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Abstract

Random walks on expander graphs were thoroughly studied, with the important motivation

that, under some natural conditions, these walks mix quickly and provide an efficient method

of sampling the vertices of a graph. The authors of [2] studied non-backtracking random walks

on regular graphs, and showed that their mixing rate may be up to twice as fast as that of the

simple random walk. As an application, they showed that the maximal number of visits to a

vertex, made by a non-backtracking random walk of length n on a high-girth n-vertex regular

expander, is typically (1 + o(1)) log n

log log n
, as in the case of the balls and bins experiment. They

further asked whether one can establish the precise distribution of the visits such a walk makes.

In this work, we answer the above question by combining a generalized form of Brun’s sieve

with some extensions of the ideas in [2]. Let Nt denote the number of vertices visited precisely

t times by a non-backtracking random walk of length n on a regular n-vertex expander of

fixed degree and girth g. We prove that if g = ω(1), then for any fixed t, Nt/n is typically
1
et! + o(1). Furthermore, if g = Ω(log logn), then Nt/n is typically 1+o(1)

et! uniformly on all

t ≤ (1 − o(1)) log n

log log n
and 0 for all t ≥ (1 + o(1)) log n

log log n
. In particular, we obtain the above

result on the typical maximal number of visits to a single vertex, with an improved threshold

window. The essence of the proof lies in showing that variables counting the number of visits

to a set of sufficiently distant vertices are asymptotically independent Poisson variables.

1 Introduction

1.1 Background and definitions

Random walks on graphs have played a major role in Theoretical and Applied Computer Science, as

under some natural requirements (related to the notion of expander graphs), these walks converge

quickly to a unique stationary distribution, and enable efficient sampling of this distribution. This

fact was exploited for example in [1], [5] and [13], in the study of space efficient algorithms for S−T
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connectivity in undirected graphs. Another well known example is the conservation of random bits

in the amplification of randomized algorithms (we will elaborate on this point later on). In many

applications for random walks, it seems that using non-backtracking random walks may yield

better results, and that these walks possess better random-looking properties than those of simple

random walks. This motivated the authors of [2] to study the mixing-rate of a non-backtracking

random walk, and show that it may be up to twice as fast as that of a simple random walk. They

further show that the number of times that such a walk visits the vertices of a high-girth expander is

random-looking, in the sense that its maximum is typically asymptotically the same as the maximal

load of the classical balls and bins experiment. In this paper, we further examine this setting, and

answer a question raised in [2] by giving a precise description of the limiting distribution of these

visits.

We briefly mention some well known properties of random walks on regular graphs; for further

information, see, e.g., [11], [14]. Let G = (V,E) denote a d-regular undirected graph on n vertices.

A random walk of length k on G from a given vertex w0 is a uniformly chosen member W ∈ W,

where W = {(w0, w1, . . . , wk) : wi−1wi ∈ E} is the set of all paths of length k starting from w0.

Alternatively, a random walk on G, M, is a Markov chain whose state space is V , where the

transition probability from u to v is Puv = 1uv∈E/d. The transition probability matrix of M is

doubly stochastic, and the uniform distribution π(u) = 1/n is a stationary distribution of M. If G

is connected and non-bipartite then M is irreducible and aperiodic, in which case it converges to

the unique stationary distribution π, regardless of the starting point w0. These two sufficient and

necessary conditions have a clear formulation in terms of the spectrum of G, which also dictates

the rate at which M converges to π.

The adjacency matrix of G is symmetric and thus has n real eigenvalues, all at most d in

absolute value (by the Perron-Frobenius Theorem). Let d = λ1 ≥ λ2 ≥ . . . ≥ λn denote these

eigenvalues. It is simple and well known (see, e.g., [8]) that the multiplicity of the eigenvalue d is

equal to the number of connected components of G, and the minimal eigenvalue λn is equal to −d
iff G has a bipartite connected component. Therefore, letting λ = maxi>1 |λi| denote the maximal

absolute value of all non-trivial eigenvalues, we obtain that G is connected and non-bipartite iff

λ < d. The quantity d − λ is often referred to as the spectral gap of G, and is strongly related

to the expansion properties of the graph. In particular, when d − λ is bounded from below by a

constant, we call the graph an expander (a closely related notion of expander graphs is defined by

the expansion ratio of each set of at most n/2 vertices to its neighbor vertices in the graph). See

[10] for a survey on the many fascinating pseudo-random properties exhibited by such graphs.

An (n, d, λ) graph is a d-regular graph on n vertices, whose largest non-trivial eigenvalue in

absolute value is λ. As mentioned above, the condition λ < d is sufficient and necessary for

the random walk on G to converge to π. In this case, the quantity λ/d governs the rate of this

convergence: the mixing rate of M is defined to be lim supk→∞ |P (k)
uv − π(v)|1/k, where P

(k)
uv is the

probability that M reaches v in the k-th step given that it started from u. It is well known (see,

for instance, [11]) that the mixing rate of the simple random walk on an (n, d, λ) graph is λ/d, and
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that in fact, the L2 distance between π and the distribution of M after k steps is at most (λ/d)k.

Therefore, after Ω(logd/λ n) steps, the L2 distance between the distribution of the simple random

walk and the uniform distribution is at most 1/nΩ(1).

A useful and well known application of random walks on expander graphs is the following result,

related to the conservation of random bits (cf., e.g., [4], Corollary 9.28). Suppose G is an (n, d, λ)

graph, and U is a predefined set of αn vertices, for some α > 0. Then a random walk of length

k, starting from a random vertex, avoids U with probability at most (1 − α + αλ
d )k. Indeed, the

term (1 − α)k is the probability to miss U when selecting k vertices, uniformly and independently,

in which case we would require k log n random bits for the selection process. Using a random walk,

we require only log n+ k log d random bits, at the cost of increasing the base of the exponent by an

additive term of αλ
d . This enables amplifying the error-probability in randomized algorithms (such

as the Rabin-Miller primality testing algorithm) using fewer random bits: an algorithm utilizing

s-bit seeds can be amplified k times using s + Θ(k) random bits via a walk on a constant-degree

expander, instead of sk random bits in the naive approach.

In many applications of random walks on graphs, forbidding the random walk to backtrack

appears to produce better results; an example of this is the construction of sparse universal graphs

in [3], where a crucial element is a non-backtracking random walk on a high-girth expander. A

non-backtracking random walk of length k on G, starting from some vertex w0, is a sequence

W̃ = (w0, . . . , wk), where wi is chosen uniformly over all neighbors of wi−1 excluding wi−2. The

mixing-rate of a non-backtracking random walk on a regular graph, in terms of its eigenvalues, was

computed in [2], using some properties of Chebyshev polynomials of the second kind. It is shown

in [2] that this rate is always better than that of the simple random walk, provided that d = no(1).

In fact, the mixing rate of the non-backtracking random walk may be up to twice faster, and the

closer the graph is to being a Ramanujan graph (that is, a graph satisfying λ ≤ 2
√
d− 1), the

closer the ratio between the two mixing-rates is to 2(d− 1)/d.

As an application, the authors of [2] analyzed the maximal number of visits that a non-

backtracking random walk of length n makes to a vertex of G, an (n, d, λ) graph of fixed degree

and girth Ω(log log n). Using a careful second moment argument, they proved that this quantity is

typically (1 + o(1)) log n
log log n , as is the typical maximal number of balls in a single bin when throwing

n balls to n bins uniformly at random (more information on the classical balls and bins experiment

may be found in [7]) . In contrast to this, it is easy to see that a typical simple random walk

of length n on a graph as above visits some vertex Ω(log n) times. The authors of [2] further

asked whether it is possible to establish the precise distribution of the number of visits that a

non-backtracking random walk makes on a graph G as above.

In this paper, we answer the above question, by combining a generalized form of Brun’s Sieve

with extensions of some of the ideas in [2]. This approach shows that even if the girth of G grows

to infinity arbitrarily slowly with n, then for any fixed t, the fraction of vertices visited precisely

t times is typically (1 + o(1))n/(et!), where the o(1)-term tends to 0 as n → ∞. The extension of
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Brun’s Sieve, which includes an estimate on the convergence rate of the variables, is used to treat

the case where t depends on n, and allows the characterization of the number of vertices visited t

times for all t. In particular, this provides an alternative proof for the result of [2] of the typical

maximum number of visits to a vertex, with an improved error term. These results are summarized

below.

Throughout the paper, all logarithms are in the natural basis, and an event, defined for every

n, is said to occur with high probability or almost surely if its probability tends to 1 as n→ ∞.

1.2 Results for expanders with a non-fixed girth

A simple argument shows that the requirement for a non-fixed girth is essentially necessary if one

wishes that the number of visits at vertices will exhibit a Poisson distribution. Indeed, if G is a

graph where every vertex is contained in a cycle of a fixed length, the probability that the walk

W̃ will traverse a cycle t consecutive times, becomes much larger than the Poisson probability of t

visits to a vertex for a sufficiently large t. Simple random walks correspond to the case of cycles of

length 2.

On the other hand, this requirement on the girth turns out to be sufficient as-well: as long as

the girth of an (n, d, λ) graph G tends to infinity arbitrarily slowly with n, the number of visits that

a non-backtracking random walk makes to vertices exhibits a Poisson distribution, as the following

theorem states:

Theorem 1.1. For fixed d ≥ 3 and fixed λ < d, let G be an (n, d, λ) graph whose girth is at least

g = ω(1). Let W̃ = (w0, . . . , wn) denote a non-backtracking random walk of length n on G from

w0, and Nt the number of vertices which W̃ visits precisely t times:

Nt =
∣∣{v ∈ V (G) : |{1 ≤ i ≤ n : wi = v}| = t

}∣∣ . (1)

Then for every fixed t, Nt/n = 1/(et!) + o(1) almost surely, the o(1)-term tending to 0 as n→ ∞.

As we later mention, the above theorem in fact holds even for non-fixed λ, d (as long as the

spectral gap is large compared to d/g). The essence of the proof of Theorem 1.1 lies in proving that

the variables counting the visits at vertices, whose pairwise distances are large, are asymptotically

independent Poisson variables:

Proposition 1.2. Let G be a graph as in Theorem 1.1. For some fixed r and µ > 0, let v1, . . . , vr

denote vertices of G whose pairwise distances are at least g. Let W̃ be a non-backtracking random

walk of length m = µn on G starting from v1, and Xi be the number of visits that W̃ makes to vi.

Then (X1, . . . ,Xr)
d→ (Z1, . . . , Zr) as n → ∞, where the Zi-s are i.i.d. Poisson random variables

with means µ, Zi ∼ Po(µ).

Remark 1.3: The statement of Proposition 1.2 holds (with the same proof) even if we replace

the requirement on the girth of G with the weaker assumption, that v1, . . . , vr are not contained in
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a closed nontrivial walk of length smaller than g. In this case, the presence of other possibly short

cycles in G has no effect on the limiting distribution of (X1, . . . ,Xr).

Remark 1.4: The parameters λ and d in Theorem 1.1 and in Proposition 1.2 need not be fixed,

as long as the spectral gap, d − λ, is ω(d/g) (where g = ω(1) was the lower bound on the girth

of G). For the sake of simplicity, we prove the case of fixed d, λ, and later describe the required

adjustments for the general case.

1.3 Stronger results for high-girth expanders

Letting Nt continue to denote the number of vertices visited t times by a non-backtracking random

walk of length n on G, as in (1), consider the case where t is no longer fixed. In case we want

to extend the result of Theorem 1.1 for values of t which depend on n, and approximate Nt by

n/(et!) uniformly over all t, a behavior analogous to the balls and bins model, we need to assume

a larger girth. As noted in [2], there are d-regular expander graphs with girth g, where a typical

non-backtracking random walk visits some vertex Ω(log n/g) times. Therefore, the girth should be

at least Ω(log log n) to allow the number of visits to exhibit a Poisson distribution for all t.

Indeed, an Ω(log log n) girth suffices in order to approximate the above number of visits uni-

formly over all values of t up to the asymptotically maximal number of visits:

Theorem 1.5. Let G be as in Theorem 1.1. If g > 10 logd−1 log n then for every fixed δ > 0, the

following holds with high probability:

∣∣∣∣
Nt

n/(et!)
− 1

∣∣∣∣ ≤ 1
log log log n for all t < F (1 − δ) ,

Nt = 0 for all t > F (1 + δ) ,

(2)

where {Nt} are the variables defined in (1) and F (x) =
(

1 + x log log log n
log log n

)
log n

log log n .

The above theorem is also related to the notion of conserving random bits, which was mentioned

earlier (where the goal was to simulate a distribution which had an exponentially small probability

of avoiding a set, using a linear number of random bits). Indeed, using Θ(n) random bits, it is

possible to simulate a distribution which resembles the resulting distribution of throwing n balls

to n bins uniformly and independently, as opposed to the naive approach, which requires n log n

random bits.

Theorem 1.5 also immediately gives the result of [2] regarding the maximal number of visits that

a non-backtracking random walk makes to a single vertex, with an improved threshold window,

replacing the o
(

log n
log log n

)
error term by o

(
(log n)(log log log n)

(log log n)2

)
:

Corollary 1.6. For any fixed d ≥ 3 and fixed λ < d the following holds: if G is an (n, d, λ) graph

whose girth is larger than 10 logd−1 log n, then the maximal number of visits to a single vertex made
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by a non-backtracking random walk of length n on G is with high probability

(
1 + (1 + o(1))

log log log n

log log n

)
log n

log log n
,

where the o(1)-term tends to 0 as n→ ∞.

The proof of Theorem 1.5 follows from a result analogous to Proposition 1.2, however, since we

require an estimate on the rate of convergence to Poisson variables, we require an extended form of

a multivariate Brun’s Sieve (Proposition 3.1). The proof may be applied to a more general setting,

where the set of visited vertices has size depending on n, and the walk is of length ω(n). However,

for the sake of simplicity, we work in the setting of Theorem 1.5, that is, a fixed set of vertices and

a walk of length Θ(n), as stated in the following proposition:

Proposition 1.7. Let G be a graph as in Theorem 1.1. For some fixed r and µ > 0, let v1, . . . , vr

denote vertices of G whose pairwise distances are at least g. Let W̃ be a non-backtracking random

walk of length m = µn on G starting from v1, and Xi be the number of visits that W̃ makes to vi.

If g ≥ c logd−1 log n for some fixed c > 6 then

∣∣∣∣
Pr[

⋂r
i=1Xi = ti]∏r

i=1 Pr[Z = ti]
− 1

∣∣∣∣ ≤ O
(

(log n)
6−c
4

)
for all t1, . . . , tr ∈ {0, 1, . . . , ⌊log n⌋} ,

where Z ∼ Po(µ) and the o(1)-term tends to 0 as n→ ∞.

Remark 1.8: As in the case of Proposition 1.2 (see Remark 1.3), the requirement on the girth

in Proposition 1.7 may be replaced with the assumption that {v1, . . . , vr} are not contained in a

closed nontrivial walk of length smaller than g.

1.4 Organization

The rest of the paper is organized as follows: in Section 2 we prove Theorem 1.1 and Proposition 1.2

concerning expanders with a non-fixed girth. In Section 3 we formulate and prove the multivariate

version of Brun’s Sieve which specifies the rate of convergence to the limiting distribution. This

version is subsequently used in Section 4 to prove the above mentioned Theorem 1.5 and Proposition

1.7. The final section, Section 5, is devoted to concluding remarks and some open problems.

2 A Poisson approximation for expanders with a non-fixed girth

2.1 Proof of Proposition 1.2

For the simpler goal of proving Poisson convergence without estimating its rate, we will need the

following known results. The well known univariate version of Brun’s Sieve states the following:
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Theorem 2.1 (Brun’s Sieve). Let X = X(n) be a sum of indicator variables, and let µ > 0. If for

every r, limn→∞ E
(X

r

)
= µr/r!, then X

d→ Z as n→ ∞, where Z ∼ Po(µ).

See, e.g., [4] (pp. 119-122) for the derivation of this result from the Inclusion-Exclusion Principle

and the Bonferroni inequalities [6], as well as for several applications. A multivariate version of

Brun’s Sieve is stated in [9], and a proof of the multivariate version by induction (using Brun’s

Sieve once for the base of the induction, and once more for the induction step) appears in [15]:

Theorem 2.2 (Multivariate Brun’s Sieve). Let X1 = X(n), . . . ,Xr = Xr(n) denote sums of indi-

cator variables, and let µ1, . . . , µr > 0. If for every t1, . . . , tr, limn→∞ E[
∏r

i=1

(Xi

ti

)
] =

∏r
i=1 µ

ti
i /ti!,

then (X1, . . . ,Xr)
d→ (Z1, . . . , Zr), where the Zi-s are independent Poisson variables, Zi ∼ Po(µi).

While a stronger version of Brun’s Sieve is proved in Section 3 (Proposition 3.1), Theorem 2.2

suffices for the proof of Proposition 1.2, where the rate of convergence to the Poisson distribution

is not specified. Indeed, letting X1, . . . ,Xr and µ be as in Proposition 1.2, we need to prove that

lim
n→∞

E[
r∏

i=1

(
Xi

ti

)
] =

r∏

i=1

µti

ti!
for all t1, . . . , tr . (3)

Fix integers t1, . . . , tr, and set t =
∑r

i=1 ti. Let (v1, w1, . . . , wm) denote the path of the non-

backtracking random walk W̃ , and for all i ∈ [r] and j ∈ [m] let Xij denote the indicator for the

event that W̃ visits vi in position j; that is, Xij = 1{wj=vi}, and by definition, Xi =
∑m

j=1Xij . It

follows that:

E

[ r∏

i=1

(
Xi

ti

)]
=

∑′
I1,...,Ir

Pr
[ ⋂

i∈[r]

⋂

j∈Ii

Xij = 1
]
, (4)

where
∑′ ranges over I1, . . . , Ir ⊂ [m] with |Ii| = ti. We will rewrite the right-hand-side of the

above equation. To this end, set

L = (log n)2 , (5)

and let g = ω(1) be a lower bound for the girth of G, which satisfies g = o(L) (such a g exists

by the assumption on G). For all s ∈ {0, . . . , t =
∑
ti}, let Is denote the collection of r-tuples

(I1, . . . , Ir) where:

• I1, . . . , Ir are disjoint subsets of [m] and |Ij| = tj for all j.

• There are precisely s consecutive elements of ∪jIj ∪ {0} whose distance is less than L.

In other words:

Is =

{
(I1, . . . , Ir) :

⋃
j Ij = {x1, x2, . . . , xt} ⊂ [m], x0 = 0, |Ij | = tj for all j,

xi−1 < xi for all i, and |{1 ≤ i ≤ t : xi − xi−1 < L}| = s

}
. (6)

Notice that the events Xij = 1 and Xi′j = 1 are disjoint for i 6= i′. Therefore, (4) takes the following

form:

E

[ r∏

i=1

(
Xi

ti

)]
=

t∑

s=0

∑

(I1,...,Ir)∈Is

Pr[
⋂

i∈[r]

⋂

j∈Ii

Xij = 1] . (7)

7



The following claim estimates the probability that a non-backtracking random walk, starting from

some given vi, would end up in some given vj after less than L steps, as well as after some given

k ≥ L number of steps. Here and in what follows, the notation P̃
(k)
uv denotes the probability that a

non-backtracking random walk of length k, which starts in u, ends in v.

Claim 2.3. Let G be as above, and define: M = maxi,j∈[r]

∑
k<L P̃

(k)
vivj . Then M = o(1) and

P̃
(k)
vivj = 1+o(1)

n for all k ≥ L and i, j ∈ [r], where in both cases the o(1)-term tends to 0 as n→ ∞.

Proof. We need a few results on the mixing of non-backtracking random walks, proved in [2]. The

mixing-rate of a non-backtracking random walk on G is defined as:

ρ(G) = lim sup
k→∞

max
u,v∈V

∣∣P̃ (k)
uv − 1

n

∣∣1/k
. (8)

Theorem 1.1 of [2] determines the value of ρ as a function of λ and d:

ρ =
ψ

(
λ

2
√

d−1

)

√
d− 1

, where ψ(x) =

{
x+

√
x2 − 1 If x ≥ 1 ,

1 If 0 ≤ x ≤ 1 .
(9)

As shown in [2], one can verify that ρ ≤ max{λ
d ,

1√
d−1

}, and in our case, as λ and d are both fixed,

so is 0 < ρ < 1. Furthermore, by the proof of the above theorem,

max
uv

∣∣P̃ (k)
uv − 1

n

∣∣ ≤ (1 + o(1))ρk , (10)

where the o(1)-term tends to 0 as k → ∞, and is independent of n. In particular, by the choice of

L to be (log n)2, for every sufficiently large n we have

P̃ (k)
uv =

1 + o(1)

n
for all k ≥ L and all u, v. (11)

Take some i, j ∈ [r] (not necessarily distinct). By the assumption on the pairwise distances of

v1, . . . , vr and the girth of G, we have P̃
(k)
vivj = 0 for all k < g. On the other hand, (10) and the fact

that g = ω(1) imply that P̃
(k)
uv ≤ 1

n + (1 + o(1))ρk for all k ≥ g, giving the upper bound:

L−1∑

k=1

P̃ (k)
vivj

=

L−1∑

k=g

P̃ (k)
vivj

≤ L− g

n
+

(1 + o(1))ρg

1 − ρ
.

The required result now follows from the fact that L = o(n), ρ is fixed and g = ω(1). �

For convenience, when examining some element (I1, . . . , Ir) ∈ Is, we use the following notation:

denote by i1, . . . , is ∈ [m] the s indices of the xi-s which satisfy |xi − xi−1| < L, as in (6), the

definition of Is. In addition, for every i ∈ [m], let v(xi) denote the vertex vj , where j ∈ [r] is the

8



single index satisfying xi ∈ Ij . The following holds:

∑

(I1,...,Ir)∈Is

Pr[
⋂

i∈[r]

⋂

j∈Ii

Xij = 1]

≤
(

t

t1, . . . , tr

)(
m

t− s

)(
t

s

)(
1 + o(1)

n

)t−s L−1∑

k1=1

. . .

L−1∑

ks=1

s∏

j=1

P̃
(kj)

v(xij−1)v(xij
)

≤
(

t

tr, . . . , tr

)(
m

t− s

)(
t

s

)(
1 + o(1)

n

)t−s

M s . (12)

Letting ξ(s) denote the right hand side of (12), it follows that for all s < t:

ξ(s+ 1)

ξ(s)
=

(t− s)2

(m− t+ s+ 1)(s + 1)
· n

1 + o(1)
·M = Θ(M) = o(1) .

We deduce that

E

[ r∏

i=1

(
Xi

ti

)]
=

t∑

s=0

∑

(I1,...,Ir)∈Is

Pr[
⋂

i∈[r]

⋂

j∈Ii

Xij = 1]

≤
t∑

s=0

ξ(s) ≤ (1 + o(1))ξ(0) = (1 + o(1)

(
t

t1, . . . , tr

)(
m

t

)(
1 + o(1)

n

)t

= (1 + o(1))
µt

∏r
i=1 ti!

. (13)

For the other direction, consider J , the collection of all r-tuples of disjoint subsets of [m] \ [L],

(I1, . . . , Ir), where |Ij | = tj and the pairwise distances of the indices all exceed L:

J =

{
(I1, . . . , Ir) :

⋃
j Ij = {x1, x2, . . . , xt} ⊂ {L+ 1, . . . ,m},

|Ij | = tj for all j and xi > xi−1 + L for all i

}
. (14)

Since J ⊂ ⋃
s Is and P̃

(k)
vivj = 1+o(1)

n for all k ≥ L and i, j ∈ [r] (Claim 2.3), we get:

E

[ r∏

i=1

(
Xi

ti

)]
≥

∑

(I1,...,Ir)∈J

(
1 − o(1)

n

)t

=

(
t

t1, . . . , tr

)(
m− Lt

t

)(
1 − o(1)

n

)t

= (1 + o(1))
µt

∏r
i=1 ti!

. (15)

Inequalities (13) and (15) imply that (3) holds, completing the proof of Proposition 1.2. �

Remark 2.4: The assumption that G is an (n, d, λ) graph for some fixed d ≥ 3 and fixed λ was

exploited solely in Claim 2.3. In fact, the proof holds whenever for some L = o(n) and g = ω(1),

g < L, the girth of G is at least g and ρg = o(1). Suppose that d ≥ 3 but λ, d are no longer

fixed. Recalling that ρ ≤ max{λ
d ,

1√
d−1

}, the requirements of Proposition 1.2 may be replaced, for

instance, with G being an (n, d, λ) graph of girth larger than g = ω(1), where d− λ = ω(d/g).

9



2.2 Proof of Theorem 1.1

To prove the theorem, we use the estimates given by Proposition 1.2 for the cases r = 1, 2, and

apply a simple second moment argument. The assumptions of the theorem imply that for any two

vertices u, v ∈ V , whose distance, as well as their distance from w0, are all at least g, we have:

Pr[Xu = t] =
1

et!
+ o(1) , (16)

Pr[Xu = Xv = t] = Pr[Xu = t]2 + o(1) for every fixed t , (17)

where the two o(1)-terms tend to 0 as n→ ∞. Let g = g(n) be such that the girth of G is at least

g, and in addition, g = o(log n). Let Nt denote the number of vertices which W̃ visits precisely t

times; we wish to obtain an estimate on the probability that Nt = (1 + o(1))n/(et!). As t is fixed,

the effect of any o(n) positions along W̃ have on this value is negligible, and we may ignore the set

of vertices whose distance from w0 is less than g. Therefore, let U denote the set of vertices whose

distance from w0 is at least g, and define

N ′
t =

∑

u∈U

1{Xu=t} .

Since |U | ≥ n− d(d− 1)g−1 = (1 − o(1))n, we have:

|Nt −N ′
t |

n/(et!)
= o(1) , (18)

and thus, showing that N ′
t = (1 + o(1))n/(et!) almost surely will complete the proof. By (16),

EN ′
t = (1 + o(1))

n

et!
,

and denoting by δ(u, v) the distance between two vertices u, v, we deduce the following from (17):

Var(N ′
t) ≤ EN ′

t +
∑

u∈U

∑

v∈U

(
Pr[Xu = Xv = t] − Pr[Xu = t] Pr[Xv = t]

)

≤ EN ′
t +

( ∑

u∈U

∑

v∈U
δ(u,v)<g

Pr[Xu = t]

)
+ o(n2)

≤ (1 + o(n)) EN ′
t + o(n2) = o(n2) . (19)

Chebyshev’s inequality now gives:

Pr
[∣∣∣N ′

t −
n

et!

∣∣∣ = Ω(n)
]

= O
(
Var(N ′

t)/n
2
)

= o(1) ,

completing the proof of the theorem. �
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3 Multivariate Brun’s Sieve with an estimated rate of convergence

Recall that the versions of Brun’s Sieve stated in Section 2 (Theorem 2.1 and Theorem 2.2) do not

specify the rate of convergence to the Poisson distribution, and furthermore, the inductive proof

of the multivariate case (which appears in [15]) gives an undesirable extra dependence of the rate

of convergence on the number of variables. We therefore prove the next version of Brun’s Sieve,

which follows directly from a multivariate version of the Bonferroni inequalities:

Proposition 3.1. Let Ai = {Aij : j ∈ [Mi]}, i ∈ [r], denote r classes of events, and denote by

Xi =
∑Mi

j=1 1Aij
the number of events in Ai which occur. Suppose that for some integer T and

some choice of ε, s, µ1, . . . , µr > 0 satisfying s > µ and 2µs

s! < ε < (2reµ)−2, where µ = maxi |µi|,
we have: ∣∣∣∣

E[
∏r

i=1

(
Xi

ti

)
]

∏r
i=1 µ

ti
i /ti!

− 1

∣∣∣∣ ≤ ε for all t1, . . . , tr ∈ {0, 1, . . . , r(T + 2s)} . (20)

Then: ∣∣∣∣
Pr[

⋂r
i=1Xi = ti]∏r

i=1 Pr[Zi = ti]
− 1

∣∣∣∣ ≤ ε′ for all t1, . . . , tr ∈ {0, . . . , T} , (21)

where ε′ = 2 exp(2
∑

i µi)ε+
√
ε and Z1, . . . , Zr are i.i.d., Zi ∼ Po(µi).

Proof. We need the following known multivariate generalization of the Bonferroni inequalities:

Theorem 3.2 ([12]). Let Ai = {Aij : j ∈ [Mi]}, i ∈ [r], denote r classes of events, and let

Xi =
∑Mi

j=1 1Aij
denote the number of events in Ai which occur. Define:

S(i1,...,ir) = E[
∏

j

(
Xj

ij

)
] =

∑

I1⊂[M1]

|I1|=i1

. . .
∑

Ir⊂[Mr]

|Ir|=ir

Pr[

r⋂

j=1

⋂

k∈Ij

Ajk] (22)

The following holds for all non-negative integers m1, . . . ,mr, 0 ≤ mj ≤Mj , and k ≥ 0:

Λ(2k + 1) ≤ Pr[∩iXi = mi] ≤ Λ(2k) , where:

Λ(k) =

(
P

mj)+k∑

t=
P

mj

∑
P

ij=t

(−1)t−
P

mj

( r∏

j=1

(
ij
mj

))
S(i1,...,ir) .

(23)

As the function f(x, k) =
∑k

l=0 x
l/l! satisfies |f(x, k) − ex| ≤ 2 |x|k

k! for all x with |x| ≤ k+1
2 , the

assumption on s implies that

∣∣∣∣∣

k∑

l=0

xl

l!
− ex

∣∣∣∣∣ ≤ ε for all k ≥ 2s− 1 and |x| ≤ µ . (24)

Let m1, . . . ,mr ∈ {0, . . . , T}, and set M =
∑

imi and

p = Pr[∩iZi = mi] =
r∏

i=1

e−µi
µmi

i

mi!
. (25)
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Notice that r(T + 2s) ≤ miniMi, otherwise we would get the contradiction ε ≥ 1 from (20).

According to the notations of Theorem 3.2, by (20) and the facts M =
∑r

i=1mi and mi ≤ T :

(1 − ε)
∏

j

µ
ij
j

ij !
≤ S(i1,...,ir) ≤ (1 + ε)

∏

j

µ
ij
j

ij !
for all i1, . . . , ir ∈ {0, . . . ,M + 2rs} .

Therefore, the following holds:

Λ(k) =

M+k∑

t=M

∑
P

ij=t

(−1)t−M

( r∏

j=1

(
ij
mj

))
S(i1,...,ir)

≤
M+k∑

t=M

∑
P

ij=t

( r∏

j=1

(
ij
mj

)
µ

ij
j

ij!

)(
(−1)t−M + ε

)

=

( r∏

j=1

M+k∑

ij=mj

(
ij
mj

)
µ

ij
j

ij !
(−1)ij−mj

)
+ ε

( r∏

j=1

M+k∑

ij=mj

(
ij
mj

)
µ

ij
j

ij !

)

−
M+k∑

i1=m1

. . .

M+k∑

ir=mr

1P

ij>M+k

( r∏

j=1

(
ij
mj

)
µ

ij
j

ij !

)(
(−1)(

P

ij)−M + ε
)
. (26)

Let E1, E2, E3 denote the final three expressions in (26), that is, Λ(k) ≤ E1 + E2 − E3. A similar

calculation gives Λ(k) ≥ E1 − E2 − E3 (with room to spare, as we could have replaced E3 by a

smaller expression by replacing ε by −ε). We therefore wish to provide bounds on E1, E2, E3. For

all k ≥ 2s− 1 we have:
∣∣∣∣1 − E1

p

∣∣∣∣ =

∣∣∣∣1 − 1

p

r∏

j=1

M+k∑

ij=mj

(
ij
mj

)
µ

ij
j

ij!
(−1)ij−mj

∣∣∣∣

=

∣∣∣∣1 − 1

p

r∏

j=1

µ
mj

j

mj!

M−mj+k∑

l=0

(−µj)
l

l!

∣∣∣∣ ≤ (1 + εeµ)r − 1 ≤ e
√

ε/2 − 1 ≤
√
ε, (27)

where the first inequality is by (24), as
∣∣∣1 − eµj

∑k
l=0

(−µj)l

l!

∣∣∣ ≤ εeµ, and the second follows from

the assumption that ε < (2reµ)−2. Similarly, for k ≥ 2s − 1:

E2 = ε

r∏

j=1

M+k∑

ij=mj

(
ij
mj

)
µ

ij
j

ij !
≤ ε

r∏

j=1

eµj
µ

mj

j

mj !
= ε exp

(
2
∑

i

µi

)
p . (28)

For the bound on |E3|, recall that M =
∑

imi, and hence, if
∑

j ij ≥ M + 2rs we must have

it ≥ mt + 2s for some t. Therefore, for all k ≥ 2rs− 1:

|E3| =

∣∣∣∣
M+k∑

i1=m1

. . .

M+k∑

ir=mr

1P

ij>M+k

( r∏

j=1

(
ij
mj

)
µ

ij
j

ij !

)(
(−1)(

P

ij)−M + ε
) ∣∣∣∣

≤ (1 + ε)

M+k∑

i1=m1

. . .

M+k∑

ir=mr

1P

ij>M+k

r∏

j=1

(
ij
mj

)
µ

ij
j

ij !

≤ (1 + ε)
r∑

t=1

M+k∑

it=mt+2s

(
it
mt

)
µit

t

it!

(∏

j 6=t

eµj
µ

ij
j

ij !

)
≤ ε exp

(
2
∑

i

µi

)
p , (29)
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where the last inequality is by the fact µs

s! < ε/2, which implies that

(1 + ε)

M+k∑

it=mt+2s

(
it

mt

)
µit

t

it!
≤ (1 + ε)

µmt
t

mt!

∑

l≥2s

µl
t

l!
≤ (1 + ε)

µmt
t

mt!
· 2

µ2s
t

(2s)!
≤ 1 + ε

2
ε2eµt ≤ ε

r
eµt .

Altogether, combining (27), (28) and (29) we get the following for k ≥ 2rs− 1:
∣∣∣∣
Λ(k)

p
− 1

∣∣∣∣ ≤
√
ε+ 2 exp

(
2
∑

i

µi

)
ε = ε′ .

The proof is completed by the fact that Λ(2rs) ≤ Pr[∩iXi = mi] ≤ Λ(2rs− 1). �

4 A Poisson approximation for high-girth expanders

In this section, we prove Proposition 1.7 and its corollary, Theorem 1.5, which are analogous to

Proposition 1.2 and Theorem 1.1, but also provide an estimate on the rate of convergence to the

limiting distributions. This is imperative when looking at vertices which are visited t times, for t

tending to ∞ with n. The proof of Proposition 1.7 follows the ideas of the proof of Proposition 1.2,

where instead of the simple version of Brun’s Sieve, we use Proposition 3.1 proved in Section 3.

4.1 Proof of Proposition 1.7

Recall that g ≥ c logd−1 log n for some fixed c > 6. We need the following definitions:

τ = min
t

{∣∣∣P̃ (k)
uv − 1

n

∣∣∣ ≤ 1

n2
for all u, v ∈ V and k ≥ t

}
. (30)

T = ⌊log n⌋ , (31)

h = (log n)3−
c
2 . (32)

Recalling (10), for k = Ω(log n) we have
∣∣P̃ (k)

uv − 1
n

∣∣ ≤ n−Ω(1), giving

τ = O(log n) . (33)

According to the notation of Proposition 3.1, set µi = µ for all i, let h play the role of ε, and define

h′ to be the analogue of ε′:

h′ = 2e2rµh+
√
h = (1 + o(1))(log n)

6−c
4 . (34)

It follows from Proposition 3.1 that, in order to show that
∣∣∣∣
Pr[

⋂r
i=1Xi = ti]∏r

i=1 Pr[Z = ti]
− 1

∣∣∣∣ ≤ O(h′) for all t1, . . . , tr ∈ {0, . . . , T} ,

it suffices to show that for some s satisfying s > µ and 2µs

s! < h < (2reµ)−2 we have:

∣∣∣∣
E[

∏r
i=1

(
Xi

ti

)
]

µt/
∏r

i=1 ti!
− 1

∣∣∣∣ ≤ O(h) for all t1, . . . , tr ∈ {0, 1, . . . , r(T + 2s)} . (35)
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Substituting s = T , the requirements T > µ and h < (2reµ)−2 immediately hold for a sufficiently

large n, as T = ω(1), h = o(1) and both µ and r are fixed. The requirement 2µT

T ! < h holds as well,

since 2µT

T ! = exp (−(1 − o(1))(log n)(log log n)), and for a sufficiently large n, this term is clearly

smaller than h = exp (−O(log log n)). Therefore, proving (35) for s = T would complete the proof

of the proposition, that is, we need to show that

∣∣∣∣
E[

∏r
i=1

(
Xi

ti

)
]

µt/
∏r

i=1 ti!
− 1

∣∣∣∣ ≤ O(h) for all t1, . . . , tr ∈ {0, 1, . . . , 3rT} . (36)

Let t1, . . . , tr ∈ {0, . . . , 3rT}, and set

t =

r∑

i=1

ti ≤ 3r2T = O(log n) .

Let (v1, w1, . . . , wm) denote the path of the non-backtracking random walk W̃ , and as before, for

all i ∈ [r] and j ∈ [m] let Xij denote the indicator for the event that W̃ visits vi in position j:

Xij = 1{wj=vi} , Xi =

m∑

j=1

Xij .

As in the proof of Proposition 1.2, we next define the collection Is, this time for L = τ = O(log n).

For all s ∈ {0, . . . , t =
∑
ti}, let Is denote the collection of r-tuples (I1, . . . , Ir) of disjoint subsets

of [m], |Ij| = tj, so that there are precisely s consecutive elements of ∪jIj ∪ {0} whose distance is

less than τ :

Is =

{
(I1, . . . , Ir) :

⋃
j Ij = {x1, x2, . . . , xt} ⊂ [m], x0 = 0, |Ij | = tj for all j,

xi−1 < xi for all i, and |{1 ≤ i ≤ t : xi − xi−1 < τ}| = s

}
. (37)

The facts that the events Xij = 1 and Xi′j = 1 are disjoint for i 6= i′ implies that

E

[ r∏

i=1

(
Xi

ti

)]
=

∑

(I1,...,Ir)∈Is

Pr[
⋂

i∈[r]

⋂

j∈Ii

Xij = 1] . (38)

By definition (30), for all vi, vj and k ≥ τ , P̃
(k)
vivj ≤ n−1 + n−2. The following claim estimates the

sum of the probabilities P̃
(k)
vivj over all k < τ .

Claim 4.1. Let G be as above, and define M = maxi,j∈[r]

∑
k<τ P̃

(k)
vivj . Then M = O

(
(log n)1−

c
2

)
.

Proof. Let vi and vj denote two (not necessarily distinct) elements of {v1, . . . , vr}. By the assump-

tion on the pairwise distances of v1, . . . , vr and the girth of G, P̃
(k)
vivj = 0 for all k < g. It remains

to estimate
∑τ−1

k=g P̃
(k)
vivj .

Set ℓ = ⌊g−1
2 ⌋, and consider U , the set of vertices of G whose distance from vj is at most ℓ.

Since the girth of G is at least g, the induced subgraph of G on U is isomorphic to a d-regular tree.

Next, examine a non-backtracking walk of length k ≥ ℓ from u to v; crucially, since the walk cannot
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backtrack, the last ℓ vertices along the walk must form a path from a leaf of the above mentioned

tree, up to its root. In each of the ℓ steps along this path there is a probability of 1− 1
d−1 to stray

from the path, hence P̃
(k)
uv ≤ (d− 1)−ℓ. Altogether,

τ−1∑

k=g

P̃ (k)
vivj

≤ τ − g

(d− 1)⌊(g−1)/2⌋ = O
(

(log n)1−
c
2

)
,

as required. �

Letting i1, . . . , is ∈ [m] denote the s indices of the xi-s which satisfy |xi − xi−1| < τ in the

definition (37) of Is, and defining v(xi) = vj , where j is such that xi ∈ Ij, we have:
∑

(I1,...,Ir)∈Is

Pr[
⋂

i∈[r]

⋂

j∈Ii

Xij = 1]

≤
(

t

t1, . . . , tr

)(
m

t− s

)(
t

s

)(
1 + n−1

n

)t−s τ−1∑

k1=1

. . .

τ−1∑

ks=1

s∏

j=1

P̃
(kj)

v(xij−1)v(xij
)

≤
(

t

tr, . . . , tr

)(
m

t− s

)(
t

s

)(
1 + n−1

n

)t−s

M s . (39)

Let ξ(s) denote the right hand side of (39). Recalling that m = Θ(n) and t = O(log n), the

following holds for all s < t:

ξ(s+ 1)

ξ(s)
=

(t− s)2

(m− t+ s+ 1)(s + 1)
· n

1 + n−1
·M = O(t2M) = O

(
(log n)3−

c
2

)
= o(1) ,

where the last equality is by the fact that c > 6. Combining this with the fact that, as t = no(1),

(1 + n−1)t = 1 +O(n−1+o(1)) = 1 + o(h), we get:

t∑

s=0

ξ(s) ≤ ξ(0)

1 −O(t2M)
=

(
1 +O(t2M)

) (
t

t1, . . . , tr

)(
m

t

)(
1 + n−1

n

)t

≤
(

1 +O
(

(log n)3−
c
2

)) µt

∏r
i=1 ti!

≤ (1 +O(h))
µt

∏r
i=1 ti!

,

and:

E

[ r∏

i=1

(
Xi

ti

)]
≤

t∑

s=0

∑

(I1,...,Ir)∈Is

Pr[
⋂

i∈[r]

⋂

j∈Ii

Xij = 1] ≤ (1 +O(h))

r∏

i=1

µti

ti!
. (40)

For the other direction, consider J , the collection of all r-tuples of disjoint subsets of [m] \ [τ ],

(I1, . . . , Ir), where |Ij | = tj and the pairwise distances of the indices all exceed τ :

J =

{
(I1, . . . , Ir) :

⋃
j Ij = {x1, x2, . . . , xt} ⊂ {τ + 1, . . . ,m},

|Ij | = tj for all j and xi+1 > xi + τ for all i

}
. (41)

By the definition (30) of τ , and the fact that (1 + n−1)t = 1 +O(n−1+o(1)) = 1 + o(h),

E

[ r∏

i=1

(
Xi

ti

)]
≥

∑

(I1,...,Ir)∈J
Pr[

⋂

i∈[r]

⋂

j∈Ii

Xij = 1] ≥
∑

(I1,...,Ir)∈J

(
1 − n−1

n

)t

=

(
t

t1, . . . , tr

)(
m− τt

t

)(
1 − n−1

n

)t

=
(1 − o(h))µt

∏r
i=1 ti!

. (42)
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Combining (40) and (42), we obtain that (36) holds for all 0 ≤ t1, . . . , tr ≤ 3rT , completing the

proof. �

4.2 Proof of Theorem 1.5

The proof will follow from Proposition 1.7 using a second moment argument, in a manner analogous

to Theorem 1.1. Let g = 10 logd−1 log n; by the assumption on G, Proposition 1.7 implies that for

any two vertices u, v ∈ V , whose distance, as well as their distance from w0, are all at least g, we

have:
∣∣∣Pr[Xu = t]

1/(et!)
− 1

∣∣∣ = O

(
1

log n

)
for all t ≤ log n , (43)

∣∣∣Pr[Xu = Xv = t]

1/(et!)2
− 1

∣∣∣ = O

(
1

log n

)
for all t ≤ log n . (44)

Let t be some integer satisfying

t ≤
(

1 + c
log log log n

log log n

)
log n

log log n
for some c < 1 , (45)

and let Nt denote the number of vertices which W̃ visits precisely t times. We wish to obtain an

estimate on the probability that Nt = (1 + o(1))n/(et!). The above choice of t implies that:

n

et!
≥ exp

(
(1 − c− o(1)) log n

log log log n

log log n

)
= exp

(
(1 − c)(log n)1−o(1)

)
. (46)

Hence, the effect of any (log n)O(1) positions along W̃ on this value is negligible, and we may ignore

the set of vertices whose distance from w0 is less than g. Therefore, let U denote the set of vertices

whose distance from w0 is at least g, let Xu (u ∈ U) denote the number of visits which W̃ makes

to u, and let N ′
t =

∑
u∈U 1{Xu=t}. According to this definition, we have:

|Nt −N ′
t|

n/(et!)
= exp

(
−(1 − c)(log n)1−o(1)

)
, (47)

and it remains to determine the behavior of N ′
t. By (43),

∣∣∣∣
EN ′

t

n/(et!)
− 1

∣∣∣∣ =

∣∣∣∣
( ∑

u∈U

Pr[Xu = t]

n/(et!)

)
− 1

∣∣∣∣ = O(1/ log n) ,

and we deduce from (46) that

EN ′
t = (1 − o(1))

n

et!
= Ω

(
exp

(
(1 − c)(log n)1−o(1)

))
.

Furthermore, denoting by δ(u, v) the distance between two vertices u, v, the following holds:

Var(N ′
t) ≤ EN ′

t +
∑

u∈U

∑

v∈U

(
Pr[Xu = Xv = t] − Pr[Xu = t] Pr[Xv = t]

)

≤ EN ′
t +

( ∑

u∈U

∑

v∈U
δ(u,v)<g

Pr[Xu = t]

)
+

( ∑

u∈U

∑

v∈U
δ(u,v)≥g

O
( 1

log n

)
Pr[Xu = t]2

)

≤
(

1 + (log n)O(1)
)

EN ′
t +O

(
(EN ′

t)
2

log n

)
= O

(
(EN ′

t)
2

log n

)
. (48)
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Set h = h(n) = log log log n. Applying Chebyshev’s inequality gives the following:

Pr
[∣∣∣ N ′

t

n/(et!)
− 1

∣∣∣ ≥ 1

h

]
≤ Pr

[
|N ′

t − EN ′
t| ≥

1

2h
· n

et!

]
= O

(
h2

log n

)
,

and summing this probability for all t in the range specified in (45) (containing O( log n
log log n) values)

we deduce that with high probability:
∣∣∣∣

N ′
t

n/(et!)
− 1

∣∣∣∣ ≤
1

log log log n
for all t ≤

(
1 + c

log log log n

log log n

)
log n

log log n
. (49)

Recalling the relation between N ′
t , Nt in (47), we obtain that when replacing N ′

t by Nt, (49) holds

as well. It remains to show that with high probability, Nt = 0 for all t > t0, where

t0 =

(
1 + c

log log log n

log log n

)
log n

log log n
for some c > 1 . (50)

Let u be a vertex of G, and let Xu denote the number of visits that W̃ makes to u. Consider W̃ ′,

a non-backtracking random walk of length n on G starting from u. Proposition 1.7 (for the case of

one variable v1 = u) implies that:

Pr[X ′
u = t] =

1 + o(1)

et!
for all t ≤ log n ,

where X ′
u counts the number of visits that W̃ ′ makes to u. Clearly, the probability that Xu > t0 is

bounded from above by the probability that X ′
u ≥ t0 (as we can always condition on the first visit

to u). Therefore:

Pr[Xu > t0] ≤ Pr[X ′
u ≥ t0] = 1 −

∑

l<t0

Pr[X ′
u = l] ≤ 1 + o(1)

et0!
.

We deduce that the expected number of vertices with more than t0 visits satisfies:

E|{u ∈ V : Xu > t0}| ≤ (1 + o(1))
n

et0!
= exp

(
(1 − c)(log n)1−o(1)

)
= o(1) .

This completes the proof of the theorem. �

5 Concluding remarks and open problems

• We have shown that the distribution of the number of visits at vertices made by a non-

backtracking random walk of length n on G, a regular n-vertex expander of fixed degree

and large girth, tends to a Poisson distribution with mean 1. Furthermore, if the girth is

Ω(log log n) we prove the following concentration result: with high probability, the number

of vertices visited t times is (1 + o(1)) n
et! uniformly over all t ≤ (1− o(1)) log n

log log n , and 0 for all

t ≥ (1+o(1)) log n
log log n (in fact, the threshold window we get is sharper by a factor of log log log n

log log n ).

In particular, we obtain an alternative proof for the typical maximal number of visits to a

vertex in the above walk, and (slightly) improve upon the estimate of this maximum in [2].
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• The above result implies that the distribution of the visits at vertices made by a non-

backtracking random walk of length n on an n-vertex expander of high girth is asymptotically

the same as the result of throwing n balls to n bins independently and uniformly at random.

• The main tool in the proof is an extended version of Brun’s Sieve, which includes error esti-

mates and may be of independent interest. Combining this result with some additional ideas,

we show that the variables counting the number of visits to vertices, which are sufficiently

distant apart, are asymptotically independent Poisson variables. This implies the required

result on the overall distribution of the number of visits at vertices.

• Theorem 1.5 characterizes the distribution of visits at vertices in non-backtracking random

walk on a high-girth regular expander. For such a graph on n vertices, the values Nt/n

converge to (1 + o(1))/(et!), where Nt is the number of vertices visited precisely t times in a

walk of length n as above. Moreover, we show that the above convergence of {Nt

n } is uniform

over all values of t up to roughly log n
log log n , after which Nt is almost surely 0.

It seems interesting to investigate this distribution, (N0

n ,
N1

n , . . . ,
Nn

n ), as a parameter of general

vertex transitive graphs, and determine it for additional families of such graphs.

• Corollary 1.6 determines that the maximum number of visits to a vertex, made by a typical

non-backtracking random walk of length n on a high-girth n-vertex regular expander, is

(1 + o(1)) log n
log log n (with an improved error term compared to the results of [2]).

For which other families of d-regular graphs, with d ≥ 3, is this maximum Θ( log n
log log n)?

• The “random setting”, where n balls are thrown to n bins, uniformly at random, results in a

maximal load of (1 + o(1)) log n
log log n ; it seems plausible that this bound is the smallest maximal

load possible for a non-backtracking walk on any regular graph of degree at least 3. Is it

indeed true that for any n-vertex d-regular graph with d ≥ 3, a non-backtracking random

walk of length n visits some vertex at least (1 + o(1)) log n
log log n times almost surely?
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