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Abstract. We study Glauber dynamics for the mean-field (Curie-Weiss) Potts model
with q > 3 states and show that it undergoes a critical slowdown at an inverse-temperature
βs(q) strictly lower than the critical βc(q) for uniqueness of the thermodynamic limit.
The dynamical critical βs(q) is the spinodal point marking the onset of metastability.

We prove that when β < βs(q) the mixing time is asymptotically C(β, q)n logn and
the dynamics exhibits the cutoff phenomena, a sharp transition in mixing, with a window
of order n. At β = βs(q) the dynamics no longer exhibits cutoff and its mixing obeys

a power-law of order n4/3. For β > βs(q) the mixing time is exponentially large in n.
Furthermore, as β ↑ βs with n, the mixing time interpolates smoothly from subcritical
to critical behavior, with the latter reached at a scaling window of O(n−2/3) around βs.
These results form the first complete analysis of mixing around the critical dynamical
temperature — including the critical power law — for a model with a first order phase
transition.

1. Introduction and Results

We study the dynamics of the Potts model on the complete graph (mean-field) known
as the Curie-Weiss Potts model. For n > 1, β > 0, the Curie-Weiss Potts distribution is
a probability measure on Σn = QV where Q = {1, . . . , q} and V = {1, . . . , n}, defined by

µn(σ) = Z−1
β,n exp

{
(β/n)

∑
u,v∈V

1σ(u)=σ(v)

}
,

where σ ∈ Σn and Zβ,n is the normalizing constant. When q = 2 this is the classic Ising
model while in this paper we will focus on the case q > 3 for an integer q (for an extension
to non-integer q via the random cluster model, see e.g. [23]). We use the standard notation
βc(q) for the (explicitly known) threshold value between the ordered and the disordered
phases (see [16]).

Throughout the paper (σt)t > 0 will denote the discrete time Glauber dynamics for this
model, namely, starting from σ0, at each step we choose a vertex u ∈ V uniformly and set

σt+1(v) =

{
σt(v) if v 6= u
k with probability µn

(
σ(u) = k

∣∣σ(w) = σt(w) ∀w 6= u
)

if v = u.

We denote by Pn the transition kernel for this Markov process and by Pσ0 the underlying
probability measure. We will measure the distance between the distribution of the chain
at time t and its stationary distribution µn via the total-variation norm. Accordingly,

dσ0t (n) = ‖Pσ0 (σt ∈ ·)− µn‖TV and dt(n) = max
σ0∈Σn

dσ0t (n).

For ε ∈ (0, 1), the ε-mixing time is the number of steps until the total-variation distance
to stationarity is at most ε in the worst case, i.e.:

tmix(ε)(n) = inf{t : dt(n) 6 ε}
and by convention we set tmix(n) := tmix(1/4)(n). If for any fixed ε ∈ (0, 1)

wε(n) , tmix(ε)(n)− tmix(1−ε)(n) = o(tmix(1/4)(n)) as n→∞,
1
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Figure 1. Rapid mixing with cutoff in the subcritical regime of β < βs(q) for q = 3.
Blue curve marks the magnetization vector of the Glauber dynamics along time.

we say that the family of Markov chains exhibits the cutoff phenomenon, which describes
a sharp drop in the total variation distance from close to 1 to close 0 (in an interval of time
of smaller order than tmix(n) denoted as the cutoff window). Observe that cutoff occurs if
and only if tmix(δ)(n)/tmix(ε)(n)→ 1 as n→∞ for any fixed δ, ε ∈ (0, 1).

1.1. Results. We show that the dynamics for the Curie-Weiss model undergoes a critical
slowdown at an inverse-temperature βs(q) > 0. This dynamical threshold is given by

βs(q) = sup

{
β > 0 :

(
1 + (q − 1)e

2β 1−qx
q−1

)−1
− x 6= 0 for all x ∈ (1/q, 1)

}
. (1.1)

Unlike mean-field Ising, for which βs(2) = βc(2) = 1, the dynamical transition for q > 3
occurs at a strictly higher temperature than the static phase transition, i.e., βs(q) < βc(q).

Our first result addresses the regime β < βs(q), where rapid mixing occurs within
O(n log n) steps and the dynamics exhibits cutoff with a window of size O(n) (see Fig. 1).

Theorem 1. Let q > 3 be an integer. If β < βs(q) then the Glauber dynamics for the
q-state Curie-Weiss Potts model exhibits cutoff at mixing time

tmix(n) = α1(β, q)n log n (1.2)

with cutoff window wε(n) = Oε(n) where α1(β, q) = [2 (1− 2β/q)]−1.

We proceed to analyze the order of the mixing time as β(n)→ βs(q) as n→∞,

β(n) = βs(q)− ξ(n) (1.3)

where ξ(n) → 0 as n → ∞. The asymptotics of the mixing time will, of course, depend
on how fast ξ decays, but it turns out that cutoff is observed only iff the decay is slow
enough. This is captured in the following theorem.

Theorem 2. Let q > 3 be an integer. With β(n) given as in equation (1.3) we have:

(1) If limn→∞ n
2/3ξ(n) = ∞ then the Glauber dynamics has cutoff with mixing time

and cutoff window given by

tmix(n) = α1(β(n), q)n log n+ α2(q)n/
√
ξ(n) ,

wε(n) = Oε
(
n+

√
n/ξ(n)5/2

)
, (1.4)

where α2(q) is a positive constant and α1 is the constant defined in Theorem 1.

(2) If 0 6 lim infn→∞ n
2/3ξ(n) 6 lim supn→∞ n

2/3ξ(n) < ∞ then the dynamics does
not exhibit cutoff and has mixing time

tmix(ε)(n) = Θε

(
n4/3

)
. (1.5)
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Figure 2. Slow mixing without cutoff in the supercritical regime β > βs for q = 3. On
left βs < β < βc and on right β > βc. Curve color marks time from blue to red.

Part (2) of Theorem 2 in particular applies at criticality β = βs(q) where the mixing time

is of order n4/3 with a scaling window of order n−2/3 (in contrast, the mixing time for the

critical Ising model is of order n3/2 with a window of
√
n).

Finally, above βs(q) the mixing time is exponentially large in n, as depicted in Fig. 2.

Theorem 3. Let q > 3 be an integer, and fix β > βs(q). For every 0 < ε < 1 there exist
C1, C2 > 0 such that for all n,

tmix(ε)(n) > C1 exp(C2n) .

Combined these results give a complete analysis of the mixing time of Glauber dynamics
for the Curie-Weiss Potts model.

The slowdown in the mixing of the dynamics occurring as soon as β > βs(q) (be
it power-law at βs(q) or exponential mixing above this point) is due to the existence
of states from which the Markov chain takes a long time to escape. However, in the
range β ∈ [βs(q), βc(q)) the subset of initial configurations from which mixing is slow is
exponentially small in probability. One can then ask instead about the mixing time from
typical starting locations, known as essential mixing. Define the mixing time started from

a subset of initial configurations Σ̃n ⊆ Σn via dΣ̃n
t (n) = max

σ∈Σ̃n
dσt (n) as well as

tΣ̃nmix(ε)(n) = inf{t : dΣ̃n
t (n) 6 ε} and wΣ̃n

ε (n) = tΣ̃nmix(ε)(n)− tΣ̃nmix(1−ε)(n).

With these definitions we have the following result, showing that the subcritical mixing
time behavior from Theorem 1 extends all the way to β < βs(q) once one excludes a subset
of initial configurations with a total mass that is exponentially small in n.

Theorem 4. Let q > 3 be an integer and let β < βc(q). There exist constants C1, C2 > 0

and subsets Σ̃n ⊆ Σn such that the Glauber dynamics has cutoff with mixing time and
cutoff window given by

tΣ̃nmix(n) = α1(β, q)n log n ; wΣ̃n
ε (n) = Oε(n) ,

where µn(Σn \ Σ̃n) 6 C1e
−C2n and α1 is the constant in Theorem 1.

1.2. Related work. Through several decades of work by mathematicians, physicists and
computer scientists a general picture of how the mixing time varies with the temperature
has been developed. It is believed that in a wide class of models and geometries the mixing
time undergoes the following “critical slowdown”. For some critical inverse-temperature
β0 and a geometric parameter L(n), where n is the size of the system, we should have:
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Figure 3. Minimal drift towards 1/q of a single coordinate of St as a function of its
value for the Curie-Weiss Potts model with q = 3 and different values of β. Two lowest
curves correspond to β < βs, green middle curve has β = βs (with points marking its
two local extrema), second from top curve has βs < β < βc and top curve has β = βc.

• High temperature (0 6 β < βd): mixing time of order n log n with cutoff.
• Critical temperature (β = βd): mixing time of order nL(n)z for some fixed z > 0.
• Low temperature (β > βd): mixing time of order exp(τβL(n)) for some fixed τβ > 0.

For a more comprehensive description of critical slowdown see [19, 30, 33]. It should be
noted that to demonstrate the above phenomenon in full, one needs to derive precise esti-
mates on the mixing time up to the critical temperature, which can be quite challenging.

Perhaps the most studied model in this context is Ising. For the complete graph, a
comprehensive treatment is given in [17, 18, 28], where critical slowdown (as described
above) around the uniqueness threshold βc is established in full. In this setting, finer
statements about the asymptotics of the mixing time can be made. For instance, in [17]
the case where β approaches βc with the size of the system is analyzed (in Theorem 2 here
we consider this case as well). The same picture, yet with the notable exclusion of a cutoff
proof at high temperatures, is also known on the d-regular tree where [3] established the
high and low temperature regimes and recently [19] proved polynomial mixing at criticality.

From a mathematical physics point of view, the most interesting underlying graph to
consider is the lattice Zd. For d = 2 the full critical slowdown is now known: for a box with
n vertices the mixing time is O(n log n) throughout the high temperature regime [34, 35]
whereas it is exp((τβ + o(1))n) throughout the low temperature regime [13,14,39] with τβ
being the surface tension. The d = 2 picture was very recently completed by two of the
authors establishing cutoff in the high temperature regime [32] and polynomial mixing at
the critical temperature [30]. For a more comprehensive survey of recent literature for
Ising on the lattice see [30].

Turning back to the Potts model, understanding the kinetic picture here is of interest,
not just as an extension of the results for Ising, but as an example of a model with a
first order phase transition. Unlike in Ising, the free energy in the Potts model on various
graphs and values of q undergoes a first order phase transition as the temperature is varied.
This is certainly true for all q > 3 in the mean-field approximation, i.e. on the complete
graph as treated here, but also known to be the case on Zd for d > 2 and q > Q(d) for
some Q(d) <∞ [23] (although most values of Q(d) are not known rigorously, it was shown
that Q(2) = 4 [2] and Q(d) < 3 for all d large enough [6]).

A first order phase transition has direct implications on the dynamics of the system.
For one, the coexistence of phases at criticality, implies slow mixing. This is because



5

getting from one phase to another requires passing through a large free energy barrier,
i.e. states which are exponentially unlikely. Indeed, in [10, 11] the mixing time for Potts
on a box with n vertices in Zd for any fixed d > 2 and sufficiently large q is shown
to be exponential in the surface area of the box for any β larger or (notably) equal to
the uniqueness threshold βc(d, q). This should be compared with the aforementioned
polynomial mixing of Glauber dynamics for Ising at criticality. In fact, coexistence of the
ordered and disordered phases also accounts for the slow mixing of the Swendsen-Wang
dynamics at the critical temperature. This is shown in [10,11] for Zd under a similar range
of d and q and in [22] for the complete graph. Other dynamics also exhibit slow mixing
at criticality [4].

First order phase transitions are expected to lead to metastability type phenomena on
the lattice in some instances. There has been extensive work on this topic (see [5, 12]
and the references therein) yet the picture remains incomplete. It is expected that the
transition to equilibrium will be carried through a nucleation process, which has an O(1)
lifetime and therefore does not affect the order of the mixing time in contrast to the mean-
field case. This is affirmed, for instance, in Ising where O(n log n) mixing time is known for
low enough temperatures under an (arbitrarily small) non-zero external field, despite the
first order phase transition (in the field) around 0. For related works see e.g. [7,8,15,36,37]
as well as [33] and the references there.

Similarly, the Potts model on the lattice should feature rapid mixing of O(n log n)
throughout the sub-critical regime β < βc(d, q) due to the vanishing surface-area-to-volume
ratio. Thus, contrary to the critical slowdown picture predicted for Ising, whenever there
is a first order phase transition it should be accompanied by a sharp transition from fast
mixing at β < βc to an exponentially slow mixing at βc in lieu of a critical power law.
However, fast mixing of the Potts model on Zd for β < βc is not rigorously known except
at very high temperatures (where it follows from standard arguments [33]). For sufficiently
high temperatures, cutoff was very recently shown in [31].

On the complete graph however, metastability is apparent. In the absence of geometry,
the order parameter sufficiently characterizes the state of the system and thus the dynamics
and its stationary distribution are described effectively by the free energy of the system as
a function of the order parameter. While coexistence of phases implies that at criticality
the free energy is minimized at more than one value of the order parameter (corresponding
to each phase), continuity entails that some of these global minima will turn into local
minima just below or above criticality. These local minimizers correspond exactly to
the metastable states and the value (or curve) of the thermodynamic parameter (e.g.
temperature) beyond which these local minima cease to appear is called spinodal.

Consider the model at hand, namely Potts on the complete graph (for general back-
ground on the Potts model, see e.g. [9, 21, 23]). The order parameter here, analogous
to the magnetization in the Ising model, is the vector of proportions of each color s ∈
S = {x ∈ Rq+ : ‖x‖1 = 1}. It is well known that there exists βc(q), below which the
Potts distribution µn is supported almost entirely on configurations with roughly equal
(about 1/q) proportions of each color and above which µn is supported almost entirely on
configurations where one of the q colors is dominant. In the former case we say that in
equilibrium the system is in the disordered phase, while in the latter case we say that in
equilibrium the system is in one of the q ordered phases, corresponding to the q-colors.

Up to relabeling of the vertices configurations are essentially described by the propor-
tions vector s and as such, on a logarithmic scale, the Potts distribution can be read from
the graph of the free energy as a function of s. As depicted in Figure 4 (showing q = 3, the
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β � βc β � βc

β = βc

β ∈ (βs, βc) β ∈ (βc, βS)

Figure 4. The free energy as a function of the proportions vector s for the Potts model
on the complete graph with q = 3 and large n. The simplex S = {s ∈ R3

+ : ‖s‖1 = 1} is
mapped into the XY plane via (s1, s2, s3) 7→ (s1, s2, 1− s1 − s2).

situation is qualitatively the same for all q > 2), when β < βc the free energy has a single
global minimum at the center, corresponding to the disordered phase, while for β > βc
there are q “on-axis” global minima, corresponding to the q ordered phases obtainable
from one another through a permutation of the coordinates. At βc, coexistence of the
ordered and disordered phases is evident in the presence of q+ 1 global minima of the free
energy. For more details see, e.g., [16].

Below βc but sufficiently close to it, the free energy, globally minimized only at the cen-
ter, has q local minima in place of the q global minima which corresponded to the ordered
phases at criticality. Once β is too small, these local minima disappear. The threshold
value for the appearance of these local minima is the spinodal inverse temperature βs
(there is a similar behavior above βc marked by a second spinodal temperature βS , as
illustrated by Figure 4, but we do not address this regime in the paper).
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β < βc(2), β = βc(2), β > βc(2) β < βc(2), β = βc(2), β > βc(2)

Figure 5. The free energy as a function of the magnetization m for the Ising model on
the complete graph for large n. No phase coexistence at βc and the global maximizers
for β > βc are seen to emerge continuously from m = 0.5.

Once the system starts from an initial configuration whose proportions vector is close
to a local minimizer, the system will spend a time which is exponential in n near this
minimizer before escaping to the global minimizer and reaching equilibrium. This is
because away from a local minimizer, energy increases locally exponentially (in n), i.e.
there is an energy barrier of an exponential order to cross. Thus, as n→∞ the system will
spend an unbounded amount of time at a non-equilibrium state, which will be seemingly
stable. In terms of the mixing time of the dynamics, as the definition involves the worst
case initial configuration, metastable states will result in exponentially slow mixing.

Our result is a rigorous affirmation of this picture. Although the definition of βs in (1.1)
seems different than the one given above for the spinodal inverse temperature, it can be
shown, in fact, that this is indeed the threshold value of β for the emergence of local
minima below βc. Theorem 3 then asserts that above βs mixing is exponentially slow
while Theorem 1 shows that below βs mixing is still fast. The set of configurations whose
exclusion in Theorem 4 leads to fast mixing all the way up to (but below) βc are precisely
the ones from which the process will get stuck in a metastable state. Indeed as the free
energy of such initial configurations is higher than that of configurations near the globally
minimizing stable state, such configurations will have a probability which is exponentially
small in the size of the system.

Furthermore, the transition from fast to slow mixing passes through polynomial mixing
which occurs at βs and in its vicinity (Theorem 2). This in fact establishes that the
aforementioned critical slowdown phenomenon occurs here as well, albeit at the spinodal
rather than the uniqueness threshold. We predict that this should be the case for the
dynamical behavior on other mean-field geometries such as an Erdős-Rényi random graph
or a random regular graph.

For a (non-rigorous) treatment of metastability and its effect on the rate of convergence
to equilibrium in other mean-field models with a first order phase transition, see for ex-
ample [24,25]. A rigorous analysis of such a system (the Blume-Capel model), below and
above criticality, was recently carried out in [26]. It is illuminating to contrast the graph
of the free energy as a function of the proportions vector in the Potts model to that of the
free energy as a function of the magnetization in Curie-Weiss Ising, given in Figure 5. The
second order phase transition and lack of phase coexistence at the critical temperature,
implies the absence of a local minima at any value below or above βc. As a consequence
there is no spinodal temperature and mixing is fast throughout the whole range β < βc.
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1.3. Proof Ideas. As discussed before, up to a permutation of the vertices, configurations
can be described by their proportions vector. Formally, for a configuration σ ∈ Σn, we
denote by S(σ) the q-dimensional vector (S1(σ), . . . Sq(σ)), where

Sk(σ) =
1

n

∑
v∈V

1{σ(v)=k} .

Note that S(σ) ∈ S where S = {x ∈ Rq+ : ‖x‖1 = 1}. Now it is not difficult to see that
St = S(σt) is itself a Markov process with state space S and stationary distribution πn =
µn◦S−1, the distribution of S(σ) under µn. We shall refer to this process as the proportions
chain. Figures 1 and 2 show a realization of the proportion chains superimposed on
the free energy graph plotted upside down for better visibility. 3 different values of β,
corresponding to 3 different regimes are exhibited. The color of the curve, representing
time, shows the temporal evolution of the proportion chain. Notice how local minima
(shown as local maxima) “trap” the chain for a long time.

As a projection of the chain, St mixes at least as fast as σt. Moreover, when starting
in one of the q configurations where all sites have the same color, a symmetry argument
reveals that the mixing time of St is equal to that of σt. One therefore must control the
effect of starting from a initial state which is not monochrome. Using a coupling argument
we show that the difference in the mixing times is of the same order as the cutoff window
for St and can thus be absorbed into our error estimates. It will then suffice to analyze the
proportions chain, which is of a lesser complexity than the original process. In particular
the state space of St has a fixed q − 1 dimension, independently of n, and its transition
probabilities can be easily calculated.

Next, we show that when β < βc(q) most of the mass of the stationary distribution πn
is concentrated on balanced states whose distance from the “equi-proportionality” vector
(1/q, . . . , 1/q) is O(1/

√
n). A simple coupling argument then shows that the Markov chain

is mixed soon after arriving at such a state. Thus the main effort in the proof becomes
finding sharp estimates on the time is takes for St to reach a balanced state from a worst-
case initial configuration, in different regimes of β.

It turns out that these hitting times are determined by the function Dβ(x), which is
defined as (up to a multiplication by 1/n) the drift of one coordinate of St when that
coordinate has value x in the worst case, i.e. the minimum drift towards 1/q, where the
minimum is taken over all possible values for the remaining coordinates. An explicit
formula for Dβ(x) can be obtained (3.2). Its graph is plotted in Figure 3 for x ∈ [1/q, 1]
and different values of β. For β � βc, this drift is strictly negative in (1/q, 1] and thus
each coordinate quickly (in O(n log n) time) gets to within 1/

√
n of 1/q. On the other

hand, the function Dβ(x) is monotone increasing in β and therefore for sufficiently large
β, it will no longer be negative throughout (1/q, 1] - there will be an interval in (1/q, 1]
where it is positive. Such an interval will take an exponential amount of time to traverse
and this will lead to an exponential mixing time. The smallest β for which this happens
is, by definition, βs. This βs in turn coincides with the inverse temperature at which local
minima begin to appear in the free energy as a function of s. In fact, to show exponentially
slow mixing, we use standard conductance arguments, which in face of local minima in
the free energy give exponential mixing quite automatically.

The most delicate analysis is in the critical regime where β is near or equal to βs. In
this case the x-axis is tangential to the graph of Dβ(x) at its peak (the green curve in
Figure 3) and the challenge is in finding the asymptotics of the passage time through the
tangential point on the x-axis (left green dot in the figure). As the drift there is 0, locally
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around this point, a coordinate of St behaves as a random walk and Doob’s decomposition
of a suitably chosen function of the coordinate yields the right passage time estimates.

1.4. Organization. Section 2 sets notation and contains some useful facts on the Curie-
Weiss Potts model, as well as tools (and a few non-standard variations on them) needed
in the analysis of mixing time. In Section 3 we derive basic properties of the proportions
chain that will be repeatedly used in the remainder of the proof. In Section 4 we analyze
the case β < βs(q) and prove Theorem 1 while Section 5 treats the case β > βs(q) and
establishes Theorem 3. The near critical regime is analyzed in Section 6, which includes
the proof of Theorem 2. The final section, Section 7, gives the proof of Theorem 4.

2. Preliminaries

2.1. Notation. We let [a, b] denote the set {a, . . . , b} for a, b ∈ Z. We use the same
notation for vector and scalar valued variables. For an m-dimensional vector s, we denote
by sk its k-th component and for I = (i1, . . . , ik) ⊆ [1,m], sI = (si1 , . . . , sik). Matrix-
valued variables will appear in bold. We let Wm,k denote the (m, k) element of W and
let Wm denote is its m-th row.

We write ei for the unit vector in the i-th direction and ê = (1/q, 1/q, . . . , 1/q) ∈ Rq for
the equiproportionality vector. For s ∈ Rq, we denote ŝ = s− ê.

Most of our vectors will live on the simplex S = {x ∈ Rq+ : ‖x‖1 = 1} or even Sn =

S ∩ 1
nZ

q. Occasionally we would like to further limit this set and for ρ > 0 we define

Sρ = {s ∈ S : ‖ŝ‖∞ < ρ}, Sρn = Sρ ∩ 1
nZ

q, Σρ
n = S−1(Sρn)

Sρ+ = {s ∈ S : sk < 1/q + ρ ∀k ∈ [1, q]}, Sρ+
n = Sρ+ ∩ 1

nZ
q, Σρ+

n = S−1(Sρ+
n ).

Note that Sρ+ ⊆ S(q−1)ρ and similar relations hold for Sn and Σn.
Vectors in S will often be viewed also as distributions on [1, q]. A coupling of ν, ν̃ ∈ S

is the joint distribution of two random variables X, X̃, defined on the same probability
space and marginally distributed according to ν, ν̃. If P? is the underlying probability

measure then we always have ‖ν − ν̃‖TV 6 P?(X 6= X̃). We shall call this coupling a best

coupling if it satisfies ‖ν − ν̃‖TV = P?(X 6= X̃). Such a coupling always exists.
In the course of the proofs, we introduce various couplings of two copies of the Glauber

dynamics (σt)t. For the second copy we shall use the notation σ̃t and S̃t = S(σ̃t). Couplings
will be identified by their underlying probability measure, for which we will use the symbol
P with a superscript that changes from coupling to coupling, e.g. PBC . A subscript will
indicate initial state or states, e.g. PBCσ0,σ̃0 . The expectation and variance, E[·] and Var(·)
resp., will be decorated in the same way as the underlying measure with respect to which
they are defined. The σ-algebra Ft will always include all the randomness up-to time t.
For example, with a single chain (σt)t this is the σ-algebra generated by {σs : s 6 t}, for
a coupling of two chains (σt)t, (σ̃t)t, it is the one generated by {σs, σ̃s : s 6 t}, etc.

2.2. Large Deviations Results for the Curie-Weiss Potts Distribution. In this
subsection we recall several results concerning the concentration of the proportions vector
measures πn. See, e.g., [16, 20] for proofs of these results.

It is a consequence of Sanov’s Theorem together with an application of Varadhan’s
Lemma that the sequence (πn)n > 1 satisfies a large deviation principle (LDP) on S with
rate function

Iβ,q(s) =

q∑
k=1

sk log(qsk)− β‖s‖22 − C, (2.1)
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where C is chosen so that mins∈S Iβ,q(s) = 0. The minimizing set εβ,q = {s : Iβ,q(s) = 0}
which is the support of the weak limit pβ,q of (πn)n > 1 is then

εβ,q =


{ê} if β < βc(q){
ê,T1šβc,q,T

2šβc,q, . . . ,T
q šβc,q

}
if β = βc(q){

T1šβ,q,T
2šβ,q, . . . ,T

q šβ,q
}

if β > βc(q)
, (2.2)

where

βc(q) =
(q − 1) log(q − 1)

q − 2
(2.3)

and

šβ,q =

(
š1
β,q,

1− š1
β,q

q − 1
, . . . ,

1− š1
β,q

q − 1

)
. (2.4)

The function β 7→ š1
β,q is continuous and increasing on [βc(q),∞) and Tk : S → S

interchanges the 1-st and k-th coordinates. Furthermore, the value of šβ,q for all β, q is
known in implicit form and in particular for β = βc(q), we have

šβc(q),q =
(

1− 1
q ,

1
q(q−1) , . . . ,

1
q(q−1)

)
. (2.5)

This is true for all q > 3. For q = 2, (2.1),(2.2), (2.4), (2.5) still hold, but the critical
inverse-temperature is now

βc(2) = 1. (2.6)

It is here that a fundamental difference between q = 2 and q > 2 can be observed. If
q = 2 then šβc(2),2 = ê, in which case β 7→ pβ,2 is continuous for all β > 0. On the other
hand, if q > 3 we have šβc(q),q 6= ê and β 7→ pβ,q is discontinuous at βc(q). Thus, as it
is recorded in the Physics literature, the system exhibits a first order phase transition if
q > 3, but only a second order phase transition if q = 2.

2.3. Hitting Time Estimates for General Supermartingales. We will require some
standard hitting time estimates for supermartingales and related processes.

Lemma 2.1. For x0 ∈ R, let (Xt)t > 0 be a discrete time process, adapted to (Ft)t > 0

which satisfies

(1) ∃δ > 0 : Ex0 [Xt+1 −Xt| Ft] 6 − δ on {Xt > 0} for all t > 0.
(2) ∃R > 0 : |Xt+1 −Xt| 6 R, ∀t > 0.
(3) X0 = x0.

where Px0 is the underlying probability measure. Let τ−x = inf{t : Xt 6 x} and τ+
x =

inf{t : Xt > x}. The following holds.

(1) If δ > 0 then for any t1 > 0:

Px0
(
τ−0 > t1

)
6 exp

{
−(δt1 − x0)2

8t1R2

}
. (2.7)

(2) If x0 6 0, then for any x1 > 0 and t2 > 0,

Px0
(
τ+
x1 6 t2

)
6 2 exp

{
−(x1 −R)2

8t2R2

}
. (2.8)

(3) If x0 6 0, δ > 0, then for any x1 > 0 and t3 > 0:

Px0
(
τ+
x1 6 t3

)
6 t23 exp

{
−(x1 −R)δ2

8R3

}
. (2.9)
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Proof. Starting with (1), if x0 < 0, there is nothing to prove. Otherwise, let Zt be a
supermartingale independent of Xt, which starts from 0, has drift −δ and steps which
are bounded by R. Set Yt = Xt∧τ−0

+ Z
(t−τ−0 )

+ and write Yt = Mt + At as its Doob

Decomposition, with Mt a martingale, At a predictable processes and A0 = x0. Clearly
At 6 x0 − δt and |Mt+1 −Mt| 6 2R, Px0-a.s. The Hoeffding-Azuma inequality implies:

Px0
(
τ−0 > t1

)
6 Px0 (Yt1 > 0)

6 Px0 (Mt1 > δt1 − x0)

6 exp

{
−(δt1 − x0)2

8t1R2

}

as desired.
Now set Yt = Xt∧τ+x1

and observe that (Yt)t > 0 satisfies conditions 1–3, and consequently

it is enough to prove (2.8), with Px0 (Yt2 > x1) as the LHS. Therefore, for all t, let Wt+1 =
Ex0 [Yt+1 − Yt| Ft] and Zt+1 = Yt+1−Yt−Wt+1. Then clearly, Wt+1, Zt are Ft-measurable,
Wt+1 6 0 on {Yt > 0} and Ex0 [Zt+1|Ft] = 0. This is a Doob-type decomposition. Now,
define Mt for all t inductively as follows.

M0 = 0 ; Mt+1 = Mt + sign(Mt)Zt+1

and set Nt = |Mt|. We claim the following:

(1) (Mt)t∈N is an (Ft)t > 0-adapted martingale.
(2) N0 = 0 ; Nt+1 = |Nt + Zt+1| , ∀t.
(3) Yt 6 Nt +R.

The first two assertions follow straightforwardly from the construction. The third one,
can be proven by induction, since it clearly holds for t = 0 and assuming Yt−1 6 Nt−1 +R,
if Yt−1 > 0, then

Yt = Yt−1 + (Yt − Yt−1)

6 Nt−1 +R+ Zt 6 Nt +R,

and if Yt−1 < 0, then

Yt 6 R 6 Nt +R.

Finally, by the Hoeffding-Azuma inequality applied to Mt we have

Px0 (Yt2 > x1) 6 Px0 (|Mt2 | > x1 −R)

6 2 exp

(
−(x1 −R)2

8t2R2

)
.

This shows (2.8).
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For part (3), let τ−0 (s) = inf{t > s : Xt 6 0} and Yt(s), Mt(s) and At(s) defined as in
the proof of part (1) only with τ−0 (s) replacing τ−0 . Then,

Px0
(
τ+
x1 6 t3

)
6

∑
0 6 s1<s2 6 t3

Px0 (Xs1 6 R, Xs2 > x1, Xt > 0 ∀s1 6 t 6 s2)

6
∑

0 6 s1<s2 6 t3

Px0 (Ys2(s1) > x1, Ys1(s1) 6 R)

6
∑

0 6 s1<s2 6 t3

Px0
(
Ms2(s1)−Ms1(s1) > δ(s2 − s1) + (x1 −R)+

)
6 t23 exp

{
−
δ2 x1−R

R

8R2

}
where the last inequality follows from Hoeffding-Azuma inequality and since the summands
are non zero only when 0 6 s1 < s2 6 t3 and (s2 − s1)R > x1 −R. �

Lemma 2.2. Let (Xt)t∈N be a process adapted to (Ft)t∈N and satisfying the following
conditions for some a > 2δ > 0:

(1) Xt+1 −Xt ∈ {−1, 0, 1}.
(2) E[Xt+1 −Xt|Ft] > − δ.
(3) Var(Xt+1|Ft) > a
(4) X0 > 0

Let τ+
r = inf{t : Xt > r}. Then

P(τ+
r 6 t) > C1 exp{−C2(r/

√
t+ δ

√
t)2}+O(t−1/2) (2.10)

where C1, C2 are positive constants which depends only on a.

Proof. It is easy to verify that conditions 1–3 imply

P(Xt+1 6= Xt|Ft) > a ; P(Xt+1 −Xt = −1|Ft, Xt+1 6= Xt) 6 1
2 + δ

2a . (2.11)

Now, let T0 = 0 and Tk = inf{t > Tk−1 : Xt 6= XTk−1
}, Yk = XTk for k > 1. Also, let

Nk = Tk−Tk−1 and Zk = Yk−Yk−1. From (2.11), it is not hard to see that we can couple

(Nk)k, (Zk)k with two i.i.d sequences (Ñk)k,(Z̃k)k such that Ñk > Nk, Z̃k 6 Zk a.s. and

Ñk ∼ Geom(a) ; Z̃k =

{
+1 w.p 1/2− δ/2a
−1 w.p 1/2 + δ/2a

.

Consequently, with Ỹk =
∑

m 6 k Z̃m and T̃k =
∑

m 6 k Ñm we have:

P(τ+
r 6 t) > P(Yta/2 > r, Tta/2 6 t)

> P(Ỹta/2 > r)− P(T̃ta/2 > t)

> C1 exp

{
−C2

(r + δt)2

t

}
+O(t−1/2) + exp{−C3t} ,

where the last inequality follows by the local CLT for Ỹk, which is a nearest neighbor
random walk whose steps have mean −δ/a and variance 1− (δ/a)2 and also by Cramer’s

theroem for T̃k. All constants depend only on a. �

Finally, we will also make use of the following result from [29]:

Lemma 2.3 ([29, Proposition 17.20]). Let (Zt)t > 0 be a non-negative supermartingale
adapted to (Gt)t > 0 and N a stopping time. Suppose that:
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(1) Z0 = z0

(2) |Zt+1 − Zt| 6 B
(3) ∃σ > 0 such that Var (Zt+1|Gt) > σ2 on the event {N > t}.

If u > 4B2/(3σ2), then:

Pz0 (N > u) 6
4z0

σ
√
u
.

2.4. Variance Lemma. The following is a straight-forward extension of [28, Lemma 2.6]
to vector valued Markov processes. We include a proof here for completeness.

Lemma 2.4. Let (Zt) be a Markov chain taking values in Rd and with transition matrix
P . Write Pz0, Ez0 for its probability measure and expectation respectively, when Z0 = z0.
Suppose that there is some 0 < η < 1 such that for all pairs of starting states (z0, z̃0),

‖Ez0Zt − Ez̃0Zt‖2 6 η
t‖z0 − z̃0‖2 (2.12)

Then vt , supz0 Varz0 (Zt) = supz0 Ez0‖Zt − Ez0Zt‖22 satisfies:

vt 6 v1 min
{
t,
(
1− η2

)−1
}
. (2.13)

Proof. Let Zt and Z∗t be independent copies of the chain with the same starting state z0.
By the assumption (2.12), we obtain that

‖Ez0 [Zt | Z1 = z1]− Ez0 [Z∗t | Z∗1 = z∗1 ]‖2 = ‖Ez1 [Zt−1]− Ez∗1 [Z∗t−1]‖2 6 ηt−1‖z1 − z∗1‖2 .
Hence, we see that

Varz0(Ez0 [Zt | Z1]) =
1

2
Ez0‖(EZ1 [Zt−1]−EZ∗1 [Z∗t−1])‖22 6

η2(t−1)

2
Ez0‖Z1−Z∗1‖22 6 η2(t−1)v1.

Combined with the total variance formula, it follows that

vt 6 sup
z0
{Ez0 [Varz0(Zt | Z1)] + Varz0(Ez0 [Zt | Z1])} 6 vt−1 + η2(t−1)v1 ,

which then gives that vt =
∑t

i=1(vi − vi−1) 6
∑t

i=1 η
2(t−1)v1, implying the desired upper

bound immediately. �

2.5. Bottleneck Ratio. Let P be an irreducible, aperiodic transition kernel for a Markov
chain on S with stationary measure π. The bottleneck ratio of a set A ⊆ S is:

Φ(A) =

∑
x∈A,y/∈A π(x)P (x, y)∑

x∈A π(x)
6
π(∂PA)

π(A)
,

where ∂PA = {x ∈ A : P (x, y) > 0 for some y /∈ A}. The bottleneck ratio of the chain is

Φ∗ = min
A:π(A) 6 1

2

Φ(A) . (2.14)

The following result, due to [1,27,38] in several similar forms (see, e.g., [29, Theorem 7.3])
relates the bottleneck ratio with the mixing time of the chain.

Theorem 2.5. If Φ∗ is the bottleneck ratio defined in (2.14) then tmix(1/4) >
1

4Φ∗
.

3. Drift Analysis for the Proportions Chain

In this section we prove various results concerning the drift of the process St. We analyze
both the one coordinate process S1

t and the distance-to-equiproportionality ‖St − ê‖2. In
the course of this analysis, we also define two couplings which will be of independent use
later on and prove a uniform bound on the variance of St.
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3.1. The Drift of One Proportion Coordinate. From symmetry, it is enough to
analyze the drift of S1

t . For β > 0, define gβ : S → S as

gβ(s) = (g1
β(s), . . . , gqβ(s)) ; gkβ(s) =

e2βsk∑q
j=1 e

2βsj
.

We can express the drift of S1
t as follows:

E
[
S1
t+1 − S1

t

∣∣Ft] =
1

n

[
− S1

t +

q∑
k=1

g1
β

(
St − 1

nek
)
Skt

]
=

1

n

[
−S1

t + g1
β (St)

]
+O

(
n−2

)
=

1

n
dβ(St) +O

(
n−2

)
(3.1)

with

dβ(s) , −s1 + g1
β(s). (3.2)

The function dβ : S → R thus describes (up to a constant factor of n−1 and an error
term) the drift of the first coordinate given the current proportions vector. It turns out
the rapid mixing hinges on whether dβ(s) is strictly negative whenever s1 > 1/q (and for
any values for the remaining coordinates of s). Accordingly we define Dβ : [0, 1]→ R as

Dβ(x) , max
s∈S
s1=x

dβ(s) = dβ
(
x, 1−x

q−1 , . . . ,
1−x
q−1

)
(3.3)

= −x+
exp(2βx)

exp(2βx) + (q − 1) exp(2β 1−x
q−1 )

(3.4)

and check when Dβ(x) is strictly negative for all x ∈ (1/q, 1]. We will see in Proposition 3.1
below that this happens if and only if β < βs(q), where βs(q) > 0 is defined in (1.1).

For β > 0, define s∗(β) and s](β) as:

s∗(β) , sup
{
s ∈ [1/q, 1) : d

dsDβ(s) = 0
}

s](β) , inf {s ∈ (1/q, 1) : Dβ(s) > 0} ,

with the inf or sup being 1, if the respective sets are empty. We may now state:

Proposition 3.1. For all q > 3 the following holds:

(1) We have that Dβ(s) is increasing in β if s ∈ [1/q, 1] and for all β > 0, that
Dβ(1/q) = 0 and that Dβ(1) < 0.

(2) That s](β) > 1
q if β < q/2.

(3) The following statements are equivalent if β < q/2:
(a) s](β) = 1
(b) Dβ(s) has no roots in (1/q, 1].
(c) Dβ(s∗(β)) < 0.

(4) All the statements in part (3) hold if and only if β < βs(q).

Proof. We start by proving part (1). It is clear that

Dβ(s) = −s+
1

1 + (q − 1) exp(2β 1−qs
q−1 )

,
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and hence is strictly increasing in β if 1/q < s 6 1. Furthermore, we have that

Dβ(1/q) = −1

q
+

e2β/q

e2β/q + (q − 1)e2β/q
= −1

q
+

1

q
= 0 ,

as well as

Dβ(1) = −1 +
1

1 + (q − 1)e−β
< 0 .

For part (2), taking the derivative of Dβ(s) with respect to s evaluated at 1/q, one

obtains d
dsDβ(s)

∣∣
s=1/q

= −1+ 2β
q which is negative if β < q/2. Together with Dβ(1/q) = 0,

this completes the proof.
For part 3, we first show that there exists at most two points in [1/q, 1] such that

d
dsDβ(s) = 0. To see this, we compute the first derivative and obtain that

d

ds
Dβ(s) = −1 +

2qβ exp(2β 1−qs
q−1 )

[1 + (q − 1) exp(2β 1−qs
q−1 )]2

= −1 +
2qβ

q − 1
h
(
(q − 1)e

2β 1−qs
q−1
)
,

where h(x) = x
(1+x)2

. Obviously, there are at most two zeros for −1 + 2qβ
q−1h(x) and since

(q − 1) exp(2β 1−qs
q−1 ) is a strictly monotone in s, we conclude that there are at most two

points such that d
dsDβ(s) vanishes.

Notice also that d
dsDβ(1/q) < 0 provided that β < q/2 and hence Dβ(1/q + ξ) < 0 for

all ξ 6 ξ0, where ξ0 is a sufficiently small positive number. We are now ready to derive
the equivalence stated in the proposition. Observing that Dβ(s) is a smooth function and
Dβ(1) < 0, we deduce that (3a) ⇒ (3b) ⇒ (3c). It remains to prove that (3c) ⇒ (3a).
Suppose now that (3c) holds and there exists s0 ∈ (1/q, 1] such that Dβ(s0) > 0. Recalling
that Dβ(1/q + ξ) < 0 and Dβ(1) < 0, we deduce the following:

• If s0 < s∗, we will then have at least two zeros in (1/q, s∗) for d
dsDβ(s).

• If s0 > s∗, we will then have at least one zero in (s∗, 1) for d
dsDβ(s).

We see that the first case contradicts with the fact that there can be at most two zeros for
d
dsDβ(s) and the second case contradicts our definition of s∗. Altogether, we established
that (3c)⇒ (3a).

As for the last part, continuity and part (1) imply that (1.1) is equivalent to

βs = sup{β > 0 : Dβ(s) < 0 for all s ∈ (1/q, 1]} .
Since Dβ(s) is increasing in β for all s ∈ [1/q, 1], it follows that for all β < βs(q), we
indeed have Dβ(s) < 0 for all s ∈ (1/q, 1]. On the other hand, by the continuity of the
function Dβ(s) and our definition of βs, we know that there exists sM ∈ (1/q, 1] such that
Dβs(sM ) = 0. Now, using the result of part (1) we conclude that Dβ(sM ) > 0 for any
β > βs, completing the proof. �

In the following proposition we discuss the relation between βs(q) and βc(q).

Proposition 3.2. For q > 3 we have that 0 < βs(q) < βc(q) < q while βs(2) = βc(2) = 1.

Proof. As recalled in the Subsection 2.2,

βc(2) = 1 and βc(q) =
(q − 1) log(q − 1)

q − 2
; q > 3.

In the q = 2 case, it is easy to verify that d
dsDβ(s) < 0 for all s ∈ [1

2 , 1] if β < 1 and
d
dsDβ(1

2) > 0 if β > 1. Since in addition Dβ(1
2) = 0, Dβ(1) < 0, we obtain βs(2) = 1.
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For q > 3 we have βc(q) < q/2 and therefore

Dβc

(
q − 1

q

)
= −q − 1

q
+

1

1 + (q − 1) exp
(
2βc

1−q q−1
q

q−1

) = 0

and

d

ds
Dβc(s)

∣∣∣∣
s= q−1

q

= −1 +
2βcq exp

(
2βc

1−q q−1
q

q−1

)(
1 + (q − 1) exp

(
2βc

1−q q−1
q

q−1

))2

=
2(q − 1) log(q − 1)− q(q − 2)

q(q − 2)
.

Now if φ(q) = 2(q − 1) log(q − 1)− q(q − 2) then φ(2) = φ′(2) = 0 and φ′′(s) = −2 + 2
q−1

which is negative when q > 2. It follows that φ(q) is negative when q > 2 and hence for
q > 3,

d

ds
Dβc(s)

∣∣∣∣
s= q−1

q

< 0.

So for small enough ε > 0 and s ∈ ( q−1
q − ε,

q−1
q ) we have that Dβc(s) > 0 and hence

supsDβc(s) > 0. By the smoothness of Dβ(s) this implies that there exists β < βc such
that supsDβ(s) > 0 which establishes that βs < βc. �

We will make repeated use of the the following proposition throughout the paper.

Proposition 3.3.

(1) Assume β < q/2. For all 0 < ρ0 < ρ small enough, there exists γ > 0 and C, c > 0
such that for all n with t = eγn we have

Pσ0
(
∃0 6 s 6 t : σs /∈ Σρ+

n

)
6 Ce−cn (3.5)

for all σ0 ∈ Σ
ρ+0
n .

(2) Assume β < q/2. For all r0 > 0, γ > 0 there exists C, c > 0 such that for all n
and r > r0 with t = γn, ρ0 = r0√

n
and ρ = r√

n
we have

Pσ0
(
∃0 6 s 6 t : σs /∈ Σρ+

n

)
6 Ce−cr

2
(3.6)

for all σ0 ∈ Σρ0+
n .

(3) Assume β < βs(q). For all ρ > 0 there exists γ > 0 and C, c > 0, such that for all
n, with t = γn we have

Pσ0
(
σt /∈ Σρ+

n

)
6 Ce−cn (3.7)

for all σ0 ∈ Σn.

Proof. Consider the process (S1
t −s1

0 : t > 0) until the first time it is to the right of 1/q+ρ.
If n is large enough and, in Case (1), if ρ is small enough, Proposition 3.1 Part (1) and
Eq. (3.1) imply that this process satisfies the conditions of Lemma 2.1. Parts (1) and (2)
of the proposition then follow from Parts (3) and (2) of the lemma and summing over all
coordinates.

As for part (3), consider this time (S1
t − 1/q + ρ/2 : t > 0). Since β < βs(q), it follows

from Proposition 3.1 (Parts (1) and (3)) that this process also satisfies the conditions of
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Lemma 2.1, with δ > C ′n−1, for some positive constant C ′. Now set γ = 2/C ′ and apply
part (1) of the Lemma to conclude that except with probability exponentially small in n,
S1
t 6 1/q + ρ/2 for some t 6 γn. Once this happens, by Lemma 2.1 Part (3), as in the

proof of (3.5), we have S1
γn 6 1/q+ ρ again except with probability tending exponentially

fast to zero with n. It remains to use union bound to complete the proof. �

3.2. Bounded Dynamics. The bounded dynamics is a process that evolves like σt, only
that S(σt) is forced to stay close to ê by rejecting transitions which violate this condition.

Formally, fix ρ > 0 and let (σt)t > 0 be a Markov chain on Σρ+
n , which evolves as follows.

Start from some σ0 ∈ Σρ+
n and at step t+ 1:

• Draw σ̃t+1 according to Pn(σt, ·), where Pn is the original transition kernel.

• If σ̃t+1 ∈ Σρ+
n set σt+1 = σ̃t+1 and otherwise set σt+1 = σt.

We shall denote by Pρ the underlying probability measure.
The unbounded and ρ-bounded dynamics admit a natural coupling, under which the two

processes start from the same configuration and evolve together until time τ = inf{t > 0 :
St /∈ Sρ+}, where St is the unbounded process. This leads to the following two immediate
observations which will be useful later.

(1) For any integer t and bounded function f : (Σn)t+1 7→ R:

|Ef(σ[0,t])− Eρf(σ[0,t])| 6 2‖f‖∞P(τ 6 t). (3.8)

(2) In particular for any set A ⊆ (Σn)t+1:

|P(σ[0,t] ∈ A)− Pρ(σ[0,t] ∈ A)| 6 2P(τ 6 t) (3.9)

3.3. Synchronized Coupling. The synchronized coupling is a (Markov) coupling of two
ρ-bounded dynamics in which the two chains “synchronize” their steps as much as possible.
Formally, define (σt)t > 0, (σ̃t)t > 0 on the same probability space such that starting from
σ0, σ̃0, at time t+ 1:

(1) Choose colors It+1, Ĩt+1 according to an optimal coupling of St, S̃t.

(2) Choose colors Jt+1, J̃t+1, according to an optimal coupling of gβ
(
St − n−1eIt+1

)
,

gβ

(
S̃t − n−1e

Ĩt+1

)
.

(3) Change a uniformly chosen vertex of color It+1 in σt to have color Jt+1 in σt+1,

but only if σt+1 ∈ Σρ+
n .

(4) Change a uniformly chosen vertex of color Ĩt+1 in σ̃t to have color J̃t+1 in σ̃t+1,

but only if σ̃t+1 ∈ Σρ+
n .

We shall write PSC,ρσ0,σ̃0
for the underlying measure and omit ρ if it is large enough for the

dynamics not to be bounded.

The following shows that this coupling contracts the ‖ · ‖1 distance of the proportions
vector.

Lemma 3.4. There exists C(β, q) > 0 such that for any ρ > 0, uniformly in σ0, σ̃0 ∈ Σρ+
n

as n→∞

ESC,ρσ0,σ̃0
‖St − S̃t‖1 6

(
p+

Cρ

n

)t
‖s0 − s̃0‖1 , (3.10)

where

p = p(n, β, q) = 1− 1− 2β/q

n
. (3.11)
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Proof. For s, s̃ ∈ Sn by a Taylor expansion of gβ around s, then another expansion for
∇gβ around ê one has:

‖gβ(s)− gβ(s̃)‖
1

=
2β

q
‖s− s̃‖1 (1 +O (‖s− ê‖1 + ‖s̃− ê‖1)) ,

where we use the easily verified:

∂jg
k
β =

 −2βgjβg
k
β k 6= j ,

−2β
(
gkβ

)2
+ 2βgkβ k = j .

(3.12)

Now under the bounded dynamics, It+1 6= Ĩt+1 implies that S
It+1

t > S̃
It+1

t and S̃
Ĩt+1

t >

S
Ĩt+1

t while Jt+1 6= J̃t+1 implies that
(
St − n−1eIt+1

)Jt+1 >
(
S̃t − n−1e

Ĩt+1

)Jt+1

and(
S̃t − n−1e

Ĩt+1

)J̃t+1

>
(
St − n−1eIt+1

)J̃t+1 . It follows by the definition of the coupling

that

‖St+1 − S̃t+1‖1 − ‖St − S̃t‖1 = − 2

n

[
I{It+1 6=Ĩt+1} − I{Jt+1 6=J̃t+1}

]
.

Recalling that for s ∈ Sn, ‖s‖TV = 1
2‖s‖1 and that under the best coupling of distributions

s, s̃ the probability of disagreement is ‖s− s̃‖TV, we have:

ESC,ρσ0,σ̃0
‖S1 − S̃1‖1

6 ‖s0 − s̃0‖1 +
2

n

(
−1

2‖s0 − s̃0‖1 + 1
2 ‖gβ(s0)− gβ(s̃0)‖

1
+O(n−1)

)
6 ‖s0 − s̃0‖1

(
1− 1− 2β/q +O(ρ)

n
+O(n−2)

)
.

The result follows by iteration. �

3.4. Uniform Variance Bound.

Lemma 3.5. Assume β < q/2. There exists ρ0 = ρ0(β, q) such that if ρ 6 ρ0

Varρσ0 (St) = O
(
n−1

)
, (3.13)

uniformly in σ0 ∈ Σρ+
n and t > 0, and there exists γ0 > 0 such that

Varσ0 (St) = O
(
n−1

)
, (3.14)

uniformly in σ0 ∈ Σρ0+
n and t 6 eγ0n.

Proof. Equation (3.13) will follow directly from Lemma 2.4 applied to St under the ρ-
bounded dynamics. Indeed, Lemma 3.4 gives a stronger version of Condition 2.12 with

η = p+ ρO(n−2). Now, if β < q/2 and ρ is small enough, we have η 6 1−
1− 2β

q

2n for large

enough n. Then (3.13) follows from (2.13) since Varρσ0S1 = O
(
n−2

)
.

For (3.14), find ρ′ < ρ and use (3.5) and (3.8) to conclude that for all σ0 ∈ Σρ′+
n and

t 6 eγn for some γ = γ(ρ, ρ′):

Varσ0 (St) = Varρσ0 (St) + o(n−1) = O
(
n−1

)
. �

Corollary 3.6. For β < βc(q), we have Varµn(S) = O(n−1).
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Proof. Fix ρ < ρ0, where ρ0 is given in Lemma 3.5 and notice that the bounded dynamics is
reversible with respect to the Potts measure µn restricted to Σρ+

n . Therefore the bounded
dynamics has µρn(·) = µn(·|σ ∈ Σρ+

n ) as its stationary measure. From the large deviation
analysis in Subsection 2.2 it is straightforward to conclude that if β < βc(q)

µn(S 6∈ Sρ+) 6 e−Cn ,

for some C > 0 and n large enough, depending on ρ and β. Therefore, we have ‖µn −
µρn‖TV 6 e−Cn. Since µn, µρn live on a compact space, this gives Varµn(S) 6 Varµρn(S) +

e−Cn. Since Pρσ0(σt ∈ ·) converges to µρn as t→∞ for any fixed σ0 ∈ Σρ+
n , Lemma 3.5 can

be extended to σ0 chosen from µρn. This completes the proof. �

3.5. The Drift of the Distance to Equiproportionality. Here we show that Ŝt has
drift towards 0. Write St+1 = St + ξt+1 where we have that for i, j = 1, ..., q,

P
(
ξt+1 = 1

n (ej − ei)
)

= Sitg
j
β

(
St − 1

nei
)

= Sitg
j
β (St) +O

(
n−1

)
.

Then,

E
[
‖St+1 − ê‖22 |St

]
= E

[
‖St − ê + ξt+1‖22 |St

]
= ‖St − ê‖22 + E

[
‖ξt+1‖22 |St

]
+ 2 〈E [ξt+1|St] , St〉

= ‖Ŝt‖22 +
2

n2
(1− h(St)) +

2

n

q∑
j=1

e2βSjt∑q
k=1 e

2βSkt
Sjt −

2

n
‖St‖22 +O

(
n−2

)
= ‖Ŝt‖22

(
1− 2

n

)
+
(

2h(St)− 2
q

)
n−1 + (2− 2h(St))n

−2 +O
(
n−2

)
,

where h(s) ,
∑q

k=1 g
k
β(s)sk. Notice that since gkβ(s) = gkβ(s − ê) we have that h(s) =

1/q + h(ŝ) and its gradient and Hessian are:

D1h(0) =
1

q
and D2h(0) =

4β

q
P .

where P is a projection matrix onto (ê)⊥. Therefore, we may write

h(s) =
1

q
+

2β

q
‖ŝ‖22 +O

(
‖ŝ‖32

)
.

This gives

E
[
‖Ŝt+1‖22 |Ft

]
= ‖Ŝt‖22

(
1− 2 (1− 2β/q)

n

)
+ n−1O

(
‖Ŝt‖32

)
+O

(
n−2

)
= ‖Ŝt‖22p2 + n−1O

(
‖Ŝt‖32

)
+O

(
n−2

)
. (3.15)

where p is defined in (3.11).

3.6. Contraction for the Distance to Equiproportionality. Fix β < q/2 and ρ < ρ0

where ρ0 is given in Lemma 3.5. For what follows, assume that σ0 ∈ Σρ+
n and t 6 eγ0n

where γ0 is also given. Then, taking expectation in equation (3.15), we get:

Eσ0‖Ŝt+1‖2 = p2Eσ0‖Ŝt‖22 +
(
Eσ0‖Ŝt‖32

)
O
(
n−1

)
+O

(
n−2

)
. (3.16)
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Now by Taylor expansion of s 7→ ‖s‖32 around Eσ0Ŝt in view of (3.14),

Eσ0‖Ŝt‖32 = ‖Eσ0Ŝt‖32 + Eσ0
〈

D1‖ · ‖32
(
Eσ0Ŝt

)
, Ŝt − Eσ0Ŝt

〉
+O

(
Eσ0‖Ŝt − Eσ0Ŝt‖22

)
= ‖Eσ0Ŝt‖32 +O

(
n−1

)
=
(
Eσ0‖Ŝt‖22 +O

(
n−1

))3/2
+O

(
n−1

)
=

(
Eσ0‖Ŝt‖22

)3/2
+O

(
n−1

)
.

Then

Eσ0
[
‖Ŝt+1‖22

]
= p2Eσ0‖Ŝt‖22 +

(
Eσ0‖Ŝt‖22

)3/2
O
(
n−1

)
+O

(
n−2

)
. (3.17)

This will in turn imply:

Proposition 3.7. Fix β < q/2. There exist ρ0 = ρ0(β, q) > 0 and C = C(β, q) > 0 such
that if ρ 6 ρ0 there exists γ(ρ) > 0 such that:

Eσ0‖Ŝt‖22 = p2t(‖ŝ0‖22 + Cρ3) +O
(
n−1

)
, (3.18)

uniformly in σ0 ∈ Σρ+
n and t 6 eγ(ρ)n, where p = p(n, β, q) is defined in 3.11.

Proof. Set λt , Eσ0‖Ŝt‖22 . It follows from (3.17) and (3.5) that for any ρ < ρ < ρ0, where

ρ0 is given in Lemma 3.5, there exists γ = γ(ρ, ρ) > 0 such that uniformly in σ0 ∈ Σρ+
n

and t 6 eγn:

λt+1 6 λt
(
p2 + ρO

(
n−1

))
+O

(
n−2

)
= λt

(
p+ ρO

(
n−1

))2
+O

(
n−2

)
.

We now use the following fact, which can be easily verified. If (λt)t > 0 is a sequence
satisfying:

λt+1 = pλt + art + b,

for some p 6= r, p 6= 1, a and b, then:

λt = λ0p
t + a

pt − rt

p− r
+

b

1− p
(
1− pt

)
. (3.19)

Apply this (with a = 0) and use the monotonicity in λt of the right hand side above (at
least if n is large enough), to conclude:

λt 6 λ0

(
p+ ρO(n−1)

)2t
+ 1

1−(p+ρO(n−1))2
O
(
n−2

)
6 Cρ2(p+ ρO(n−1))2t +O

(
n−1

)
.

Plugging this a priori bound back into (3.17) we see that:

λt+1 = p2λt + ρ3
(
p+ ρO(n−1)

)3t
O
(
n−1

)
+O

(
n−2

)
.

Using (3.19) again and choose ρ small enough to obtain

λt = λ0p
2t +

p2t −
(
p+ ρO(n−1)

)3t
p2 − (p+ ρO(n−1))3 ρ3O

(
n−1

)
+ 1

1−p2O
(
n−2

)
= (λ0 +O(ρ3))p2t +O

(
n−1

)
.

as desired. �

4. Mixing in the Subcritical Regime

In this section we prove Theorem 1. Recall that α1 = α1(β, q) = 1
2(1−2β/q) and set

tα1(n) = α1n log n ; tα1
γ (n) = α1n log n+ γn. (4.1)
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4.1. Proof of Lower Bound in Theorem 1.

Proof. The analysis in this subsection pertains to all β < βc(q). Fix 0 < ρ2 < ρ1 < ρ0,
where ρ0 is given in Proposition 3.7 and let σ0 ∈ Σn be such that ρ2 < ‖ŝ0‖2 < ρ1. Then
if t < tα1

γ (n) and ρ1 is small enough, Proposition 3.7 implies

Eσ0‖Ŝt‖22 >
ρ2

2

2

(
1− 1−2β/q

n

)2tα1γ (n)
+O

(
n−1

)
>

1

n
e−(1−2β/q)γ ,

for sufficiently large −γ depending on ρ2 and large enough n. Combined with the uniform
variance bound given in Lemma 3.5, it follows that for large enough n

Eσ0‖Ŝt‖2 >
e−(1−2β/q)γ/2

√
n

.

Applying Chebyshev’s inequality and using Lemma 3.5 again, we conclude that uniformly
in all r > 0, t 6 tα1

γ (n) and σ0 ∈ Σρ1+
n \ Σρ2+

n

Pσ0
(
‖Ŝt‖2 <

r√
n

)
6

Varσ0(Ŝt)(
e−(1−2β/q)γ/2√

n
− r√

n

)2 = O
(

(e−(1−2β/q)γ/2 − r)−2
)
. (4.2)

In particular, this implies

lim
γ→−∞

lim sup
n→∞

Pσ0
(
‖Ŝtα1γ (n)‖2 <

r√
n

)
= 0. (4.3)

On the other hand, EµnSt = ê and from Corollary 3.6 it follows that VarµnSt = O
(
n−1

)
for β < βc(q). Therefore another application of Chebyshev’s inequality yields that

µn

(
‖ŝt‖2 <

r√
n

)
> 1− O(1)

r2
, (4.4)

for all t > 0. Altogether, we have that for any r > 0,

lim
γ→−∞

lim inf
n→∞

dtα1γ (n)(n) > 1− O(1)

r2

and it remains to send r →∞. �

In the remainder of the section we prove the upper bound on the mixing time when
β < βs(q). The proof is based on upper bounding the coalescence time of two coupled
dynamics, one starting from any configuration in Σn and the other starting from the
stationary distribution µn. This coupling will be done in several stages with different
couplings from one stage to the next. In what follows, (σt)t > 0 and (σ̃)t > 0 will denote
the two coupled processes.

4.2. O(n−1/2) from Coalescence. We now show that with arbitrarily high probability,

St gets O(n−1/2)-close to ê in O(n log n) steps, if initially its distance is at most ρ, where
ρ is small enough. More precisely,

Lemma 4.1. Fix β < q/2. Then for all r > 0:

Pσ0
(
Stα1 (n) /∈ S

r√
n

)
= O(r−1) ,

uniformly in σ0 ∈ Σρ0+
n where ρ0 = ρ0(β, q) is defined in Proposition 3.7 and tα1(n) is

defined in (4.1).



22 P. CUFF, J. DING, O. LOUIDOR, E. LUBETZKY, Y. PERES, AND A. SLY

Proof. This follows immediately from Proposition 3.7 and a first moment argument:

Pσ0
(
Stα1 (n) /∈ S

r√
n
)
6 Pσ0

(
‖Ŝtα1 (n)‖2 > rn−

1
2
)

6
Eσ0‖Ŝtα1 (n)‖2

rn−1/2
6

(
Eσ0‖Ŝtα1 (n)‖22

)1/2
rn−1/2

= O
(

1
r

)
. �

4.3. O(n−1) from Coalescence. To get the correct order of the mixing time it is not
sufficient to simply use the drift to couple the chains as the drift is very weak when St is
close to ê. As such, in this section we define a different coupling of the dynamics which
will bring σt and σ̃t to distance O(n−1) apart in linear time. This will be achieved one
coordinate after the other. We begin by giving a general definition of, what we call, a
semi-independent coupling and then use it to define the coupling of the dynamics.

Let ν, ν̃ be two positive distributions on Ωm = [1,m] and fix a non-empty A ⊆ Ωm,
where m is some positive integer. We shall write ν|A for the conditional distribution
given A, i.e. ν|A(x) = ν(x)/ν(A), for x ∈ A. The A-semi-independent coupling of ν, ν̃ is

a coupling of two random variables X and X̃ with underlying measure P?, constructed
according to the following procedure:

(1) Choose U ∈ [0, 1] uniformly.

(2) If U 6 min {ν(A), ν̃(A)}, draw X and X̃ using a best coupling of (ν|A, ν̃|A).
(3) Otherwise, independently:

(a) Draw X according to ν|A if U < ν(A) and according to ν|Ac if U > ν(A).

(b) Draw X̃ according to ν̃|A if U < ν̃(A) and according to ν̃|Ac if U > ν̃(A).

Clearly a Ωm-semi-independent coupling is a best coupling and for A = Ø, we define
Ø-semi-independent coupling to be the standard independent coupling. The following
proposition states a few properties of this coupling, which will be useful for the sequel.

Proposition 4.2. The following holds for the A-semi-independent coupling of (ν, ν̃):

(1) X, X̃ are distributed according to ν, ν̃ respectively.

(2) P?
(
∪x∈A{X = x}∆{X̃ = x}

)
6 3

2

∑
x∈A |ν(x)− ν̃(x)|

(3) ∀x /∈ A, P?
(
X = x, X̃ 6= x

)
> ν(x)ν̃(Ac \ {x}) and

∀x /∈ A, P?
(
X̃ = x, X 6= x

)
> ν̃(x)ν(Ac \ {x}).

Proof. Part one of the Lemma is immediate. Part (2) follows from a straight forward
calculation:

P?
(
∪x∈A{X = x}∆{X̃ = x}

)
6 P? (U 6 ν(A) ∧ ν̃(A))P?

(
X 6= X̃ |U 6 ν(A) ∧ ν̃(A)

)
+

P? (ν(A) ∧ ν̃(A) < U < ν(A) ∨ ν̃(A))

6 (ν(A) ∧ ν̃(A))1
2

∑
x∈A
|(ν|A(x)− ν̃|A(x))|+ |ν(A)− ν̃(A)|

6 3
2

∑
x∈A
|ν(x)− ν̃(x)| .

As for part (3), we have:

P?
(
{X = x} \ {X̃ = x}

)
> P? (U > ν(A) ∨ ν̃(A)) ν|Ac(x)(1− ν̃|Ac(x))

> ν(x)ν̃(Ac \ {x})
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and similarly for P?(X̃ = x,X 6= x). �

We are now ready to define the coupling of σt, σ̃t for this section. Fix σ0, σ̃0 ∈ Σn and
y1, . . . yq−1 > 0. The coordinate-wise coupling with parameters y1, . . . , yq−1 and starting
configurations σ0, σ̃0 is defined as follows.

(1) Set T (0) = 0, k = 1.
(2) As long as k 6 q − 1:

(a) As long as
∣∣∣Skt − S̃kt ∣∣∣ > yk

n :

(i) Draw It+1, Ĩt+1, using a {1, . . . , k−1}-semi-independent coupling of St,

S̃t.
(ii) Draw Jt+1, J̃t+1, using a {1, . . . , k − 1}-semi-independent coupling of

gβ
(
St − 1

neIt+1

)
, gβ

(
S̃t − 1

neĨt+1

)
.

(iii) Change a uniformly chosen vertex of color It+1 in σt to have color Jt+1

in σt+1.

(iv) Change a uniformly chosen vertex of color Ĩt+1 in σ̃t to have color J̃t+1

in σ̃t+1.
(v) Set t = t+ 1.

(b) When
∣∣∣Skt − S̃kt ∣∣∣ 6 yk

n set T (k) = t− T (k−1) and k = k + 1.

(3) Set TCC =
∑q−1

k=1 T
(k).

We shall use PCCσ0,σ̃0 to denote the probability measure for this coupling and PCC(m)
σ0,σ̃0

for the

same coupling, only with k = m instead of k = 1 in step (1), i.e. starting from the m-th
stage. Notice that, in principle, the stopping condition at stage k, may never get satisfied,
in which case we stay at that stage forever and T (k) = TCC =∞.

For u, r > 0, define

Hku,r =

{
(σ, σ̃) ∈ Σn × Σn : ‖s[1,k] − s̃[1,k]‖1 <

u

n
, max (‖s− ê‖2, ‖s̃− ê‖2) <

r√
n

}
.

where above (s, s̃) = (S(σ), S(σ̃)). Finally, set Hu,r , Hqu,r. The following lemma will be
the main ingredient in an inductive proof for an upper bound on TCC :

Lemma 4.3. Fix β < q/2. Let k ∈ [1, q − 1]. For all uk−1, rk−1, ε > 0, there exist
yk, uk, rk, γk > 0, such that if (σ0, σ̃0) ∈ Hkuk−1,rk−1

then

PCC(k)
σ0,σ̃0

(
T (k) < γkn, (σT (k) , σ̃T (k)) ∈ Hkuk,rk

)
> 1− ε . (4.5)

Proof. Recall the expression for the drift of one coordinate (3.1). Near ê, this becomes by
Taylor expansion for any i ∈ [1, q]:

ECC(k)
σ0,σ̃0

[
Sit+1 − Sit

∣∣Ft] = 1
n

{
−
(

1− 2β
q

)
Ŝit +O

(
‖Ŝt‖22

)}
+O

(
n−2

)
.

and if Wt = St − S̃t then

ECC(k)
σ0,σ̃0

[W k
t+1−W k

t | St, S̃t] = 1
n

{
−
(

1− 2β
q

)
W k
t +O

(
‖St − ê‖22 + ‖S̃t − ê‖22

)}
+O

(
1
n2

)
.

(4.6)

Now, for some rk > 0 to be chosen later, let τ (k) = inf
{
t : ‖St − ê‖2 ∨ ‖S̃t − ê‖2 > rk√

n

}
.

Then, from (4.6) it follows that there exists yk > 0 such that W
k
t ,

∣∣∣W k
t∧τ (k)∧T (k)

∣∣∣ is a
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supermartingale. Clearly
∣∣∣W k

t+1 −W
k
t

∣∣∣ < 2
n . Also, from Proposition 4.2, if t < τ (k)∧T (k):

PCC(k)
σ0,σ̃0

(
W

k
t+1 6= W

k
t

∣∣∣Ft) > PCC(k)
σ0,σ̃0

(
It+1 = k, Jt+1 6= k, Ĩt+1 6= k

∣∣∣Ft)
> Skt S̃

k+1
t

(
1− gkβ

(
St − 1

nek
))

=
q − 1

q3
+O

(
n−

1
2

)
,

which implies that ECC(k)
σ0,σ̃0

[(
W

k
t+1 −W

k
t

)2
∣∣∣∣Ft] > 1

2q
−2n−2 + O

(
n−5/2

)
. On the other

hand, in view of (4.6), ECC(k)
σ0,σ̃0

[
W

k
t+1 −W

k
t

∣∣∣Ft] = O(n−3/2). Combining the two bounds,

we infer that there exists C > 0, which doesn’t depend on rk or yk, such that on{
t < τ (k) ∧ T (k)

}
Var

CC(k)
σ0,σ̃0

(
W

k
t+1

∣∣∣Ft) > Cn−2, (4.7)

for n sufficiently large. We now apply Lemma 2.3 with Zt = W
k
t , z0 =

2rk−1√
n

and N =

τ (k) ∧ T (k). This gives for γk > 0:

PCC(k)
σ0,σ̃0

(
T (k) ∧ τ (k) > γkn

)
6

Crk−1√
γk

,

whence we may choose γk = γk(rk−1, ε) independently of rk, yk but sufficiently large, such
that

PCC(k)
σ0,σ̃0

(
T (k) ∧ τ (k) > γkn

)
6
ε

3
. (4.8)

This gives an upper bound on T (k), since by Proposition 3.3 Part (2) we may choose rk
large enough such that:

PCC(k)
σ0,σ̃0

(
τ (k) < γkn

)
6
ε

3
. (4.9)

It remains to ensure that we do not increase the distances in the first k−1 coordinates,
by too much. Proposition 4.2 implies that for any t:

PCC(k)
σ0,σ̃0

(
W

[1,k−1]
t+1 6= W

[1,k−1]
t

∣∣∣Ft)
6

∑
l 6 k−1

PCC(k)
σ0,σ̃0

((
{It+1 = l}∆

{
Ĩt+1 = l

})
∪
(
{Jt+1 = l}∆

{
J̃t+1 = l

})∣∣∣Ft)
6

3

2

∑
l 6 k−1

(
|W l

t|+ |glβ(St)− glβ(S̃t)|
)

+O(n−1)

6 C‖W [1,k−1]
t ‖1 + r2

kO
(
n−1

)
.

It follows that

ECC(k)
σ0,σ̃0

[
‖W [1,k−1]

t+1 ‖1
∣∣∣Ft] 6 ‖W [1,k−1]

t ‖1 +
C1

n
‖W [1,k−1]

t ‖1 + r2
kO
(
n−2

)
6 ‖W [1,k−1]

t ‖1
(

1 +
C1

n

)
+ r2

kO
(
n−2

)
.
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Taking expectation of both sides and using the assumption on ‖W [1,k−1]
0 ‖1, we have

ECC(k)
σ0,σ̃0

‖W [1,k−1]
γkn

‖1 6 ‖W
[1,k−1]
0 ‖1

(
1 +

C1

n

)γkn
6 C1

uk−1

n
eC2γk .

Hence by Markov’s inequality, there exists uk > 0 such that

PCC(k)
σ0,σ̃0

(
‖W [1,k−1]

γkn
‖1 >

uk − yk
n

)
6
ε

3
.

Combined with (4.8) and (4.9), the proof is complete. �

Corollary 4.4. Fix β < q/2. For any ε, r > 0, there exist γ, u, r′ > 0 and y1, . . . yq−1 > 0

such that for σ0, σ̃0 ∈ Σ
r√
n

n .

PCCσ0,σ̃0
(
TCC < γn, (σTCC , σ̃TCC ) ∈ Hu,r′

)
> 1− ε.

Proof. Starting from r0 = u0 = r and applying Lemma 4.3 inductively, we obtain for some
(yk, uk, rk, γk)k∈[1,q−1]:

PCCσ0,σ̃0(T (k) < γkn, (σT (k) , σ̃T (k)) ∈ Hkuk,rk ∀k ∈ [1, q − 1]) > 1− ε .

It remains to set γ =
∑q−1

k=1 γk, r
′ = rq−1 and u = 2uq−1. �

4.4. Coalescence of Proportions Vector Chains. The next lemma completes the
coupling of the proportions chains.

Lemma 4.5. Fix β < q/2. For all r, u, ε > 0 there exists γ > 0 such that if σ0, σ̃0 ∈ Σn

satisfy (σ0, σ̃0) ∈ Hu,r and t > γn, then

PSCσ0,σ̃0
(
St = S̃t

)
> 1− ε .

where under PSCσ0,σ̃0, the processes (σt)t > 0, (σ̃t)t > 0 evolve according to the synchronized

coupling, as defined in Subsection 3.3.

Proof. If ρ is small enough, it follows from Lemma 3.4 that

ESC,ρ
σ0,σ̃0
‖St − S̃t‖1 6

(
1− 1− 2β/q

2n

)t u
n
,

Combined with Proposition 3.3 Part (1), this implies that there exists γ = γ(u) such that

ESCσ0,σ̃0‖St − S̃t‖1 6
ε
n for t > γn. Then by Markov’s Inequality:

PSCσ0,σ̃0
(
St 6= S̃t

)
= PSCσ0,σ̃0

(
‖St − S̃t‖1 > 1

n

)
6 ε . �

4.5. Basket-wise Proportions Coalescence. The next coupling will allow us to turn a
well-mixed proportions chains into a well-mixed configurations chain. Let B = (Bm)qm=1
be a partition of [1, n]. We shall refer to Bm as a basket and call B a λ-partition if
|Bm| > λn for all m. Given σ ∈ Σn, let S(σ) denote a q × q matrix whose (m, k) entry is
equal to the proportion in σ of color k in basket m, namely

Sm,k(σ) =
1

|Bm|
∑
v∈Bm

1{σ(v)=k} .

S is an element of S ,
∏q
m=1 S and we define Sρ =

∏q
m=1 Sρ and Sρ+ =

∏q
m=1 Sρ+. We

also let B[m0,m1] = ∪m0 6 m 6 m1Bm and as before use St as a shorthand for S(σt). The
following is an analogue of Lemma 4.1 for the basket proportions matrix.
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Lemma 4.6. Let B be a λ-partition for some λ > 0. If either of the following holds:

(1) σ0 ∈ Σρ0
n and tα1(n) 6 t 6 eγ(ρ0)n where ρ0, γ(ρ0) are given in Proposition 3.7 and

tα1(n) is defined in (4.1).

(2) S0 ∈ S
r0√
n and t 6 γ0n for some r0, γ0 > 0,

then

Pσ0
(
St /∈ S

r√
n

)
= O(r−2) .

where the O(r−2) term is as r →∞, uniformly in n.

In order to prove Lemma 4.6, we use the following proposition to bound the second
moment of the basket proportions matrix.

Proposition 4.7. If B is a λ-partition for λ > 0 and m, k ∈ [1, q], then

E
[
(Sm,kt+1 − S

k
t+1)2 | Ft

]
=

(
1− 2

n

)
(Sm,kt − Skt )2 +O

(
1

n2

)
. (4.10)

Proof. Let λ0 = |Bm|/n > λ > 0 and set Qm,k
t = Sm,kt − Skt . Then:

E
[
(Qm,k

t+1)2 − (Qm,k
t )2) | Ft

]
= p1((Qm,k

t + 1
n)2 − (Qm,k

t )2) + p2((Qm,k
t − 1

n)2 − (Qm,k
t )2) +

p3((Qm,k
t − 1

λ0n
+ 1

n)2 − (Qm,k
t )2) + p4((Qm,k

t + 1
λ0n
− 1

n)2 − (Qm,k
t )2)

=
2

n
Qm,k
t

(
(p1 − p2) +

(
1− 1

λ0

)
(p3 − p4)

)
+O

(
1
n2

)
, (4.11)

where (denoting by Vt+1 the chosen vertex at step t+ 1):

p1 = P(Vt+1 /∈ Bm, σt(Vt+1) = k, σt+1(Vt+1) 6= k|Ft) = (S1
t − λ0S

m,k
t )(1− gkβ(St)) +O(n−1),

p2 = P(Vt+1 /∈ Bm, σt(Vt+1) 6= k, σt+1(Vt+1) = k|Ft) = (1− S1
t − λ0 + λ0S

m,k
t )gkβ(St) +O(n−1),

p3 = P(Vt+1 ∈ Bm, σt(Vt+1) = k, σt+1(Vt+1) 6= k|Ft) = λ0S
m,k
t (1− gkβ(St) +O(n−1),

p4 = P(Vt+1 ∈ Bm, σt(Vt+1) 6= k, σt+1(Vt+1) = k|Ft) = λ0(1− Sm,kt )gkβ(St) +O(n−1).

Plugging these into (4.11), we obtain

E[(Sm,kt+1 − S
k
t+1)2 | Ft] = (1− 2

n)(Sm,kt − Skt )2 +O( 1
n2 )

as required. �

Proof of Lemma 4.6. Taking expectation in (4.10) and applying (3.19) one gets:

Eσ0
[
Sm,kt − Skt

]2
6

(
1− 2

n

)t
Eσ0

[
Sm,k0 − Sk0

]2
+O(n−1) .

In both cases (note that α1(β, q) > 1
2 for all β < q/2), it implies Eσ0

[
Sm,kt − Skt

]2
=

O(n−1). Summing over all m and k and using Markov’s Inequality we get

Pσ0

∑
m 6 q

‖Smt − St‖2 > r/(2
√
n)

 = O(r−2).

Now, by Proposition 3.7 Case (1) and Proposition 3.3 Case (2) we also have that

Pσ0
(
‖St − ê‖2 > r/(2

√
n)
)

= O(r−2).
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Combining the two, we complete the proof. �

Suppose now that you have two initial configurations σ0, σ̃0, such that s0 = s̃0. The

following is a coupling under which eventually (with probability 1) also St = S̃t. Equality
is achieved one basket at a time, indexed below by m and once the proportions in a basket
are equated they remain so. We shall call this coupling Basket-wise Coupling and denote
by PBC the underlying probability measure.

(1) Set t = 0, m = 1.
(2) As long as m 6 q:

(a) As long as Smt 6= S̃mt :

(i) Choose “old” color It+1 according to distribution St = S̃t.
(ii) Choose “new” color Jt+1 according to distribution gβ

(
St − 1

neIt+1

)
=

gβ

(
S̃t − 1

neIt+1

)
.

(iii) Choose a vertex Vt+1 uniformly among all vertices in [1, n] having color
It+1 under σt.

(iv) Choose Ṽt+1:

(A) If Vt+1 ∈ Bm0 form0 < m, choose Ṽt+1 uniformly among all vertices
in Bm0 having color It+1 under σ̃t.

(B) Otherwise, if S
m,It+1

t 6= S̃
m,It+1

t and S
m,Jt+1

t 6= S̃
m,Jt+1

t , choose Ṽt+1

uniformly among all vertices in B[m,q] having color It+1 under σ̃t.
(C) Otherwise, let v1, v2, . . . be an enumeration of the vertices in B[m,q]

having color It+1 under σt ordered first by the index of the basket
they belong to and then by their index in V and let ṽ1, ṽ2, . . . be

the same for σ̃t. Then set Ṽt+1 = ṽi where i is such that Vt+1 = vi.

(v) Set σt+1(Vt+1) = σ̃t+1(Ṽt+1) = Jt+1 and t = t+ 1.
(b) Set m = m+ 1.

The following lemma gives an upper bound for the time of basket-wise proportions
coalescence.

Lemma 4.8. Fix β < q/2. For any λ > 0, r > 0, ε > 0, there exists γ = γ(λ, r, ε), such

that for any λ-partition and any σ0, σ̃0 such that S0 = S̃0 and S0, S̃0 ∈ S
r√
n ,

PBCσ0,σ̃0
(
Sγn = S̃γn

)
> 1− ε . (4.12)

Proof. From the definition of the coupling, once the proportions of basket m have coalesced
they will remain equal forever. It suffices, therefore, to analyze the coalescence time of

each basket separately. Note also that the coupling preserves the equality St = S̃t for all
t > 0.

Define Wt = St − S̃t, W
m
t = ‖Wm

t ‖1 and let τ (0) = 0 and τ (m) = min{t > τ (m−1) :
Wm
t = 0} for m ∈ [1, q]. Also set

τ∗ = inf{t : St /∈ Sρ or S̃t /∈ Sρ}

for ρ > 0 sufficiently small and τ
(m)
∗ = τ (m) ∧ τ∗. We claim that for all m, (Wm

t )t > 0 is

a supermartingale between τ (m−1) and τ (m) as long as τ∗ is not reached. In order to see
this, fix m, t and assume {τ (m−1) 6 t < τ (m) , τ∗ > t}. Then at step (2(a)iv), according
to the coupling, there are 3 cases:

(A) Clearly Smt+1 = Smt and S̃mt+1 = S̃mt and hence Wm
t+1 = Wm

t .
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(B) Notice that in this case, we have W
m,It+1

t W
m,It+1

t+1 > 0 and W
m,Jt+1

t W
m,Jt+1

t+1 > 0.
Therefore,

EBCσ0,σ̃0 [Wm
t+1 −Wm

t |Ft]

=
∣∣EBCσ0,σ̃0 [Wm,It+1

t+1 |Ft
] ∣∣− ∣∣Wm,It+1

t

∣∣+
∣∣EBCσ0,σ̃0 [Wm,Jt+1

t+1 |Ft
] ∣∣− ∣∣Wm,Jt+1

t

∣∣
6

−|Wm,It+1

t |∑
m0 > m S

m0,It+1

t |Bm0|
+

|Wm,It+1

t |∑
m0 > m S

m0,It+1

t |Bm0 |
= 0 .

(C) If Vt+1, Ṽt+1 ∈ Bm or Vt+1, Ṽt+1 /∈ Bm, then Wm
t+1 = Wm

t , otherwise from the con-
struction we must have:

|Wm,It+1

t+1 | − |Wm,It+1

t | = − 1
|Bm| ,

as well as

|Wm,Jt+1

t+1 | − |Wm,Jt+1

t | 6 1
|Bm| .

Summing these two, we obtain a non-positive drift for Wm
t .

Observe that as long as τ∗ is not reached, both VarBC(Wm
t+1|Ft) under case (B) and the

probability that this case happens are bounded below uniformly in n and t. This gives a
uniform lower bound on the variance VarBC(Wm

t+1|Ft). Furthermore, if for some t, we have

St, S̃t ∈ S
r′√
n , then in view of Lemma 4.6 after γ′n time, we have St+γ′n, S̃t+γ′n ∈ S

r′′√
n

with probability 1−O((r′′)−2). Therefore, using Lemma 2.3 we may find γ1, . . . , γq−1 such

that inductively, conditioned on τ
(m−1)
∗ 6 γm−1n with probability at least 1 − ε/(2q) we

have τ
(m)
∗ 6 γmn. This in turn implies that τ

(q−1)
∗ 6 γn with probability at least 1− ε/2,

where γ , γq−1.

It remains to bound τ∗ below with high probability. Let Bm,j =
⋃γn
t=1{|S

m,j
t −1/q| > ρ}

and

Y m,j =
∣∣∣{t :

∣∣Sm,jt − 1/q
∣∣ > ρ/2, 1 6 t 6 γn}

∣∣∣ .
Using Lemma 4.6 we obtain that

EBCσ0,σ̃0 [Y m,j ] 6 γnO( 1
n) = O(γ) .

Then as Bm,j implies that Y m,j > nλρ
2 ,

PBCσ0,σ̃0(Bm,j) 6 PBCσ0,σ̃0
(
Y m,j >

nλρ

2

)
6

2EBCσ0,σ̃0 [Y m,j ]

nλρ
= O(n−1) .

Summing over all m, j and arguing the same for S̃t we obtain

PBCσ0,σ̃0(τ∗ < γn) = O(n−1) ,

Finally by a union bound we have PBCσ0,σ̃0(τ (q) 6 γn) > 1− ε
2 +O(n−1) as desired. �

4.6. The Overall Coupling. We now describe precisely how the previous couplings are
combined together to create the overall coupling. This coupling will be the main tool in
proving the upper bound. Formally, let γ1, γ3, γ4, γ5 and y1, . . . , yq−1 be positive numbers
and σ0 ∈ Σn. The overall coupling with parameters γ1, . . . , γ5, y1, . . . yq−1 and initial
configuration σ0 is a coupling of two chains (σt)t, (σ̃t)t under measure POCσ0 . The initial
configuration for (σt)t is σ0, while σ̃0 is chosen according to µn. Then, the two processes
evolve as follows.
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(1) Run σt and σ̃t independently until time t(1)(n) = γ1n.
(1A) Partition the vertex set [1, n] into baskets B = (B1, . . .Bq) such that Bk =

{v : σt(1)(n)(v) = k} for k ∈ [1, q].

(2) Run σt and σ̃t independently (again) until time t(2)(n) = t(1) + tα1(n) time where
tα1(n) is defined in (4.1).

(3) Run σt and σ̃t according to the coordinate-wise coupling with parameters y1, . . . , yq−1

until time t(3)(n) = t(2)(n) + γ3n (unless stopped before).

(4) Run σt and σ̃t according to the synchronized coupling until time t(4)(n) = t(3)(n)+
γ4n time.

(5) Run σt and σ̃t according to the basket-wise coupling for t(5)(n) = t(4)(n) + γ5n
time with the baskets above.

4.7. Proof of Upper Bound in Theorem 1. We will now use the overall coupling
with appropriate parameters to establish the upper bound of the mixing time. Recall that
β < βs(q). Fix ε > 0, pick ρ > 0 small enough and let σ0 be any initial configuration. By
Proposition 3.3 Part (3), we can choose γ1 large enough such that

POCσ0
(
St(1)(n) ∈ S

ρ
)
> 1− ε . (4.13)

Assuming that this event indeed occurred, B is a (1
q − ρ)-partition and provided that ρ

is small enough, the conditions in Lemma 4.1 are satisfied. From the latter we conclude

that for some r > 0, with probability at least 1− ε, St(2)(n) ∈ S
r√
n . On the other hand, as

in (4.4) with probability at least 1 − 2ε we also have S̃t(2)(n) ∈ S
r√
n if r is large enough.

Then Corollary 4.4 and Lemma 4.5 ensure that there exist y1, . . . yq−1 and γ3, γ4, such

that St(4)(n) = S̃t(4)(n) with probability at least 1 − 3ε. From Lemma 4.6 we have that

St(4)(n), S̃t(4)(n) ∈ S
r′√
n with probability at least 1 − 4ε for some r′ > 0. Then, by Lemma

4.8 we may choose γ5 such that St(5)(n) = S̃t(5)(n) with probability at least 1− 5ε.

Now, by symmetry, for any t > t(1)(n) the distribution of σt, given Ft(1)(n), is invariant

under permutations of the vertices in each basket of B and the same is clearly true for µn.
Therefore we conclude that

‖POCσ0
(
σt(5)(n) ∈ ·

∣∣∣Ft(1)(n), St(1)(n) ∈ S
ρ
)
− µn‖TV

= ‖POCσ0
(
St(5)(n) ∈ ·

∣∣∣Ft(1)(n), St(1)(n) ∈ S
ρ
)
− µn ◦ S−1‖TV

6 POCσ0
(
St(5)(n) 6= S̃t(5)(n)

∣∣∣Ft(1)(n), St(1)(n) ∈ S
ρ
)
6 5ε .

Then from Jensen’s inequality we obtain

‖Pσ0
(
σt(5)(n) ∈ ·

)
− µn‖TV (4.14)

6 EOCσ0
[
‖POCσ0

(
σt(5)(n) ∈ ·

∣∣∣Ft(1)(n)

)
− µn‖TV

∣∣∣St(1)(n) ∈ S
ρ
]

+ POCσ0
(
St(1)(n) /∈ S

ρ
)

6 5ε+ ε = 6ε.

Now t(5)(n) = tα1
γ (n) (as defined in (4.1)) with γ = γ1 + γ3 + γ4 + γ5 and since σ0 is

arbitrary and ε can be made arbitrarily small, by choosing γ large enough, this establishes
the upper bound for the cutoff. �
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5. Mixing in the Supercritical Regime

5.1. Proof of Theorem 3. We first give the proof for the case βs < β < βc. Recall

(Subsection 2.2) that βc(q) = (q−1)
q−2 log(q − 1) for q > 3 and βc(2) = 1. We claim that for

q > 3

βc(q)
(
1− 1/q

)
< βc(q − 1) . (5.1)

It can be checked for q = 3 and for q > 4, it suffices to prove that f(x) := x−1
x(x−2) log(x−1)

is decreasing in x on [3,∞). We compute the derivative and obtain that

f ′(x) = − 1

x(x− 2)

(x2 − 2x+ 2

x(x− 2)
log(x− 1)− 1

)
,

which is negative for x > 3.
Now fix δ > 0 and notice that if s1 ∈ [1/q, 1−δ], conditional on {S1 = s1}, (Si/(1−s1) :

2 6 i 6 q) is distributed as the proportions vector for the (q− 1)-states Curie-Weiss Potts
model on (1− s1)n vertices with β′ = β(1− s1) 6 (1− 1/q)β 6 (1− 1/q)βc(q) < βc(q− 1).
Therefore, for all δ1 > 0

µn

(
∃2 6 i 6 q such that

∣∣Si − 1− s1

q − 1

∣∣ > δ1 | S1 = s1
)
→ 0 . (5.2)

as n→∞ uniformly in s1 ∈ [1/q, 1− δ]. Also uniformly in s ∈ Sn, recall that:

E
[
S1
t+1 − S1

t

∣∣St = s
]

=
1

n
dβ(s) +O

(
n−2

)
,

where dβ(s) = −s1 + g1
β(s). It now follows from the uniform continuity of dβ(s) and (5.2)

that uniformly in s1 ∈ [1/q, 1− δ],

Eµn [S1
t+1 − S1

t | S1
t = s1] = 1

n(Dβ(s1) + o(1)) ,

where Dβ(s1) = dβ

(
s1, 1−s1

q−1 , . . . ,
1−s1
q−1

)
.

Now if β > βs(q), from Proposition 3.1, there exists δ2, such that Dβ(s1) is uniformly
positive in a δ2-neighborhood of s∗(β). All together we infer that there exists ε > 0 such
that uniformly in s1 ∈ (s∗(β)− δ2, s

∗(β) + δ2) for all n large enough:

Eµn [S1
t+1 − S1

t | S1
t = s1] >

ε

n
,

and also

Pµn(S1
t+1 = s1

1 +
j

n
| S1

t = s1
1)− Pµn(S1

t+1 = s1
1 + 1

n +
j

n
| S1

t = s1
1 + 1

n) = o(1) ,

for j ∈ −1, 0, 1 where the last inequality follows from the concentration of the conditioned
measure as well as the continuity of the probability to stay put. These two formulas
together imply that

Pµn(S1
t+1 = s1

1 +
1

n
| S1

t = s1
1) > λPµn(S1

t+1 = s1
1 | S1

t = s1
1 +

1

n
) ,

for some fixed constant λ > 1 for all s1 ∈ (s∗(β) − δ2, s
∗(β) + δ2) when n is sufficiently

large. Since (St)t > 0 is a reversible Markov chain, with µn its stationary measure,

Pµn(S1
t+1 = s1

1 +
1

n
, S1

t = s1
1) = Pµn(S1

t+1 = s1
1, S

1
t = s1

1 +
1

n
) ,
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and therefore, for all s1 ∈ (s∗(β)− δ2, s
∗(β) + δ2)

µn(S1 = s1 +
1

n
) > λµn(S1 = s1) ,

and hence

µn(S1 = s∗(β) + δ2) > λ2δ2nµn(S1 = s∗(β)− δ2) . (5.3)

Now select the set A = {S1 > s∗(β)− δ2}. By (5.3),
µn(∂PnA)
µn(A) 6 λ−δ2n, where

∂PnA = {x ∈ A : Pn(x, y) > 0 for some y /∈ A}

and Pn is the transition kernel of the Glauber dynamics. Since β < βc(q) and s∗(β)−δ2 >
1/q we also have µn(A) = o(1) as n→∞. Therefore Cheeger’s inequality (Theorem 2.5)
immediately implies an exponential lower bound on the mixing time.

The case β > βc(q) is simpler. As the large deviations analysis in Subsection 2.2 shows,
we may find A = {‖S − šβ,q‖2 < δ}, where šβ,q is defined in (2.4) and δ > 0 is small
enough such that lim supn→∞ n

−1 logµn(∂PnA) < 0 and lim infn→∞ n
−1 logµn(A) = 0.

Since symmetry implies µn(A) 6 1/q (if δ is sufficiently small), exponential mixing time
follows immediately from another application of Cheeger’s inequality (Theorem 2.5). �

6. Mixing Near Criticality

We now assume β(n) = βs(q)− ξ(n), with ξ(n)→ 0 as n→∞. Once β(n) approaches
βs with n, we no longer have a uniform negative upper bound on the drift to the right
of 1/q for each coordinate. Instead, near s∗(β), the drift will be of order ξ(n), possibly
even positive and hence it will take longer than linear time to get close to ê and this
may have an effect on the order of the mixing time and cutoff window. Accordingly, in
addition to the coalescence time analysis near ê, one has to obtain sharp asymptotics for
the passage time near s∗(β). This is achieved using several propositions which we state in
Subsection 6.1. Their proofs will be deferred until the end of the section in favor of first
showing how they are used along with the previous coalescence analysis to find the mixing
time near criticality which gives the proof of Theorem 2.

Both the analysis and the results in Theorem 2 are qualitatively different, depending
on whether ξ(n) decays faster or slower than some threshold rate. Accordingly, we shall
distinguish between two regimes and write:

ξ ∈ [CR] if limn→∞ n
2/3ξ(n) =∞, ξ(n) = o(1)

ξ ∈ [NCR] if 0 6 lim infn→∞ n
2/3ξ(n) 6 lim supn→∞ n

2/3ξ(n) <∞ (6.1)

([CR] stands for Cutoff Regime and [NCR] stands for No-Cutoff Regime). For a > 0,
define also

tξ,aγ (n) =

{
π√
a

n√
|ξ(n)|

+ γ
(

n1/2

|ξ(n)|5/4 ∨ n
)

if ξ ∈ [CR]

eγn4/3 if ξ ∈ [NCR].
(6.2)

Both (6.1) and (6.2) will be used for sequences other than ξ as well. We shall also employ
the following notation for hitting times. Given a real-valued process (Xt)t > 0 and a number
x ∈ R we shall write

τ+
x = inf{t : Xt > x} and τ−x = inf{t : Xt 6 x}

for the right and left hitting time of X at x. Notice that this notation does not carry an
indication for the process for which τ+

x is a hitting time and in case this is not clear from
the context, it will be mentioned explicitly.
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6.1. Drift Analysis Near s∗(β). The following proposition states several properties of
the function Dβ near s∗(β).

Proposition 6.1. For all q > 3 the following holds:

(1) The point s∗(βs) is the unique s ∈ (1
q , 1] such that Dβs(s) = 0.

(2) For k = 0, 1, . . . , the functions D∗k(β) , dk

dsk
Dβ(s∗(β)) are C∞ in a neighborhood

of βs. Furthermore:
• d

dβD
∗
0(βs) > 0.

• D∗2(βs) < 0.
(3) For all ρ > 0, there exists δ > 0 such that:

sup
{
Dβ(s) : s ∈

(
1
q + ρ, 1

]
, |s− s∗(β)| > ρ, |β − βs| < δ

}
< 0 . (6.3)

The next lemma gives sharp asymptotics for the passage time near 0 for a process with
certain drift assumptions near 0 (given by (6.4) below). The one coordinate process will
fall into this category if we analyze it near s∗(β).

Formally, let
(
(Zt)

n
t > 0 ; n > 0

)
be a sequence of discrete time processes. For all n,

suppose that (Zt)t > 0 = (Zt)
n
t > 0 is adapted to (Ft)nt > 0, satisfies n|Zt+1−Zt| ∈ {−1, 0, 1}

with probability 1, and

E[Zt+1 − Zt|Ft] =
1

n

(
ζ(n) + aZ2

t + bZ3
t +O

(
ζ(n)Z2

t + Z4
t

))
(6.4)

where a > 0, b ∈ R and ζ(n) is a sequence satisfying ζ(n)→ 0 as n→∞. We allow both
ζ ∈ [CR] and ζ ∈ [NCR], but in the latter case, we assume in addition the existence of
d > 0 such that for all n

Var[n(Zt+1 − Zt)|Ft] > d. (6.5)

Write Pz0 for the probability measure under which this process is defined and starts from
z0.

Lemma 6.2. Fix ρ > 0 sufficiently small. Then for z0 = −ρ there exist functions L∗, U∗ :
(−∞,∞)→ [0, 1] satisfying limγ→−∞ L

∗(γ) = limγ→∞ U
∗(γ) = 0 such that for all γ,

lim sup
n→∞

Pz0
(
τ+
ρ > tζ,aγ (n)

)
6 U∗(γ), (6.6)

lim sup
n→∞

Pz0
(
τ+
ρ < tζ,aγ (n)

)
6 L∗(γ), (6.7)

where τ+
ρ is a hitting time for Z. Moreover, if ζ ∈ [NCR] we can chose U∗ such that for

all γ we have
U∗(γ) < 1. (6.8)

Remark 6.3. The upper (lower) bound in the lemma still holds if (Zt)t > 0 satisfies (6.4)
with > ( 6 ) in place of the equality sign or if in place of z0 = −ρ we have z0 > − ρ
(z0 6 −ρ). Since (Zt)t > 0 has 0,± 1

n steps this can be shown by a simple coupling argument.

The next proposition shows that the drift of one coordinate stays close to its upper
bound Dβ(·) for sufficiently long time. More precisely, for σ0 ∈ Σn, t > 0, δ > 0, y ∈ [0, 1]
let

Kn(σ0, t, y, δ) = Pσ0

(
max

0 6 θ 6 min{t,τ−y }
Dβ(S1

θ )− nEσ0
[
S1
θ+1 − S1

θ | Fθ
]
> δ

)
, (6.9)
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where τ−y is a hitting time for S1
t . Then,

Proposition 6.4. Suppose that β 6 q/2 and set σ0 ≡ 1. Then for any y > 1
q :

(1) If t(n) = o(n2) and δ(n)n2t(n)−1 →∞ then limn→∞Kn(σ0, t(n), y, δ(n)) = 0.

(2) If t(n) = γn4/3 then for all δ > 0 we have

lim
γ→0

lim sup
n→∞

Kn(σ0, t(n), y, δn−2/3) = 0.

6.2. Proof of Theorem 2.

6.2.1. Upper Bound on Mixing Time. Fix ρ > 0 small enough and let σ0 ∈ Σn be given.
By Proposition 6.1 Part (1), we can find δ > 0 so that

sup {Dβ(s) : |β − βs| < δ, 1/q + ρ/2 < s < 1, |s− s∗| > ρ/2} < −δ. (6.10)

where we use s∗ in place of s∗(β). Then by Lemma 2.1 Part (1), we have that,

Pσ0
(
τ−(s∗+ρ) > (2/δ)n

)
= o(1)

where this and all hitting times below are of S1
t . Define now Zt = s∗ − S1

t+τ−
(s∗+ρ)

. Using

(3.1), (3.3) Proposition 6.1 and applying Taylor’s expansion for Dβ(s) around s∗ and then
again for D∗0(β) around βs, we infer that there exist a > 0, α 6= 0, b ∈ R such that

E[Zt+1 − Zt|Ft] >
1

n

(
ζ(n) + aZ2

t + bZ3
t +O

(
ζ(n)Z2

t + Z4
t

))
,

where ζ(n) = αξ(n)+O(ξ(n)2 +n−1) and also (6.5) holds (if needed), since the probability
of choosing any new color at time t+ 1 is bounded above and below, uniformly in n and
St. Hence by Lemma 6.2 and Remark 6.3, for all γ

Pσ0
(
τ−(s∗−ρ) − τ

−
(s∗+ρ) > tζ,aγ (n)

)
6 U∗(γ) + o(1)

Now, using the relation between ζ(n) and ξ(n), it is not difficult to verify that tζ,aγ (n) 6 tξ,a
′

γ′ (n)

for all γ′, where a′ = αa and γ = F (γ′) for some F such that γ →∞ if γ′ →∞.
From Lemma 2.1 Part (3), applied to the process (S1

t+τ−
(s∗−ρ)

− (s∗ − ρ) : t > 0), it

follows that with 1− o(1) probability S1
t+τ−

(s∗−ρ)
stays to the left of s∗ − ρ/2 for all t < n2.

Then we may apply Lemma 2.1 Part (1) to the process (S1
t+τ−

(s∗−ρ)
− (1/q + ρ/2) : t > 0)

to conclude

Pσ0
(
τ−

(q−1+ρ/2)
− τ−(s∗−ρ) > (2/δ)n

)
= o(1)

Finally another application of Lemma 2.1 Part (3) gives S1
t+τ−

(q−1+ρ/2)

6 1/q+ρ for all t < n2

with 1− o(1) probability. For the [CR] case, we use union bound (over all coordinates):

Pσ0
(
S
tξ,a
′

γ′ (n)
/∈ Sρ+

)
6 qU∗(γ) + o(1). (6.11)

For the [NCR] case, define τ (1) = τ−
(q−1+ρ/2)

and τ (k) = inf{t > τ (k−1) : Skt 6 q−1 + ρ/2}
for k > 1. Then, by inductive conditioning we obtain

Pσ0
(
τ (k) 6 tξ,aγ′ (n) : k = 1, . . . , q

)
> (1− U∗(γ))q + o(1).



34 P. CUFF, J. DING, O. LOUIDOR, E. LUBETZKY, Y. PERES, AND A. SLY

Since also Sk
t+τ (k)

6 1/q+ ρ for all k ∈ [1, q], t < n2 with 1− o(1) probability, we arrive to

Pσ0
(
S
tξ,a
′

γ′ (n)
/∈ Sρ+

)
6 1− (1− U∗(γ))q + o(1). (6.12)

We now re-employ the overall coupling in Sub-section 4.6, but in view of (6.11) and
(6.12) we change step (1) and instead of running the two chains for γ1n time, we run them

for t(1)(n) = tξ,a
′

γ′ (n). As (6.11), (6.12) show, we can choose γ′ large enough such that

POCσ0 (S
tξ,a
′

γ′ (n)
/∈ Sρ+) 6 ε for n sufficiently large. The remaining steps in the coupling are

left unchanged and we choose the same parameter values, as in the proof of Theorem 1.
Using the analysis of the modified step (1) given by (6.11) and (6.12), together with

the analysis in Sub-section 4.7 of the remaining steps - which carries over (uniformly in β
near βs(q)), since it only required β < βc(q), we recover (4.14), namely

‖Pσ0
(
σt(5)(n) ∈ ·

)
− µn‖TV 6 6ε.

The time is now given by

t(5)(n) = tα1
γ (n) + tξ,a

′

γ′ (n),

for some γ > 0. Since σ0 is arbitrary and ε can be made arbitrarily small, by having
γ, γ′ large enough, this completes the proof for the upper bound in (1.4) and (1.5) with
α2 = π/

√
αa.

6.2.2. No Cutoff in NCR Case. Using the modified overall coupling as introduced above,
we obtain from (4.14), (6.12) and (6.8) for any γ′ and sufficiently large γ

‖Pσ0
(
σt(5)(n) ∈ ·

)
− µn‖TV 6 1− ε,

for all σ0, large enough n and some ε > 0. Then, since in the [NCR] case

t(5)(n) = tα1
γ (n) + tξ,a

′

γ′ (n) 6 tξ,a
′

γ′+C(n),

this shows that there is no cut-off.

6.2.3. Lower Bound on Mixing Time. Fix ρ > 0 small enough and start with σ0 ≡ 1 - the
all ’1’ configuration. Define:

δ(n) =

{
n−1ξ(n)−1/2A(n) if ξ ∈ [CR]

δ1n
−2/3 if ξ ∈ [NCR]

where A(n) is a sequence tending to ∞ sufficiently slowly and δ1 > 0. Set

N = inf
{
t : Dβ(S1

t )− nE
[
S1
t+1 − S1

t | Ft
]
> δ(n)

}
and define the process Yt which is equal to S1

t up to time N , but after this time evolves
like a birth-and-death processes with ±1/n increments and drift −n−1Dβ(S1

t ). Then

(Zt , s∗ − Yt : t > 0) satisfies

E[Zt+1 − Zt|Ft] 6
1

n

(
ζ(n) + aZ2

t + bZ3
t +O

(
ζ(n)Z2

t + Z4
t

))
,

with a, b, α as in the upper bound case, but with ζ(n) = αξ(n) + δ(n) + O(ξ(n)2 + n−1)
and condition (6.5) holds (if needed) as before. Then, using Lemma 6.2 and Remark 6.3,

we have for n large enough Pσ0
(
τ+
ρ < tζ,aγ (n)

)
6 2L∗(γ), where τ+

ρ is a hitting time for Z

and γ ∈ R. As before, it is not difficult to verify that if A(n) is increasing slowly enough,

tζ,aγ (n) > tξ,a
′

γ′ (n), where γ = F (γ′) satisfies γ → −∞ if γ′ → −∞.
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Now define T = inf{t : St ∈ Sρ+} and τ ′ as τ+
ρ , only with S1

t in place of Yt. Then

Pσ0
(
T < tξ,a

′

γ′ (n)
)
6 Pσ0

(
τ+
ρ < tξ,a

′

γ′ (n)
)

+ Pσ0
(
N < τ ′ ∧ tξ,a

′

γ′ (n)
)

6 2L∗(γ) +Kn(σ0, t
ξ,a′

γ′ (n), s∗ − ρ, δ(n))

where Kn is defined in (6.9). Then, if ρ is sufficiently small, we can use (4.2) for Ŝt starting
from time T to obtain for all r > 0 and γ′′:

Pσ0
(
‖Ŝ

t
α1
γ′′ (n)+tξ,a

′
γ′ (n)

‖2 <
r√
n

)
6 Pσ0

(
T < tξ,a

′

γ′ (n)
)

+ Pσ0
(
‖Ŝ

t
α1
γ′′ (n)+tξ,a

′
γ′ (n)

‖2 <
r√
n

∣∣∣∣T > tξ,a′γ′ (n)

)
6 2L∗(γ) +Kn(σ0, t

ξ,a′

γ′ (n), s∗ − ρ, δ(n)) +O((e−C2γ′′ − r)−2)

Using Proposition 6.4 for the middle term, the last inequality gives (4.3) with tα1
γ′′(n) +

tξ,a
′

γ′ (n) in place of tα1
γ (n). The remaining of the proof is identical to the subcritical case

and this shows the lower bound for both parts of Theorem 2 with α2 = π/
√
αa. �

6.3. Proofs for Subsection 6.1.

Proof of Proposition 6.1. First observe that for all β, Dβ(1
q ) = 0 and for all s > 1

q ,

d

dβ
Dβ(s) =

d

dβ

(
−s+

1

1 + (q − 1)e
− 2βq
q−1

(s− 1
q

)

)
> 0 .

Now since Dβ(s) is smooth as a function of s and β and d0(s) = −s + 1
q it follows that

βs > 0. We have that

d

ds
Dβ(s) = −1 +

2βqe
− 2βq
q−1

(s− 1
q

)(
1 + (q − 1)e

− 2βq
q−1

(s− 1
q

)
)2 ,

d2

ds2
Dβ(s) =

4β2q2e
− 2βq
q−1

(s− 1
q

)
(1− (q − 1)e

− 2βq
q−1

(s− 1
q

)
)

(q − 1)
(

1 + (q − 1)e
− 2βq
q−1

(s− 1
q

)
)3 , (6.13)

and so
d

ds
Dβ(s)

∣∣∣∣
s= 1

q

= −1 +
2β

q
,

d2

ds2
Dβ(s)

∣∣∣∣
s= 1

q

=
4β2(q − 2)

q(q − 1)
> 0 . (6.14)

which implies that dq/2(s) > 0 when s ∈ (1
q ,

1
q + ε) for some small ε. This implies that

βs < q/2. It follows that
d

ds
Dβs(s)

∣∣∣∣
s= 1

q

< 0 ,

and so Dβ(s) < 0 when β ∈ [βs, βs + ε] and s ∈ (1
q ,

1
q + ε) for some small ε. It follows

by compactness then that for some 1
q + ε 6 s∗(βs) 6 1 that Dβs(s

∗(βs)) = 0. By the

definition of βs and since Dβ(s) is smooth we have that

d

ds
Dβs(s)

∣∣∣∣
s=s∗(βs)

= 0,
d2

ds2
Dβs(s)

∣∣∣∣
s=s∗(βs)

6 0 . (6.15)
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The equation d
dsDβs(s) = 0 is equivalent to

2βqe
− 2βsq
q−1

(s− 1
q

)
=
(

1 + (q − 1)e
− 2βsq
q−1

(s− 1
q

)
)2

,

which is a quadratic equation in e
− 2βsq
q−1

(s− 1
q

)
and hence has at most 2 solutions which we

denote s1, s2 with s1 < s2. Since d
dsDβs(0) < 0 then Dβs(s1) < 0 and so s∗(βs) = s2.

In particular this implies that s∗(βs) is the unique s ∈ (1
q , 1] such that Dβs(s) = 0. Also

it follows that d
dsDβs(s) > 0 for s ∈ (s1, s

∗(βs)) and that there exists s′ ∈ (s1, s
∗(βs))

such that d2

ds2
Dβs(s

′) = 0. Since by equation (6.13) there is at most one s such that
d2

ds2
Dβs(s) = 0 it follows that

d2

ds2
Dβs(s)

∣∣∣∣
s=s∗(βs)

< 0.

Hence by the Inverse Function Theorem s∗(β) is a smooth function of β when β is in a
small neighborhood of βs. Then we have that

d

dβ
D∗0(βs) =

d

dβ
Dβ(s∗(βs))

∣∣∣∣
β=βs

+

(
d

dβ
s∗(β)

∣∣∣∣
β=βs

)
d

ds
Dβs(s)

∣∣∣∣
s=s∗(βs)

=
d

dβ
Dβ(s∗(βs))

∣∣∣∣
β=βs

> 0 ,

since d
dsDβs(s)|s=s∗(βs) = 0 which completes the proof of the second part.

We now turn to prove the third part. As we have observed Dβs(s) is a smooth function
satisfying

Dβs(s
∗(βs)) = 0 ,

d

ds
Dβs(s)|s=s∗(βs) = 0 , and

d2

ds2
Dβs(s)|s=s∗(βs) < 0 .

Therefore, we deduce that for any ρ > 0, there exists δ1 > 0 such that

Dβs(s) < −2δ1 for all s ∈
{
s : |s− s∗(βs)| > ρ/2, s ∈

(
1

q
+ ρ, 1

]}
. (6.16)

Since d2

ds2
Dβs(s)

∣∣∣
s=s∗(β)

< 0 for all ρ > 0, there exists δ2 > 0 such that

|s∗(β)− s∗(βs)| < ρ/2 for all |β − βs| < δ2 .

Combined with (6.16), it follows that

Dβs(s) < −2δ1, for all |s− s∗(β)| > ρ and |β − βs| < δ2 . (6.17)

Now that Dβ(s) can be viewed as a continuous function of (β, s) and by compactness,
there exists δ3 > 0 such that |Dβ(s) −Dβs(s)| 6 δ1 for all s ∈ [1/q, 1] and |β − βs| 6 δ3.
Combined with (6.17), it completes the proof by taking δ = δ1 ∧ δ2 ∧ δ3. �

Proof of Lemma 6.2. We do not lose anything by assuming that

E[Zt+1 − Zt|Ft] = f(Zt) ; f(z) = 1
n(ζ(n) + az2 + bz3 + cz4)1[−ρ0,+ρ0](z) (6.18)
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for some a > 0, b, c with ρ0 = 2ρ and that once Zt exits [−ρ0,+ρ0] it is stopped. Indeed,
having f vanish outside of [−ρ0,+ρ0], does not change the asymptotics of the passing
time. Clearly, this is the case for z > +ρ0. For z < −ρ0, it follows from

P−ρ(τ−−ρ0 < tζ,aγ (n)) = o(1), (6.19)

for all γ, which is a consequence of Lemma 2.1 part (3) since the drift of Zt is at least c
n

on [−ρ0,−ρ] for some positive c uniformly in n (if ρ is small enough).
As for replacing the error term in (6.4) by cZ4

t , as the proof below shows, the functions
U∗, L∗ in the lemma restricted to condition (6.18) can be chosen to be continuous in a
in a small interval [a0 − ε, a0 + ε] and the limits (6.6), (6.7) hold uniformly in a in this
interval. This together with Remark 6.3 implies the existence of U∗, L∗ under which (6.6),

(6.7) hold in the general case (6.4) with t
ζ,a+O(ζ(n))
γ (n). Now, it is not difficult to see that

the latter is bounded above and below by tζ,aγ±C(n) for some C > 0 and hence (6.6), (6.7)

hold with tζ,aγ (n). Similar considerations apply for (6.8).
Set

Ψ(z) =

∫ z

0

1

f(x)
dx and Yt = Ψ(Zt)−Ψ(Z0)− t.

The motivation behind the above definitions comes from a continuous time deterministic
analog of (6.18) in the form of an ODE

ż(t) = f(z(t)) (6.20)

for which z(t) = Ψ−1(t − t0) is a solution (roughly speaking Yt measures how far behind
or ahead “in schedule” Zt is, judging from its position).

Start with the [CR] case and set

tζ,a(n) = tζ,a0 (n) =
π√
a

n√
ζ(n)

; wζ(n) =
n1/2

ζ5/4(n)
∨ n.

In the deterministic setting the time it takes for z(t) to pass from z(0) = −ρ to ρ is

Ψ(ρ)−Ψ(−ρ) =

∫ ρ

−ρ

ndx

ζ(n) + ax2 + bx3 + cx4
= tζ,a(n) +O(n)

if ρ is small enough. This will be shown in Proposition 6.5 below. Thus, bounding the
passage time τ+

ρ around tζ,a(n) can be achieved by bounding |Ytζ,a(n)|.
Accordingly, let Yt = Mt + At be the Doob-decomposition of Yt, with Mt a zero-mean

martingale and At the predictable process. The next proposition will allow us to bound
Yt. The proof of this proposition will be deferred to the end of this section.

Proposition 6.5. If ρ is small enough and ζ ∈ [CR] then

(1) Ψ(ρ)−Ψ(−ρ) = tζ,a(n) +O(n).
(2) EM2

tζ,aγ (n)
= O(wζ(n)2).

(3) A
tζ,aγ (n)

= o(wζ(n)) with probability 1.
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Now using the monotonicity of Ψ in [−ρ0,+ρ0] we have

P−ρ(τ+
ρ > tζ,aγ (n)) 6 P−ρ

(
Z
tζ,aγ (n)

< ρ
)

6 P−ρ
(
Y
tζ,aγ (n)

< tζ,a(n)− tζ,aγ (n) +O(n)
)

6 P−ρ
(
M
tζ,aγ (n)

< −γwζ(n) +O(n) + o
(
wζ(n)

))
6

(
O(wζ(n))

(γ +O(1))wζ(n)

)2

,

where the last inequality is a second moment bound. This shows (6.6). For the lower
bound, if −γ is large enough, we may write

P−ρ
(
τ+
ρ < tζ,aγ (n)

)
= P−ρ

(
∃t < tζ,aγ (n) : Zt > ρ

)
6 P−ρ

(
∃t < tζ,aγ (n) : Yt > t

ζ,a(n)− tζ,aγ (n) +O(n)
)

6 P−ρ
(
∃t < tζ,aγ (n) : Mt > − γwζ(n) +O(n) + o

(
wζ(n)

))
6

O(wζ(n))

(−γ +O(1))wζ(n)

where the last inequality follows from Doob’s inequality. This shows (6.7)

Next, we address the [NCR] case. We can no longer use the means analysis (6.20)
throughout the entire passage interval [−ρ, ρ] as Zt is not concentrated around its mean
near 0. Accordingly, we analyze the passage time in each of the following segments sepa-
rately:

[−ρ,−rn−1/3] ; [−rn−1/3,+rn−1/3] ; [+rn−1/3,+ρ] ,

for some r > 0 to be chosen later.
We start with the upper bound. For the sequel, let w = rn−1/3. The upper bound will

follow if we show the following:

(1) Segment [−ρ,−w]. For any γ,

lim
r→∞

lim sup
n→∞

P−ρ(τ+
−w > tζ,aγ (n)) = 0 (6.21)

(2) Segment [+w,+ρ]. For any γ,

lim
r→∞

lim sup
n→∞

Pw(τ+
ρ > tζ,aγ (n)) = 0 (6.22)

(3) Segment [−w,+w]. For any r > 0, there exists u : R→ [0, 1) such that

lim sup
n→∞

P−w
(
τ+
w > tζ,aγ (n)

)
6 u(γ) < 1 , (6.23)

for all γ. Furthermore, u(γ)→ 0 as γ →∞.

All are hitting times for Z. Indeed, by first choosing large enough r and then choosing
large enough γ both (6.6) and (6.8) will follow by multiplication. We proceed to prove
each of the above statements.

Segments [−ρ,−w], [+w,+ρ]. Here we can use the means analysis as in the [CR] case. As
before, we do not change the asymptotics of the passage time through these intervals, if
we assume that f(z) in (6.18) satisfies:

f(z) = 1
n(ζ(n) + az2 + bz3 + cz4)1[−ρ0,−w0]∪[+w0,+ρ0](z)
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where a, b, c, ρ0 are as before, w0 = w/2 and once Zt exits [−ρ0,−w0] ∪ [+w0,+ρ0] it is
stopped. Indeed this follows from the same reasoning and in addition since for any γ

lim
r→∞

Pw(τ−w0
< tζ,aγ (n)) = 0 ,

uniformly in n (large enough) as it follows from Lemma 2.1 part (2) since the drift of Zt
is non-negative on [w0, w].

We use the same definitions for Yt, Mt and At as above. In place of Proposition 6.5 we
have

Proposition 6.6. Assume ζ ∈ [NCR]. There exists k(r) satisfying k(r) → 0 as r → ∞
such that for any ρ small enough, r large enough, n large enough and all t:

(1) Ψ(−w)−Ψ(−ρ), Ψ(ρ)−Ψ(w) 6 k(r)n4/3.

(2) EM2
t 6 k(r)tn4/3.

(3) |At| 6 k(r)t with probability 1.

The proof is again deferred. Now, as before

P−ρ
(
τ+
−w > tζ,aγ (n)

)
6 P−ρ

(
Z
tζ,aγ (n)

< −w
)

6 P−ρ
(
Y
tζ,aγ (n)

< Ψ(−w)−Ψ(−ρ)− tζ,aγ (n)
)

6 P−ρ
(
M
tζ,aγ (n)

< k(r)n4/3 + k(r)eγn4/3 − eγn4/3
)

6
k(r)eγ

((1− k(r))eγ − k(r))2 (6.24)

where the last inequality is Chebyshev. This goes to zero as r →∞ for any γ. This shows
(6.21). Similarly,

Pw
(
τ+
ρ > tζ,aγ (n)

)
6 Pw

(
Z
tζ,aγ (n)

< ρ
)

6
k(r)eγ

((1− k(r))eγ − k(r))2

and this shows (6.22).

Segment [−w,w]. Here we still assume (6.18), but instead of absorbing Zt at the bound-
aries, we shall now suppose that Zt evolves like a symmetric random walk with ±n−1

steps, once it exits [−ρ0,+ρ0].
We first show that u can be chosen to vanish at infinity. Consider the process Ut =

(U0−(Zt−Z0 +δn−5/3t), for δ > 0 with U0 to be chosen later and set N = inf{t : Ut 6 0}.
Then, by the definition of the [NCR] regime for n large enough Ut∧N is a non-negative
supermartingale satisfying the requirements of Lemma 2.3 and hence

P−w(τ+
w > tζ,aγ (n)) = P−w(Zt < w ∀t 6 tζ,aγ (n))

6 P−w(Ut > U0 + Z0 − (w + δeγn−1/3) ∀t 6 tζ,aγ (n))

= P−w(N > tζ,aγ (n))

6
4(w + δeγn−1/3 + w)√

dn−1eγ/2n2/3
6 C(r + 1)e−γ/2

where we choose U0 = w + δeγn−1/3 − Z0 and δ = e−γ . The last expression can be made
arbitrarily small by taking γ large enough, uniformly in n if it is sufficiently large.
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To show that u can satisfy u(γ) < 1 for all γ, we have to show that Z can cross

from −w to w in tζ,aγ (n)-time for arbitrarily small γ. If ρ is small and n is large, then
Xt = n(Zt − (−w)) satisfies the conditions in Lemma 2.2 with δ = ζ(n)− and a = d.
Therefore

P−w(τ+
w > tζ,aγ (n)) > P−w(∃t 6 tζ,aγ (n) : Xt > 2rn2/3)

> C1 exp{−C2(2re−γ/2 + eγ/2ζ(n)−n2/3)2}+O(n−2/3)

which is positive for all γ, once n is large enough. This proves (6.23) and concludes the
proof of the upper bound.

To show the lower bound in the [NCR] case, set Vt = Zt − δn−5/3t + w and choose
δ, r > 0 such that Vt∧τ+w has non-positive drift whenever Vt∧τ+w > 0. Then,

P−ρ(τ+
ρ < tζ,aγ (n)) 6 P−ρ(∃t < tζ,aγ (n) : Zt > w)

6 P−ρ(∃t < tζ,aγ (n) : Vt∧τ+w > 2w − δeγn−1/3)

= P−ρ(∃t < tζ,aγ (n) : Vt∧τ+w > (2r − δeγ)n−1/3)

and part (2) of Lemma 2.1 shows that the last expression goes to 0 as γ → −∞ uniformly
in n (large enough). This proves (6.7) and completes the [NCR] case. �

It remains to prove Propositions 6.4–6.6.

Proof of Proposition 6.4. Let τ∗ = min
{
τ−y , t(n),mini > 2 min{t > 0 : Sit >

1
q}
}

. Fix some

2 6 i < j 6 q and set

Yt = Sit − S
j
t .

Let Ut−1 = Yt − Yt−1 − Eσ0 [Yt − Yt−1 | Ft−1] and then since |Yt − Yt−1| 6 2
n we have that

|Ui| 6 4
n . Define the process Zt by Z0 = 0 and

Zt − Zt−1 := sign(Zt−1)sign(Yt−1)Ut−1

where

sign(x) =

{
1 x > 0,

−1 x < 0.

With this definition Zt is clearly a martingale and since |Zt−Zt−1| 6 4
n , then Eσ0Z2

t 6
16t
n2

and so by Doob’s maximal inequality,

Eσ0
[

max
0 6 t 6 t(n)

|Zt|
]2

6 2Eσ0Z2
t(n) 6

32t(n)

n2
. (6.25)

Now when t < τ∗ we have that Sit , S
j
t <

1
q and so∣∣∣e2β(Sit−

1
q

) − e2β(Sjt−
1
q

)
∣∣∣ 6 2β

∣∣∣Sit − Sjt ∣∣∣ .
By Jensen’s inequality

∑q
k=1 e

2β(Sit−
1
q

) > q so

Eσ0 [sign(Yt−1)(Yt − Yt−1) | Ft−1]

= Eσ0

[
sign(Sit−1 − S

j
t−1)

1

n

(
e

2β(Sit−
1
q

) − e2β(Sjt−
1
q

)∑q
k=1 e

2β(Sit−
1
q

)
− (Sit−1 − S

j
t−1)

)]

6 − q − 2β

qn

∣∣∣Sit − Sjt ∣∣∣ 6 0. (6.26)
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Now when |Yt−1| > 2
n we have that |Yt| − |Yt−1| = sign(Yt−1)(Yt − Yt−1) and we always

have

|Zt| − |Zt−1| > sign(Zt−1)(Zt − Zt−1) = sign(Yt−1)Ut−1

with equality when sign(Zt) = sign(Zt−1). Hence it follows that when |Yt−1| > 2
n and

t 6 τ∗,

|Yt| − |Yt−1| = sign(Yt−1)(Yt − Yt−1)

6 sign(Yt−1)Ut−1

6 |Zt| − |Zt−1|

where the first inequality follows from equation (6.26). It follows by induction that
|Zt| > |Yt| − 3

n for all t 6 τ∗. In particular we have by equation (6.25) that

Eσ0
[

max
2 6 i<j 6 q

max
0 6 t 6 τ∗

∣∣∣Sit − Sjt ∣∣∣]2

= O

(
t(n)

n2

)
= o(1). (6.27)

By Markov’s inequality with probability tending to 1 we have that
∣∣∣Siτ∗ − Sjτ∗∣∣∣ = o(1) for

every pair 2 6 i, j 6 q. Now by construction S1
τ∗ > y− 1

n so with high probability we have

that Siτ∗ 6
1
q−

y− 1
q

q−1 +o(1) < 1
q which implies that with high probability τ∗ = min{t(n), τ−y }.

Now, by Taylor series expansions,

0 6

(
q∑
i=2

e2βSit

)
− (q − 1)e

2β
1−S1t
q−1 6

q∑
i=2

(2βSit − 2β
1− S1

t

q − 1
) +

q∑
i=2

O

(
(2βSit − 2β

1− S1
t

q − 1
)2

)

6 O

((
max

2 6 i<j 6 q

∣∣∣Sit − Sjt ∣∣∣)2
)
,

where the first inequality is by Jensen, and we have used the fact that
∑q

i=2 S
i
t = 1− S1

t .
It therefore follows that with high probability for all 0 6 t 6 max{t(n), τ−y } that

nEσ0
[
S1
t − S1

t−1 | Ft−1

]
=

e2βS1
t−1∑

i=1q e
2βSit−1

− S1
t−1

=
e2βS1

t−1

e2βS1
t−1 + (q − 1)e

2β
1−S1t−1
q−1

− S1
t−1 −O

((
max

2 6 i<j 6 q

∣∣∣Sit − Sjt ∣∣∣)2
)

= Dβ(S1
t−1)−O

((
max

2 6 i<j 6 q

∣∣∣Sit − Sjt ∣∣∣)2
)

and hence that

max
0 6 t 6 τ∗

Dβ(S1
t−1)− nEσ0

[
S1
t − S1

t−1 | Ft−1

]
6 O

((
max

2 6 i<j 6 q
max

0 6 t 6 τ∗

∣∣∣Sit − Sjt ∣∣∣)2
)

which combined with equation (6.27) and Markov’s inequality completes the result. �



42 P. CUFF, J. DING, O. LOUIDOR, E. LUBETZKY, Y. PERES, AND A. SLY

Proof of Proposition 6.5. Starting with part (1),

Ψ(ρ)−Ψ(−ρ)

=

∫ ρ

−ρ

ndx

ζ(n) + ax2
+

∫ ρ

−ρ

(
n

ζ(n) + ax2
− n

ζ(n) + ax2 + bx3 + cx4

)
dx

=
2n√
aζ(n)

tan−1

(
ρ
√
a√

ζ(n)

)
+ n

∫ ρ

−ρ

(
− bx3 + cx4

(ζ(n) + ax2)2
+O

( (
bx3 + cx4

)2
(ζ(n) + ax2)3

))
dx

=
π√
a

n√
ζ(n)

+O(n) +O

(
n

∫ ρ

−ρ

(
− cx4

a2x4
+

(
bx3 + cx4

)2
a3x6

)
dx

)

= tζ,a(n) +O(n) +O

(
n

∫ ρ

−ρ
dx

)
= tζ,a(n) +O(n).

To prove part (2), we use the law of total variance:

VarMt = Var E[Mt|Ft−1] + E Var[Mt|Ft−1]

= VarMt−1 + E Var[Yt|Ft−1]

6 VarMt−1 + max
|z| 6 2ρ0

∣∣Ψ′(z)∣∣2 E Var[Zt − Zt−1|Ft−1]

6 VarMt−1 +
n2

ζ2(n)

1

n2
.

Hence by induction

EM2
tζ,aγ (n)

= VarM
tζ,aγ (n)

6
tζ,aγ (n)

ζ2(n)
= O(wζ(n)2).

As for part (3),

At+1 −At = E[Yt+1 − Yt|Ft]
= E [Ψ(Zt+1)−Ψ(Zt)| Ft]− 1

= E
[

Ψ′(Zt)(Zt+1 − Zt) + O( max
|z| 6 2ρ

∣∣Ψ′′(z)∣∣ (Zt+1 − Zt)2)

∣∣∣∣ Ft]− 1

= Ψ′(Zt)E[Zt+1 − Zt|Ft] + O( max
|z| 6 2ρ0

∣∣Ψ′′(z)∣∣n−2)− 1

= O( max
|z| 6 2ρ

∣∣Ψ′′(z)∣∣n−2) = O

(
1

nζ3/2(n)

)
,

where the last inequality follows from∣∣∣∣ d2

dz2
Ψ(z)

∣∣∣∣ =
n|2az + 3bz2 + 4cz3|

(ζ(n) + az2 + bz3 + cz4)2

6
nC1|z|

(ζ(n) + C2z2)2
= O

(
n

ζ3/2(n)

)
.

if ρ is small enough. Then again by induction, we conclude that

A
tζ,aγ (n)

= O

(
tζ,aγ (n)

nζ3/2(n)

)
= o

(
wζ(n)

)
. �
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Proof of Proposition 6.6. If r is large enough and ρ is small, we have f(z) > n−1(a/2)z2

for all w0 < |z| < ρ0, where as before w0 = w/2 and ρ0 = 2ρ. This immediately gives part
(1) with k(r) = Cr−1.

The proof for parts (2),(3) are similar to the ones in Proposition 6.5. This time the
bounds on the derivatives become

max
w0/2<|z|<2ρ0

∣∣Ψ′(z)∣∣2 6 Cr−4n10/3 ; max
w0/2<|z|<2ρ0

∣∣Ψ′′(z)∣∣ 6 Cr−3n2.

Proceeding by induction as before, we obtain (3), (2) with k(r) = Cr−4 and k(r) = Cr−3

respectively. �

7. Essential Mixing

Proof of Theorem 4. As the reader can verify, most statements in Sections 3 and 4 hold
when β < βc(q) and even β < q/2 (the restrictions on β are indicated before each statement
there). The only time β < βs(q) < βc(q) is required is in step (1) of the overall coupling,
where the condition ensures that the drift of each single coordinate Sit is negative in all
(1/q, 1], which, in turn, implies that for any initial configuration, after t = O(n) time,
σt ∈ Σρ

n, which is a necessary starting point for the couplings that follow.
Now, if β > βs(q), but still β < βc(q), we may replace this step, with the requirement

that σ0 is initially chosen from Σ̃n = Σρ
n. The analysis of the overall coupling will remain

the same, with the coalescence time being even smaller (but just by a linear term, which

can be absorbed in the cutoff-window term). Thus, the restricted mixing time tΣ̃nmix(ε)(n)

will be upper bounded as before. In addition, the lower bound in Subsection 4.1 will also

hold for tΣ̃nmix(ε)(n), since as initial configuration, we may take any σ0 ∈ ∂PnΣn(ρ) for ρ > 0.

It remains to show that Σn \ Σ̃n has an exponentially decreasing probability under µn.
This follows immediately from the large deviations analysis in Subsection 2.2. If β < βc(q),
the rate function Iβ,q is strictly positive away from ê and in particular there exist C1 > 0,
C2 > 0, such that

µn

(
Σn \ Σ̃n

)
= πn (Sn \ Sρ1n ) 6 C1e

−C2n.

This concludes the proof of the theorem. �
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