial

condition x0 we denote

tx0mix(ε) = inf
{
t : ‖Px0(Xt ∈ ·)− π‖tv ≤ ε

}
,

and the overall mixing time as measured from a worst-case initial condition is

tmix(ε) = max
x0∈Ω

tx0mix(ε) ,

where here and in what follows Px0 denotes the probability given X0 = x0, and the total-variation

distance ‖µ1 − µ2‖tv is defined as maxA⊂Ω |µ1(A)− µ2(A)| = 1
2

∑
σ∈Ω |µ1(σ)− µ2(σ)|.

2.2. Information percolation clusters. The dynamics can be viewed as a deterministic function of

X0 and a random “update sequence” of the form (J1, U1, t1), (J2, U2, t2), . . ., where 0 < t1 < t2 < . . .

are the update times (the ringing of the Poisson clocks), the Ji’s are i.i.d. uniformly chosen sites (which

clocks ring), and the Ui’s are i.i.d. uniform variables on [0, 1] (to generate coin tosses). There are

a variety of ways to encode such updates but in the case of the one-dimensional model there is a

particularly useful one. We add an extra variable Si which is a randomly selected neighbor of Ui Then

given the sequence of (Ji, Si, Ui, ti) the updates are processed sequentially as follows: set t0 = 0; the

configuration Xt for all t ∈ [ti−1, ti) (i ≥ 1) is obtained by updating the site Ji via the unit variable

as follows: if Ui ≤ θ = 1 − tanh(2β) update the spin at Ji to a uniformly random value and with

probability 1− θ set it to the spin of Si.

With this description of the dynamics, we can work backwards to describe how the configurations

at time t? (or at any intermediate time) depend on the initial condition. The update support function,

denoted Fs(A, s1, s2), as introduced in [8], is the random set whose value is the minimal subset S ⊂ Λ

which determines the spins of A given the update sequence along the interval (s1, s2].
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We now describe the support of a vertex v ∈ V as it evolves backwards in time from s2 to s1.

Initially, Fs(v, s2, s2) = {v}; then, updates in reverse chronological order alter the support: given the

next update (Ji, Si, Ui, ti), if Ji = Fs(v, ti+1, s2) and Ui ≤ θ then Fs(v, ti, s2) is set to ∅, and if Ui > θ

then it is set to Si. Thus, backwards in time Fs(v, t, s2) performs a continuous-time simple random

walk with jump rate 1−θ which is killed at rate θ. We refer to the full trajectory of the update support

of a vertex as the history of the vertex. The survival time for a walk is exponential and so for t1 ≤ t2,

P (Fs(v, t1, t2) 6= ∅) = e−(t2−t1)θ . (2.2)

For general sets A we have that Fs(A, s1, s2) =
⋃
v∈A Fs(v, s1, s2) and taken together the collection of

the update supports of the vertices are a set of coalescing killed continuous-time random walks.

A key use of these histories is to effectively bound the spread of information, as achieved by the

following lemma.

Lemma 2.1. For any t we have that

P
(

max
v∈Z/nZ

max
0≤s≤t

Fs(v,s,t)6=∅

|v −Fs(v, s, t)| ≥ 1
10 log2 n

)
≤ O(n−10) .

Proof. By equation (2.2) we have that P[Fs(Z/nZ, t− log3/2 n, t) 6= ∅] = O(n−10) so it is sufficient to

show that

P
(

max
t−log3/2 n≤s≤t

Fs(v,s,t) 6=∅

|v −Fs(v, s, t)| ≥ 1
10 log2 n

)
≤ O(n−11) .

This probability is bounded above by the probability of a rate 1− θ continuous-time random walk to

make at least 1
10 log2 n jumps by time log3/2 n. This is exactly the probability that a Poisson with mean

(1− θ) log3/2 n is at least 1
10 log2 n, which satisfies the required bound by standard tail bounds. �

3. Upper bounds

We will consider the dynamics run up to time t? and derive an upper bound on its mixing time. We

will first estimate the total variation distance not of the full dynamics but simply at a single vertex

from initial conditions xalt and xblt.

Lemma 3.1. For v ∈ Z/nZ we have that,

‖Pxalt (Xt?(v) ∈ ·)− π|v‖tv = 1
2e
−(2−θ)t? ,

‖Pxblt (Xt?(v) ∈ ·)− π|v‖tv = 1
2e
−t? .

Proof. We will begin with the case of initial condition xalt. Of course π|v is the uniform measure

on {±1}. The history Fs(v, t, t?) is killed before time 0 with probability 1 − e−θt? and on this event

is uniform on {±1}. Condition that it survives to time 0 and let Y (s) = xalt(Fs(v, t? − s, t?)). This is

simply a continuous-time random walk on {±1} which switches state at rate 1− θ. Thus,

P (Y (s) = a) =

{
1
2 + 1

2e
−2(1−θ)s if a = xalt(v) ,

1
2 −

1
2e
−2(1−θ)s otherwise .
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It therefore follows that ‖P (Y (t?) ∈ ·)− π|v‖tv = 1
2e
−2(1−θ)t? , and altogether,

‖Pxalt (Xt?(v) ∈ ·)− π|v‖tv = 1
2e
−2(1−θ)t?e−θt? = 1

2e
−(2−θ)t? .

The case of xblt follows similarly, with the exception that Y (s) has jump rate 1
2(1 − θ) since it only

switches sign with probability 1
2 each step. �

3.1. Update Support. In this subsection we analyse the geometry of the update support similarly

to [8] in order to approximate the Markov chain as a product measure. Let κ = 4
1−θ and define the

support time as t− = t? − κ log logn. By Lemma 2.1 we expect the histories to not travel “too far”

along the time-interval t? to t−; precisely, if we define B as the event

B =

{
max
v∈Z/nZ

max
t−≤s≤t?

Fs(v,s,t?) 6=∅

|v −Fs(v, s, t?)| ≤ 1
10 log2 n

}
,

then by Lemma 2.1,

P (B) ≥ 1− n−10 . (3.1)

The following event says that the support at time t− clusters into small well separated components.

Let A be the event that there exists a set of intervals W1, . . . ,Wm ⊂ Z/nZ that (i) cover the support:

{x : Fs(x, t−, t?) 6= ∅} ⊂
⋃
i

Wi , (3.2)

(ii) have logarithmic size:

max
i
Wi ≤ log3 n , (3.3)

and (iii) are well-separated:

min
i,i′

d(Wi,Wi′) ≥ log2 n . (3.4)

Lemma 3.2. We have that P (A) ≥ 1−O(n−9).

Proof. Define the following intervals on Z/nZ:

Mi = {2i log2 n, . . . , (2i+ 1) log2 n} (1 ≤ i ≤ n
2 log2 n

) .

Restricting B to
⋃
Mi, we let

B′ =
{

max
v∈∪iMi

max
t−≤s≤t?

Fs(v,s,t?) 6=∅

|v −Fs(v, s, t?)| ≤ 1
10 log2 n

}
.

Since B′ ⊃ B we have that P (B′) ≥ 1− n−10 by Lemma 3.1. Next, let Di be the event

Di = {Fs(Mi, t−, t?) = ∅} .

By a union bound and equation (2.2), we have that

P (Di) ≥ 1− |Mi|e(1−θ)κ log logn ≥ 1− 1

log n
,

and so

P
(
Dci | B′

)
≤ P (Dci )

P (B′)
≤ 2

log n
.
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Moreover, conditional on B′ the events Di are conditionally independent since the history of Mi is

determined by the updates within the set {v : d(v,Mi) ≤ 1
10 log2 n} which are disjoint. Hence, for all i,

P
(
Dci ,Dci+1, . . . ,Dci+ 1

10
logn
| B′
)
≤
(

2

log n

) 1
10

logn

≤ n−10;

hence,

P
(
Dci ,Dci+1, . . . ,Dci+ 1

10
logn

)
≤ P

(
Dci ,Dci+1, . . . ,Dci+ 1

10
logn

∣∣∣ B′)+ P
(
B′c
)
≤ 2n−10.

Taking a union bound over all i we have that

P
(
∃i : Dci ,Dci+1, . . . ,Dci+ 1

10
logn

)
≤ n−9.

We have thus arrived at the following: with probability at least 1−n−9, for every v ∈ Z/nZ there exists

a block of log2 n consecutive vertices whose histories are killed before t− within distance 1
5 log3 n on

both the right and the left, implying the existence of the decomposition and completing the lemma. �

When the event A holds we will assume that there is some canonical choice of the Wi’s. We set

Vi = Fs(Wi, t−, t?) . (3.5)

On the event that both A and B hold, the sets Vi are disjoint, and satisfy

min
i,i′

d(Vi, Vi′) ≥ 1
2 log2 n and max

i
diam(Vi) ≤ 2 log3 n . (3.6)

We will make use of Lemma 3.3 from [9], a special case of which is the following.

Lemma 3.3 ([9]). For any 0 ≤ s ≤ t and any set of vertices W we have that∥∥Px0 (Xt(W ) ∈ ·)− π|W
∥∥
tv
≤ E

[∥∥∥Px0 (Xs(Fs(W, s, t)) ∈ ·)− π|Fs(W,s,t)

∥∥∥
tv

]
.

Using this result, we have that∥∥Px0 (Xt? ∈ ·)− π
∥∥
tv
≤ E

[∥∥∥Px0 (Xt−(
⋃
i Vi) ∈ ·

)
− π|∪iVi

∥∥∥
tv

]
.

3.2. Coupling with product measures. On the event A ∩ B we couple Xt−(
⋃
i Vi) and π|⋃

i Vi

with product measures. Since the Vi’s depend only on the updates along the interval [t−, t?] and are

independent of the dynamics up to time t− we will treat the Vi as fixed deterministic sets satisfying (3.6).

Let (π(1), . . . , π(m)) be a product measure ofm copies of π. Then, by the exponential decay of correlation

of the one-dimensional Ising model,∥∥∥(π(1)|V1 , . . . , π(m))|Vm − π
∣∣⋃

i Vi

∥∥∥
tv
≤ n−10 . (3.7)

Next, let X
(1)
t , . . . , X

(m)
t be m independent copies of the dynamics up to time t−. Define the event

E =

{
max
v∈∪iVi

max
0≤s≤t−

Fs(v,s,t−)6=∅

|v −Fs(v, s, t−)| ≤ 1
10 log2 n

}
,
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and for each 1 ≤ j ≤ m define the analogous event

E(j) =

{
max
v∈∪iVi

max
0≤s≤t−

F
(j)
s (v,s,t−)6=∅

|v −F
(j)
s (v, s, t−)| ≤ 1

10 log2 n

}
,

where F
(j)
s is the support function for the dynamics X

(j)
t . From Lemma 2.1, together with a union

bound, we infer that

P (E) = P(E(j)) ≥ 1−O(n−10) . (3.8)

Let X̃t denote Xt conditioned on E and, similarly, let X̃
(j)
t denote X

(j)
t conditioned on E(j). Then∥∥∥P(X̃

(j)
t− (Vj) ∈ ·)− P(X

(j)
t− (Vj) ∈ ·)

∥∥∥
tv
≤ P(E(j)) ≤ n−10,

and so ∥∥∥P((X̃
(1)
t− (V1), . . . , X̃

(m)
t− (Vm)) ∈ ·

)
− P

(
(X

(1)
t− (V1), . . . , X

(m)
t− (Vm)) ∈ ·

)∥∥∥
tv
≤ n−9 .

Now, since the laws of the X̃t−(Vi) for distinct i depend on disjoint sets of updates, they are independent

and equal in distribution to X̃
(i)
t− (Vi), hence

(X̃
(1)
t− (V1), . . . , X̃

(m)
t− (Vm))

d
= (X̃t−(V1), . . . , X̃t−(Vm)) .

Since X̃ is X conditioned on E ,∥∥∥P((X̃t−(V1), . . . , X̃t−(Vm)) ∈ ·
)
− P

(
(Xt−(V1), . . . , Xt−(Vm)) ∈ ·

)∥∥∥
tv
≤ P(E) ≤ n−10 .

Combining the previous three equations we find that∥∥∥P((X
(1)
t− (V1), . . . , X

(m)
t− (Vm)) ∈ ·

)
− P

(
(Xt−(V1), . . . , Xt−(Vm)) ∈ ·

)∥∥∥
tv
≤ 2n−9 . (3.9)

Thus, to show that
∥∥Px0 (Xt? ∈ ·)− π

∥∥
tv
→ 0 it is sufficient to prove that∥∥∥P((X

(1)
t− (V1), . . . , X

(m)
t− (Vm)) ∈ ·

)
− (π(1)|V1 , . . . , π(m)|Vm)

∥∥∥
tv
→ 0 . (3.10)

3.3. Local L2 distance. Let L = 10, and for each i set

Si = inf {s : |Fs(Vi, t− − s, t−)| ≤ L} ,

with Si = 0 if |Vi| ≤ L.

First we bound the right tail of the distribution of Si. If |Fs(Vi, t− − s, t−)| > L then at least L+ 1

histories from Vi have survived to time t− − s and not intersected. Hence, by equation (2.2),

P (|Fs(Vi, t− − s, t−)| > 10) ≤
(
|Vi|
L+ 1

)
e−(L+1)sθ ≤ e−(L+1)sθ log3(L+1) n .

Therefore, for 0 < s < t− we see that

P (Si ≥ s) ≤ e−s(L+1)θ log3(L+1) n . (3.11)

Let I denote the event that for all i we have that Si < t−. By (3.11),

P (I) ≤ e−(L+1)θt− n log3(L+1) n , (3.12)
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and so t? ≥ 2
Lθ log n implies that P (I)→ 1. On the event I, we define

Ui = Fs(Vi, t− − Si, t−) .

Applying Lemma 3.3 we have that∥∥∥P((X
(1)
t− (V1), . . . , X

(m)
t− (Vm)) ∈ ·

)
− (π(1)|V1 , . . . , π(m)|Vm)

∥∥∥
tv

≤
∥∥∥P((X

(1)
t−−S1

(U1), . . . , X
(m)
t−−Sm(Vm)) ∈ ·

)
− (π(1)|U1 , . . . , π

(m)|Um)
∥∥∥
tv
. (3.13)

Lemma 3.4. There exists C = C(β) > 0 such that, for every |Ui| ≤ L and 0 ≤ Si < t−,

∥∥∥Px0 ((X
(i)
t−−Si(Ui) ∈ ·

∣∣∣ Ui, Si)− π(i)|Ui
∥∥∥
tv
≤

Ct− exp [−(t− − Si) min{2θ, 2− θ}] x0 = xalt ,

Ct− exp [−(t− − Si) min{2θ, 1}] x0 = xblt .

Proof. We will consider the case of xalt, the proof for xblt follows similarly. Let Ri denote the first time

the history coalesces to a single point:

Ri = inf {r : |Fs(Ui, t− − Si − r, t− − Si)| ≤ 1} ,

with the convention Ri = t− − Si if |Fs(Ui, 0, t− − Si)| ≥ 2. By equation (2.2),

P (Ri > r | Ui, Si) ≤
(
L

2

)
e−2rθ.

Denote the vertex ai = Fs(Ui, t− − Si −Ri, t− − Si). By Lemmas 3.1 and 3.3 we have that∥∥∥P(X(i)
t−−Si(Ui) ∈ · | Ui, Si

)
− π(i)|Ui

∥∥∥
tv
≤ E

[∥∥∥P(X(i)
t−−Si−Ri(ai) ∈ · | Ui, Si

)
− π(i)|ai

∣∣∣ Ui, Si∥∥∥
tv

]
≤ E

[
e−(2−θ)(t−−Si−Ri)

∣∣ Ui, Si] . (3.14)

We estimate the right hand side as follows:

E
[
e−(2−θ)(t−−Si−Ri)

∣∣ Ui, Si] ≤ dt−−Sie∑
k=1

P (Ri ∈ (k − 1, k)) e−(2−θ)(t−−Si−k)

≤
dt−−Sie∑
k=1

(
L

2

)
e−2(k−1)θe−(2−θ)(t−−Si−k)

≤ Ct−e−(t−−Si) min{2θ,2−θ} , (3.15)

where the final inequality follows by taking the maximal term in the sum. This, together with (3.14),

completes the proof of the lemma. �

We now appeal to the L1-to-L2 reduction developed in [8,9]. Recall that the L2-distance on measures

is defined as

‖µ− π‖L2(π) =
(∑

x

∣∣∣µ(x)

π(x)
− 1
∣∣∣2π(x)

)1/2
,
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and set

Mt =

m∑
i=1

∥∥∥Px0 [(X
(i)
t−−Si(Ui) ∈ · | Ui, Si]− π

(i)|Ui
∥∥∥2

L2(π(i)|Ui )
. (3.16)

By [9, Proposition 7],∥∥∥P((X
(1)
t−−S1

(U1), . . . , X
(m)
t−−Sm(Vm)) ∈ ·

)
− (π(1)|U1 , . . . , π

(m)|Um)
∥∥∥
tv
≤
√
Mt. (3.17)

We are now ready to prove the upper bound for the main theorem.

Proof of Theorem 1, Upper bound. Again we focus on the case of xalt. Set

t? =
1

(4− 2θ) ∧ 4θ
log n+

(
κ+

3L+ 6

(4− 2θ) ∧ 4θ

)
log log n .

With this choice of t? we have that P(Ic) → 0 and so, by equations (3.10), (3.13) and (3.17), it is

sufficient to show that

E [Mt1I ]→ 0 . (3.18)

Since each vertex is either plus or minus with probability that is uniformly bounded below by e−2β

e−2β+e2β
,

given any choice of conditioning on the other vertices, we have that

min
Ui

min
x∈{±1}Ui

π|Ui(x) ≥
(

e−2β

e−2β + e2β

)L
.

Comparing the L1 and L2 bounds we have that for any measures µ and set Ui,

‖µ|Ui − π|Ui‖
2
L2(π|Ui )

=
∑
x

1

π|Ui(x)

∣∣∣µ|Ui(x)− π|Ui(x)
∣∣∣2

≤ 2L
(
e−2β + e2β

e−2β

)L
max

x∈{±1}Ui

∣∣∣µ|Ui(x)− π|Ui(x)
∣∣∣2

≤ 2L
(
e−2β + e2β

e−2β

)L ∥∥∥µ|Ui − π|Ui∥∥∥2

tv
.

Thus, by Lemma 3.4,

E [Mt1I ] ≤ E
[
2L
(
e−2β + e2β

e−2β

)L m∑
i=1

∥∥∥Px0 [(X
(i)
t−−Si(Ui) ∈ · | Ui, Si]− π

(i)|Ui
∥∥∥2

tv

]

≤ 2L
(
e−2β + e2β

e−2β

)L
nE
[(
Ct−e

−(t−−Si) min{2θ,2−θ}
)2
]

≤ C ′(β)e−t−min{4θ,4−2θ}n log2 nE
[
emin{4θ,4−2θ}Si

]
= C ′(β) (log n)−(3L+4) E

[
emin{4θ,4−2θ}Si

]
,
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for some C ′(β). Finally, by equation (3.11)

E
[
emin{4θ,4−2θ}Si

]
≤
∞∑
k=1

emin{4θ,4−2θ}kP (Si ∈ (k − 1, k))

≤
∞∑
k=1

emin{4θ,4−2θ}ke−(k−1)(L+1)θ log3(L+1) n = O(log3L+3 n) .

Combining the previous two inequalities implies that EMt1I → 0 and hence we have that∥∥Pxalt (Xt? ∈ ·)− π
∥∥
tv
→ 0 ,

as required. The proof for xblt follows similarly for the choice of

t? =
1

2 ∧ 4θ
log n+

(
κ+

3L+ 6

2 ∧ 4θ

)
log log n . �

4. Lower bounds

In order to establish the lower bound we will analyze two separate test functions. First, in order to

analyze our test functions, we establish the following decay of correlation bound.

Lemma 4.1. Let V1, V2 ⊂ Z/nZ such that d(V1, V2) ≥ log2 n and let fi : {±1}Vi → R be functions with

‖fi‖∞ ≤ 1. Then for any initial condition x0 and time t we have that

Covx0(f1(Xt(V1)), f2(Xt(V2))) = O(n−5).

Proof. We will prove the result by showing that Yi = fi(Xt(Vi)) can be approximated locally. Let

V +
i = {v : d(v, Vi) ≤ 1

10 log2 n} and so the V +
i are disjoint. Let Ji denote the sigma-algebra of

generated by updates in V +
i and set Ŷi = Ex0 [Yi | Ji]. Since the V +

i are disjoint the Ŷi depend on

independent updates and so are independent. Let

G =

{
max
0≤s≤t

Fs(v,s,t)6=∅

|v −Fs(v, s, t)| ≥ 1
10 log2 n

}
be the event in Lemma 2.1. On the event G, the random variables Yi are completely determined by the

initial condition and the updates in V +
i and so YiI(G) = ŶiI(G). Thus,∣∣∣Ex0 [Y1Y2]− E[Ŷ1Ŷ2]

∣∣∣ ≤ Ex0 [2I(Gc)] = O(n−10) .

and hence

Covx0(Y1, Y2) = Covx0(Y1, Y2)− Covx0(Ŷ1, Ŷ2) = O(n−10) ,

which completes the proof. �

Since the above bound is uniform in t by taking t to infinity we get the result for X given by the

stationary measure as well.
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4.1. Autocorrelation test functions. The magnetization test function achieves, at least up to an

additive constant, the mixing time from the all-plus initial condition, which is asymptotically the

worst-case (see [11]). In this light it is natural to consider test functions for xalt and xblt based on

the autocorrelation,
∑n

i=1Xt(i)x0(i). This can be seen as a special case of a test function based on

conditional expectations,

Rx0,t(X) =
n∑
i=1

X(i)Ex0 [Xt(i)].

Because of the special structure of the histories as a killed random walk the expectation has the

following useful representation. Let Pt be the semigroup of a continuous-time rate-1 simple random

walk on Z/nZ. Then by the killed random walk representation we have that

Ex0 [Xt(i)] = e−θt(P(1−θ)tx0)(i)

The eigenvectors of Pt are e2πikx with eigenvalues 1 − cos(2πkθ) for k ∈ {0, . . . , n − 1}. Since the

simple random walk is reversible with uniform stationary distribution we can write an orthonormal

basis of real eigenvectors ηk with eigenvalues λk. Not that both xalt and xblt are eigenvectors of Pt
with eigenvalues 2 and 1 respectively and in fact 2 is the largest eigenvalue. We first give a condition

for the chain to not be sufficiently mixed starting from x0.

Lemma 4.2. If for a sequence of initial conditions x0 and time points t we have

lim
n→∞

e2θt log3 n

‖P(1−θ)tx0‖2
= 0 ,

then

lim
n→∞

‖Px0 (Xt ∈ ·)− π‖tv = 1 .

Proof. Let Y be distributed according to the stationary distribution. Then by symmetry,

E [Rx0,t(Y )] = 0 ,

while

Ex0 [Rx0,t(Xt)] =

n∑
i=1

(Ex0 [Xt(i)])
2 = e−2tθ

∥∥P(1−θ)tx0

∥∥2

2
.

To estimate the variance, observe that

Varx0 (Rx0,t(Xt)) =

n∑
i=1

n/2∑
j=−n/2+1

Cov (Xt(i)Ex0 [Xt(i)] , Xt(i+ j)Ex0 [Xt(i+ j)])

≤ e−2tθ

n/2∑
j=−n/2+1

n∑
i=1

∣∣(P(1−θ)tx0)(i)
∣∣ ∣∣(P(1−θ)tx0)(i+ j)

∣∣ ∣∣Cov(Xt(i), Xt(i+ k))
∣∣ .



FAST INITIAL CONDITIONS FOR GLAUBER DYNAMICS 13

By Lemma 4.1, this is at most

e−2tθ
log2 n∑

j=− log2 n

n∑
i=1

∣∣(P(1−θ)tx0)(i)
∣∣ ∣∣(P(1−θ)tx0)(i+ j)

∣∣
+O(n−10)e−2tθ

n/2∑
j=−n/2+1

n∑
i=1

∣∣(P(1−θ)tx0)(i)
∣∣ ∣∣(P(1−θ)tx0)(i+ j)

∣∣
≤ O(log2 n)e−2tθ

∥∥P(1−θ)tx0

∥∥2

2
,

where the final inequality follows by the rearrangement inequality. Since Lemma 4.1 also applies to the

stationary distribution, we further have

Var (Rx0,t(Y )) = O(log2 n)e−2tθ
∥∥P(1−θ)tx0

∥∥2

2
.

Our test function considers the set A =
{
x ∈ {±1}Z/nZ : Rx0,t(x) ≥ 1

2e
−2θt‖P(1−θ)tx0‖22

}
. Therefore,

by Chebyshev’s inequality,

Px0 (Xt ∈ Ac) ≤
Varx0(Rx0,t(Xt))(

Ex0 [Rx0,t(Xt)]− 1
2e
−2θt‖P(1−θ)tx0‖22

)2 = O

(
e2θt log2 n

‖P(1−θ)tx0‖22

)
,

and so by the assumption of the lemma Px0 (Xt ∈ A)→ 1. Similarly,

P (Y ∈ A) ≤ Var(Rx0,t(Y ))(
1
2e
−2θt‖P(1−θ)tx0‖22

)2 = O

(
e2θt log2 n

‖P(1−θ)tx0‖22

)
,

so P (Y ∈ A)→ 0 which completes the lemma. �

We can now establish Proposition 3, giving a lower bound for any deterministic initial condition.

Proof of Proposition 3. Writing x0 =
∑

j bjηj we have that

‖Ptx0‖22 =

∥∥∥∥∑
j

bjηje
−λjt

∥∥∥∥2

2

=
∑
j

b2je
−2λjt ≥ e−4t

∑
j

b2j = e−4t ‖x0‖22 = e−4tn ,

where the inequality follows from the fact that all the eigenvalues are bounded by 2. Thus,

e2θt? log3 n

‖P(1−θ)t?x0‖2
≤ e(4−2θ)t? log3 n

n
≤ 1

log n
,

and so, by Lemma 4.2, we have that ‖Px0 (Xt? ∈ ·)− π‖tv → 1, as claimed. �

This gives the right bound in the case of xalt since it is an eigenvector of eigenvalue 2. For xblt we

get a stronger lower bound. Since it has eigenvalue 1,∥∥∥Ptxblt
∥∥∥2

2
=
∥∥∥e−txblt

∥∥∥2

2
= e−2t

∥∥∥xblt
∥∥∥2

2
= e−2tn .

So, taking t? = 1
2 log n− 8 log log n,

e2θt? log3 n

‖P(1−θ)t?x0‖2
=
e2t? log3 n

n
≤ 1

log n
,
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and hence by Lemma 4.2 we have that

‖Pxblt (Xt? ∈ ·)− π‖tv → 1 . (4.1)

4.2. Hamiltonian test functions. The alternating initial condition xalt is an extreme value for the

Hamiltonian and measuring its convergence to stationarity gives another test of convergence. Such test

functions were studied in [11] to analyze the a random annealed initial condition. To treat xalt and

xblt in a unified manner, consider the function R : {±1}Z/nZ → R given by

R(X) =

n/4∑
i=1

X(4i)X(4i+ 1) .

For every x0 and t we have that, by Lemma 4.1,

Varx0(R(Xt)) =

n/4∑
i=1

n/4∑
j=1

Cov (X(4i)X(4i+ 1), X(4j)X(4j + 1)]) = O(n log2 n) . (4.2)

If Y is taken from the stationary distribution by taking a limit as t → ∞, then we also have that

Var(R(Y )) = O(n log2 n). Let H denote the set of all histories of the vertices from time t?, and

consider Ex0 [Xt?(i)Xt?(i
′) | H ]. If the histories of i and i′ merge then Xt?(i) and Xt?(i

′) must take

the same value and Ex0 [Xt?(i)Xt?(i
′) |H ] = 1. If the histories do not merge and at least one is killed

before reaching time 0 then it is equally likely to be ±1 so Ex0 [Xt?(i)Xt?(i
′) | H ] = 0. Thus, the

boundary condition can only play a role when both histories survive to time 0 and do not merge, as

captured by the event

Ki,i′ =
{
|Fs(i, 0, t?)| = |Fs(i

′, 0, t?)| = 1, Fs(i, 0, t?) 6= Fs(i
′, 0, t?)

}
.

Let Y be an independent configuration distributed as π and let Eπ denotes the expectation started

from the stationary measure. Then

Eπ
[
Xt?(i)Xt?(i+ 1)1Ki,i+1 |H

]
= Eπ

[
X0(Fs(i, 0, t))X0(Fs(i+ 1, 0, t))1Ki,i+1 |H

]
= E[Y (Fs(i, 0, t))Y (Fs(i+ 1, 0, t))1Ki,i+1 |H ] ≥ 0 , (4.3)

as the ferromagnetic Ising model is positively correlated. In a graph with two vertices connected by an

edge, the correlation of spins of the Ising model can be found to be tanh θ. Correlations are monotone

in the edges of the graph, so for neighboring vertices in Z/nZ we have E[Y (i)Y (i + 1)] ≥ tanh θ > 0.

It was shown in the proof of Theorem 6.4 of [11] that

P (Fs(i, 0, t) = {i}, Fs(i+ 1, 0, t) = {i+ 1}) ≥ c1t
−2e−2θt ,

and so

Eπ
[
Xt?(i)Xt?(i+ 1)1Ki,i+1 |H

]
≥ tanh(θ)P (Fs(i, 0, t?) = {i}, Fs(i+ 1, 0, t?) = {i+ 1})

≥ c1 tanh(θ)t−2
? e−2θt? . (4.4)

We will compare this bound with the behavior under the initial conditions xalt and xblt.
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Claim 4.3. For x0 ∈ {xalt, xblt} and i ≡ 0 (mod 4) we have that

Ex0
[
Xt?(i)Xt?(i+ 1)1Ki,i+1 |H

]
≤ 0.

Proof. We first treat the case of xalt. Let Z1(t) and Z2(t) be independent rate-(1− θ) continuous-time

simple random walks with initial conditions Z1(0) = i and Z2(0) = i + 1. Let T denote the first time

the walks hit each other and W (t) = xalt(Z1(t))xalt(Z2(t)). By the killed random walk representation

of the histories, we have that

Exalt
[
Xt?(i)Xt?(i+ 1)1Ki,i+1 |H

]
= e−2θE

[
xalt(Z1(t?))x

alt(Z2(t?))1T>t?

]
= e−2θE [W (t?)1T>t? ] .

Note that W (t) is itself a Markov chain with state space {±1} and transition rate 2(1− θ), and so

E[W (t+ s) |W (s)] = e−4(1−θ)W (s) . (4.5)

Thus, since W (0) = −1 by the definition of xalt, and W (T ) = 1, applying (4.5) we get

E [W (t?)1T>t? ] = E [W (t?)]− E [W (t?)1T≤t? ] = −e−4(1−θ)t? − E
[
1T≤t?E

[
W (t?)

∣∣∣T]]
= −e−4(1−θ)t? − E

[
1T≤t?e

−4(1−θ)(t?−T )
]
≤ 0 .

Hence, Exalt [Xt?(i)Xt?(i+ 1)1Ki,i+1 |H ] ≤ 0.

For xblt, the process xblt(Z1(t))xblt(Z2(t)) is again a Markov chain but with transition rate 1 − θ.
The requirement that i is a multiple of 4 was chosen to ensure that xblt(Z1(0))xblt(Z2(0)) = −1. The

argument is otherwise unchanged. �

Combining Lemma 4.5 with equation (4.4), we obtain that

Eπ[Xt?(i)Xt?(i+ 1)]− Exalt [Xt?(i)Xt?(i+ 1)]

= Eπ[Xt?(i)Xt?(i+ 1)1Ki,i+1 ]− Exalt [Xt?(i)Xt?(i+ 1)1Ki,i+1 ] ≥ c1 tanh(θ)t−2
? e−2θt? ,

and thus

E[R(Y )]− Ex0 [R(Xt?)] ≥ c1 tanh(θ)t−2
? e−2θt? n

4
. (4.6)

We are now ready to prove the second lower bound.

Lemma 4.4. Set

t? = 1
4θ t? −

5
θ log log n .

For x0 ∈ {xalt, xblt} we have

lim
n→∞

‖Px0 [Xt? ∈ ·]− π‖tv = 1 .

Proof. Denote by A the event

A =
{
x ∈ {±1}Z/nZ : R(x) ≥ 1

2(E[R(Y )] + Ex0 [R(Xt?)])
}
.

By Chebyshev’s inequality and equations (4.2) and (4.6)

Px0(Xt? ∈ A) ≤ Varx0(R(Xt?))(
1
2(E[R(Y )]− Ex0 [R(Xt?)])

)2 = O

(
n log2 n

t−4
? e−4θt?n2

)
→ 0 ,
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and similarly

P(Y ∈ Ac) ≤ Var(R(Y ))(
1
2(E[R(Y )]− Ex0 [R(Xt?)])

)2 → 0 .

Hence, ‖Px0(Xt? ∈ ·)− π‖tv → 1, as claimed. �

Proof of Theorem 1, Lower bound. The case of xalt follows from combining Proposition 3 and

Lemma 4.4, while the lower bound for xblt follows from equation (4.1) and Lemma 4.4. �
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