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Abstract. We study the Glauber dynamics for the random cluster (FK) model on
the torus (Z/nZ)2 with parameters (p, q), for q ∈ (1, 4] and p the critical point pc.
The dynamics is believed to undergo a critical slowdown, with its continuous-time
mixing time transitioning from O(logn) for p 6= pc to a power-law in n at p = pc.
This was verified at p 6= pc by Blanca and Sinclair, whereas at the critical p = pc, with
the exception of the special integer points q = 2, 3, 4 (where the model corresponds
to Ising/Potts models) the best-known upper bound on mixing was exponential in n.

Here we prove an upper bound of nO(logn) at p = pc for all q ∈ (1, 4], where the key
ingredient is controlling the number of disjoint long-range crossings at criticality.

1. Introduction

The random cluster (FK) model is an extensively studied model in statistical physics,
generalizing electrical networks, percolation, and the Ising and Potts models, to name
a few, under a single unifying framework. It is defined on a graph G = (V,E) with
parameters 0 < p < 1 and q > 0 as the probability measure over subsets ω ⊂ E (or
equivalently, configurations ω ∈ {0, 1}E), given by

πG,p,q(ω) ∝ p|ω|(1− p)|E|−|ω|qk(ω) ,

where k(ω) is the number of connected components (clusters) in the graph (V, ω).
At q = 1, the FK model reduces to bond percolation on G, and for integer q ≥ 2 it

corresponds via the Edwards–Sokal coupling [9] to the Ising (q = 2) and Potts (q ≥ 3)
models on V (G). Since its introduction around 1970, this model has been well-studied
both in its own right and as a means of analyzing the Ising and Potts models, with an
emphasis on Zd as the underlying graph. There, for every q ∈ [1,∞), the model enjoys
monotonicity, and exhibits a phase transition at a critical pc(q) w.r.t. the existence
(almost surely) of an infinite cluster (see, e.g., [11] and the references therein).

Significant progress has been made on the model at d = 2, in particular for 1 ≤ q ≤ 4
where the model is expected to be conformally invariant (see [21, Problem 2.6]). It is

known [1] that pc(q) =
√
q

1+
√
q on Z2 for all q ≥ 1. Moreover, while the phase transition

at this pc is conjectured to be discontinuous if q > 4 (as confirmed [13] for all q > 25),
it is continuous for 1 ≤ q ≤ 4 (as established in [8]). There, the probability that x
belongs to the cluster of the origin decays as exp(−c|x|) at p < pc, as a power-law |x|−η
at the critical pc, and is bounded away from 0 at p > pc.

Here we study heat-bath Glauber dynamics for the two-dimensional FK model, where
the following critical slowdown phenomenon is expected: on an n×n torus, for all p 6= pc
the mixing time of the dynamics should have order log n (recently shown by [2]), yet at
p = pc it should behave as exp(cn) in the presence of a discontinuous phase transition,
and as nz for some universal z > 0 in the presence of a continuous phase transition.
The critical behavior in the former case was established in a companion paper [10], as
was a critical power-law in the cases q = 2 ([16]) and q = 3 ([10]). In this work we
obtain a quasi-polynomial upper bound for non-integer 1 < q ≤ 4 at criticality.
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Figure 1. A critical FK configuration that induces three distinct
boundary components bridging over an edge on the bottom segment.

More precisely, Glauber dynamics for the FK measure πG,p,q is the continuous-time
Markov chain (Xt)t≥0 that assigns each edge e ∈ E a rate-1 independent Poisson clock,
where upon ringing, Xt(e) is resampled via πG,p,q conditioned on the values of Xt�E−{e}.
This Markov chain is reversible by construction w.r.t. πG,p,q, and may hence be viewed
both as a natural model for the dynamical evolution of this interacting particle system,
and as a simple protocol for sampling from its equilibrium measure. A central question
is then to estimate the time it takes this chain to convergence to stationarity, measured
in terms of the total variation mixing time tmix (see §2.2 for the related definitions).

For p 6= pc, the fact that tmix � log n was established in [2] using the aforementioned
exponential decay of cluster diameters in the high-temperature regime p < pc: on finite
boxes with certain boundary conditions, this translates to a property known as strong
spatial mixing, implying that the number of disagreements between the states of two
chains started at different initial states decreases exponentially fast, thus tmix � log n;
this result readily extends to p > pc by the duality of the two-dimensional FK model.

At p = pc, where there no longer is an exponential decay of correlations, polynomial
upper bounds on tmix were obtained for the Ising model in [16] and the 3-state Potts
model—along with a quasi-polynomial bound for the 4-state model—in [10], using a
multiscale approach that reduced the side length of the box by a constant factor in
each step at a cost of a constant factor in the upper bound via a coupling argument;
these carry over to the FK model for q = 2, 3, 4 via the comparison estimates of [22].
However, for non-integer q, FK configurations may form macroscopic clusters along the
boundary of smaller-scale boxes, destroying the coupling—a situation that is prevented
for integer q thanks to the special relation between FK/Potts models (see Fig. 1).

It was recently shown [12] that for q = 2 the FK Glauber dynamics on any graph

G = (V,E) has tmix ≤ |E|O(1); the technique there, however, is highly specific to the
case of q = 2. Indeed, this bound does not hold on Zd, for any d ≥ 2, at p = pc and q
large enough, as follows from the exponential lower bounds of [3,4] on the mixing time
of Swendsen–Wang dynamics for the Potts model (see, e.g., [6, 10] for further details).
The best prior bound on non-integer 1 < q < 4 was tmix ≤ exp(O(n)).

In the present paper, we prove that for periodic boundary conditions (as well as a
wide class of others, including wired and free; see Remark 1.1), the following holds:

Theorem 1. Let q ∈ (1, 4] and consider the Glauber dynamics for the critical FK
model on (Z/nZ)2. There exists c = c(q) > 0 such that tmix . nc logn.
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Figure 2. Macroscopic disjoint boundary bridges prevent the coupling
of FK configurations sampled under two different boundary conditions
on ∂sΛ from being coupled past a common horizontal dual-crossing.

Remark 1.1. Theorem 1 holds for rectangles with uniformly bounded aspect ratio,
under any set of boundary conditions with the following property: for every edge e on
the boundary of the box, there are O(log n) distinct boundary components connecting
vertices on either side of e (see Definitions 5.1–5.2 and Theorem 5.4). This includes, in
particular, the wired and free boundary conditions, as well as, with high probability,
“typical” boundary conditions: those that are sampled under πZ2,pc,q (see Lemma 5.7).

Remark 1.2. For q ∈ {2, 3, 4}, the comparison estimates of [22] carry the upper bounds
on the mixing time of the Potts model to the FK model, yet only for a limited class
of boundary conditions (e.g., the partition of boundary vertices can have at most one
cluster of size larger than nε, in contrast to “typical” ones as above). The above theorem
thus extends the class of FK boundary conditions for which tmix is quasi-polynomial.

Remark 1.3. Theorem 1 implies analogous upper bounds for other flavors of Glauber
dynamics (e.g., Metropolis) by standard comparison estimates [14, Lemma 13.22], as
well as global cluster dynamics (e.g., Chayes–Machta [5]) via the estimates of [22].

1.1. Main techniques. As mentioned above, in [16] and then [10], the polynomial
upper bounds on the mixing time at the critical temperature of the models at q ∈ {2, 3}
relied on Russo–Seymour–Welsh (RSW) bounds [7,8] to expose a dual-interface in the
FK representation of the model, beyond which block dynamics chains could be coupled.
However, the fact that chains, started from any two initial configurations, could be
coupled past that dual-interface, relied on a certain (exponentially rare) conditional
event, implicit in the relation between the FK and Potts models at integer q (namely
that no two distinct boundary components were connected in the interior). Outside of
this conditional space, connections between two distinct components on one side of a
rectangle could dramatically alter the boundary conditions elsewhere (see Fig. 2). We
refer to such distinct boundary components as bridges, as they cross over dual-interfaces
in the interior of the box and allow long-range interactions (see Definition 3.4 in §3.2).

Such a difficulty was pointed out in [2] in the high-temperature regime and later
in [10] at criticality when the phase transition is discontinuous. In both cases, however,
the exponential decay of correlations under π0

Z2 ensured such bridges would be, with
high probability, microscopic: in [2] these bridges were disregarded by only considering
side-homogenous (wired or free on sides) boundary conditions, while in [10], the relevant
boundary segments could be completely disconnected by brute-force modifications.
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In contrast, in the present setting, due to the power-law decay of correlations, for
FK boundary conditions induced by πZ2 there will typically be many boundary edges
with some c log n distinct macroscopically-long bridges over each (see Corollary 3.13).
Therefore, to obtain a quasi-polynomial upper bound at criticality, it is necessary to
control the effect of such bridges on mixing; we do so by restricting our attention to
boundary conditions that have O(log n) distinct boundary bridges over any one edge.

Using the RSW bounds of [8], we obtain upper and lower exponential tails on the
number of disjoint bridges over a fixed edge under the FK measure (see Proposition 3.9,
which may be of independent interest). Consequently, we prove that if we sample from
the FK measure on a 2n× 2n box Λ with arbitrary boundary conditions, the boundary
conditions this induces on the concentric inner n×n box will belong to our permissible
class of “typical” boundary conditions with probability 1−O(n−c) (see Lemma 5.7).

To maintain “typical” (as opposed to worst-case) boundary conditions throughout
the multi-scale analysis, we turn to the Peres–Winkler censoring inequalities [19] for a
monotone spin system, that were used in [18] (then later in [15]) for the Ising model
under “plus” boundary, a class of boundary conditions that dominate the plus phase.

A major issue when attempting to carry out this approach—adapting the analysis
of the low temperature Ising model to the critical FK model—is the stark difference
between the nature of the corresponding equilibrium estimates needed to drive the
multi-scale analysis. In the former, crucial to maintaining “plus” boundary condition
throughout the induction of [18] was that in the presence of favorable boundary condi-
tions, the multiscale analysis could be controlled except with super-polynomially small
probability. This yielded a bound on coupling the dynamics started at the extremal
(plus and minus) initial configurations, which a standard union bound over the O(n2)
sites of the box (see Fact 2.4) then transformed to a bound on tmix.

In our case, we again wish to couple the dynamics from the extremal (wired and
free) initial configurations, since starting from an arbitrary state may induce boundary
conditions on the smaller scales that are not “typical” ones. However, even in the ideal
scenario where boundary conditions on a given block have no bridges, the probability
that we can couple the dynamics from wired and free initial states on that block is
at best ε > 0 (as per the RSW estimates), rather than 1 − o(n−2). In particular, we
cannot afford the O(n2) factor of translating this to a bound on tmix even in this ideal
setting—and the actual setting is far worse, replacing ε by n−c.

Instead, we construct a censored dynamics that mimics a systematic block dynamics
chain (one where the order of updated blocks is deterministically chosen), and bound
the total variation distance between their distributions in terms of the probability
that we encounter unfavorable boundary conditions on the sub-blocks along the way
(see Proposition 4.8). By doing so, we compare the censored block dynamics to the
systematic block dynamics with boundary conditions modified to eliminate all O(log n)
bridges over a particular edge, paying a cost of nc. We may then let the systematic
block dynamics run some nc rounds, and use the absence of bridges at a particular
edge, to boost the probability of coupling from o(1) to 1 − o(1). This extends to
our censored dynamics via induction on the smaller scale blocks (enjoying favorable
boundary conditions except with negligible probability), yielding a bound on tmix.
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2. Preliminaries

In this section we define the random cluster (FK) model and the FK dynamics that
will be the object of study in this paper. We also recall various important results from
the equilibrium theory of the FK model in §2.1, and the general theory of Markov chain
mixing times (§2.2), including, in particular, that of monotone chains. Throughout the
paper, for sequences f(N), g(N) we will write f . g if there exists a constant c > 0
such that f(N) ≤ cg(N) for all N and f � g if f(N) . g(N) . f(N).

For a more detailed exposition of much of §2.1 see [11], and for a more detailed
exposition of the main ideas in §2.2 see [14].

2.1. The FK model. Throughout the paper, we identify an FK configuration ω ⊂ E
with an assignment E → {0, 1}, referring to an edge e with ω(e) = 1 as open and to an
edge e with ω(e) = 0 as closed. We will drop the subscripts p, q from πG,p,q whenever
their value is clear from the context.

Boundary conditions. For a graph G, one can fix an arbitrary subset of the vertices
to be the boundary ∂G so that a boundary condition ξ on ∂G is a partition of V (∂G)
into distinct components. The wired boundary condition consists of just one component
consisting of all v ∈ V (∂G), and the free boundary condition consists of only singletons,
each corresponding to one vertex in V (∂G). For ease of notation, in the former case we
say ξ = 1 and in the latter case we say ξ = 0. Denote the interior of G by Go = G−∂G.

For two domains R1 ⊂ R2, we say that a configuration ω on R2 with boundary
condition ξ induces a boundary condition ζ on R1 if ζ is the boundary condition induced
by ω�R2−Ro1∪ξ: here the union of two boundary conditions denotes the partition arising

from all connections through ω�R2−Ro1 and ξ together. In such situations, when we write

ω�∂R1
we mean the boundary condition induced on R1 by ω on R2 −Ro1 and ξ. If two

sites x, y are in the same component of a boundary condition ξ, we write x
ξ←→ y.

Domain Markov property. For any q, the FK model satisfies the Domain Markov prop-
erty: that is to say, for any graph G and any boundary conditions ξ on ∂G, for every
subgraph F ⊂ G and configuration η on G− F ,

πξ∪ηF (ω ∈ ·) = πξG(ω�F ∈ · | ω�G−F = η) .

Monotonicity and FKG inequalities. There is a natural partial ordering to configura-
tions and boundary conditions in the FK model: for two configurations ω, ω′ ∈ Ω we
say ω ≥ ω′ if ω(e) ≥ ω′(e) for every edge e ∈ E, and for any two boundary conditions

ξ, ξ′ we say that ξ ≥ ξ′ if x
ξ′←→ y implies x

ξ←→ y for every pair of sites x, y ∈ V (∂G),
which is to say that ξ′ corresponds to a finer partition than ξ of the vertices V (∂G).

An event A is increasing if it is closed under addition of edges so that if ω ≤ ω′,
then ω ∈ A implies ω′ ∈ A; analogously, it is decreasing if it is closed under removal
of edges. The FK model satisfies FKG inequalities for all q ≥ 1 (i.e., it is positively
correlated) so that for any two increasing events A,B,

πξG(A ∩B) ≥ πξG(A)πξG(B) .
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This leads to monotonicity in boundary conditions for all q ≥ 1. For any pair of
boundary conditions ξ, ξ′ with ξ′ ≤ ξ, and any increasing event A,

πξ
′

G(A) ≤ πξG(A) ,

whence we say that πξG stochastically dominates (�) πξ
′

G .

Planar duality. For the purposes of this paper, we now restrict our attention to graphs
that are subsets of Z2, the graph with vertices at Z2 and edges between nearest-
neighbors in Euclidean distance. For a connected graph G ⊂ Z2, we let ∂G consist
of all v ∈ V having a Z2-neighbor in Z2−G along with all edges between such vertices.

For a graph G ⊂ Z2 (in fact for any planar graph), there is a powerful duality between
the FK model on G and the FK model on G∗ where G∗ is the dual graph of G. Given
a planar graph G, we can identify to any configuration ω a dual configuration ω∗ on
G∗ where (identifying to each e ∈ E(G), the unique dual edge e∗ passing through e),
ω∗(e∗) = 1 if and only if ω(e) = 0. We sometimes identify edges with their midpoints.

For any boundary condition ξ on a planar graph G, for all q ≥ 1, the map p 7→ p∗

where pp∗ = q(1− p)(1− p∗) can be seen to satisfy

πξG,p,q
d
= πξ

∗

G∗,p∗,q

where the boundary condition ξ∗ is determined on a case by case basis so that (ξ∗)∗ = ξ
(in particular, the wired and free boundary conditions are dual to each other).

Planar notation. The graphs we consider will be rectangular subsets of Z2, denoted,

Λn,m = J0, nK× J0,mK ,

where throughout the paper, J0, nK := {k ∈ Z : 0 ≤ k ≤ n}. When n,m are fixed and
understood from context, we drop them from the notation. Then we denote the sides
of ∂Λ by ∂wΛ = {0} × J0,mK and the analogously defined ∂nΛ, ∂sΛ, ∂eΛ. We collect
multiple sides into their union by including both subscripts, e.g., ∂n,sΛ = ∂nΛ ∪ ∂sΛ.

Consider the FK model on a rectangular graph Λ. For any x, y ∈ Λ, we write x←→ y
if x and y are part of the same component of ω on Λ−∂Λ (there exists a connected set
of open edges with one edge adjacent x and one adjacent y). For a subset R ⊂ Λ, we

write x
R←→ y to denote the existence of such a crossing within R − ∂R, and for two

sets A,B ⊂ Λ we write A←→ B if there exists a ∈ A, b ∈ B such that a←→ b.
We now define the vertical crossing event for a rectangle Λ as

Cv(Λ) = ∂sΛ
Λ←→ ∂nΛ ,

and analogously define the horizontal crossing event Ch(Λ). One can similarly define the
dual-crossing events C∗v(Λ), C∗h(Λ) (where abusing notation, the fact that the crossings

occur on Λ∗ is understood) and more generally, writing x∗
∗←→ y∗ denotes the existence

of a connection in the dual graph. Then, crucially, planarity and self-duality of Z2 imply
that for a rectangle Λ, we have Cv(Λ) = (C∗h(Λ))c.

Finally for two rectangles Λ′ ⊂ Λ, an annulus A = Λ−Λ′, denote the existence of an
open circuit (connected set of open edges with nontrivial homology w.r.t. A) by Co(A).
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Gibbs measures and the FK phase transition. Infinite-volume Gibbs measures can be

derived by taking limits of πξnΛn,n as n → ∞ for a prescribed sequence of boundary

conditions ξn: natural choices of such boundary conditions are ξn = 1, 0 or periodic so

that the graph is (Z/nZ)2. If such limits exist weakly, we denote them by πξZ2 , and
they satisfy the DLR conditions (see, e.g., [11]).

By the self-duality of Z2 (up to translation), one sees that at the fixed point of

p 7→ p∗, (psd =
√
q

1+
√
q ), one has π1

Z2

d
= π0

(Z2)∗ , and we say the model is self-dual. The

FK model for q ≥ 1 exhibits a sharp phase transition between a high temperature
phase (p small) where there is no infinite component, and a low temperature phase
(p large) where there is almost surely an infinite component, through a critical point
pc(q) = inf{p ∈ [0, 1] : πZ2,p,q(0 ←→ ∞) > 0}. It was proved in [1] that for all q ≥ 1,

pc(q) = psd(q), and later in [8] that for all q ∈ [1, 4], we have that π1
Z2,pc,q

(0←→∞) = 0,

implying π1
Z2,pc,q

d
= π0

Z2,pc,q
and continuity of the phase transition (these were established

much earlier for the cases of bond percolation q = 1 and the Ising model q = 2).

Russo–Seymour–Welsh estimates. A key ingredient in the proof of the continuity of
the phase transition for all q ∈ [1, 4] was the following set of Russo–Seymour–Welsh
(RSW) type estimates on crossing probabilities of rectangles uniform in the boundary
conditions (such results were obtained for q = 1 in [20] and for q = 2 in [7]), which
were central to all available mixing time upper bounds at pc on Z2 (see [10,16]):

Theorem 2.1 ([8, Theorem 3]). Let q ∈ (1, 4] and consider the critical FK model on
Λn,n′ where n′ = bαnc for some α > 0. For every ε > 0, if Rε = Jεn, (1 − ε)nK ×
Jεn′, (1− ε)n′K, there exists a p(α, ε, q) > 0 such that,

π0
Λ(Cv(Rε)) ≥ p .

Corollary 2.2. Let q ∈ (1, 4] and consider the critical FK model on Λn,n′. Let Rε be
as in Theorem 2.1; then there exists a p(α, ε, q) > 0 such that

π0
Λ(Co(Λ−Rε)) ≥ p .

When 1 < q < 4, we have the a stronger bound uniform in boundary conditions:

Proposition 2.3 ([8, Theorem 7]). Let q ∈ (1, 4) and consider the critical FK model
on Λn,n′ where n′ = bαnc for α > 0. There exists p(α, q) > 0 such that,

π0
Λ(Cv(Λ)) ≥ p .

Such a bound is in fact not expected to hold for q = 4, where, for instance, it is
believed (see [8]) that under free boundary conditions the crossing probability goes to
0 as N →∞.

2.2. Markov chain mixing times. In this section we introduce the dynamical no-
tation we will be using along with several important results in the theory of Markov
chain mixing times, and in particular the theory of Markov chains on monotone spin
systems, that we will use in the proof of Theorem 1.



8 REZA GHEISSARI AND EYAL LUBETZKY

Mixing times. Consider a Markov chain (Xt)t≥0 with finite state space Ω, and (in
discrete time) transition kernel P with invariant measure π. In the continuous-time
setup, instead of P t we consider, for ω0, ω ∈ Ω, the heat kernel

Ht(ω0, ω) = Pω0(Xt = ω) = etL(ω0, ω) ,

where Pω0 is the probability w.r.t. the law of the chain (Xt)t≥0 given X0 = ω0, and L
is the infinitesimal generator for the Markov process.

For two measures µ, ν on Ω, define the total variation distance

‖µ− ν‖tv = sup
A⊂Ω
|µ(A)− ν(A)| = inf{P(X 6= Y ) | X ∼ µ, Y ∼ ν} ,

where the infimum is over all couplings (µ, ν). The worst-case total variation distance
of Xt from π is denoted

dtv(t) = max
ω0∈Ω

‖Pω0(Xt ∈ ·)− π‖tv ,

and the total variation mixing time of the Markov chain is given by (for ε ∈ (0, 1)),

tmix(ε) = inf{t ≥ 0 : dtv(t) ≤ ε} .
For any ε ≤ 1

4 , tmix(ε) is submultiplicative and the convergence to π in total vari-
ation distance is thenceforth exponentially fast. As such, we write tmix, omitting the
parameter ε to refer to the standard choice ε = 1/(2e).

The FK dynamics. The present paper is almost exclusively concerned with continuous-
time heat-bath Glauber dynamics (Xt)t≥0 for the random cluster model on Λ with

boundary conditions ξ: this is a reversible Markov chain w.r.t. πξΛ defined as follows:
assign i.i.d. rate-1 Poisson clocks to every edge in Λ − ∂Λ; whenever the clock at an

edge rings, resample its edge value according to πξΛ(ω�e ∈ · | ω�Λ−{e} = Xt�Λ−{e}). In

particular, for e = (v, w) ∈ Λ− ∂Λ, the transition rate from ω to ω ∪ {e} is{
p if v ←→ w in Λ− {e} ∪ ξ ,
p/[p+ q(1− p)] otherwise .

An alternative view of the heat-bath dynamics is the random mapping representation
of this dynamics: the edge updates correspond to a sequence (Ji, Ui, Ti)i≥1, in which
T1 < T2 < . . . are the clock ring times, the Ji’s are i.i.d. uniformly selected edges
in Λ − ∂Λ, and the Ui’s are i.i.d. uniform random variables on [0, 1]: at time Ti, for
Ji = (v, w), the dynamics replaces the value of ω(Ji) by 1{Ui ≤ p} if v ←→ w in
Λ− {Ji} ∪ ξ and by 1{Ui ≤ p/[p+ q(1− p)]} otherwise.

Monotonicity. As a result of the monotonicity of the FK model for q ≥ 1, the heat-bath
Glauber dynamics for the FK model is monotone: for two initial configurations ω′ ≥ ω,
we have that for all times t ≥ 0,

Ht(ω
′, ·) � Ht(ω, ·) .

Using the random mapping representation, we define the grand coupling of the set of
Markov chains with all possible initial configurations, which corresponds to the identity
coupling of all three random variables (Ji, Ui, Ti)i≥1 amongst all the chains; for q ≥ 1,
this coupling preserves the partial ordering on initial states for all subsequent times.
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The following standard fact is obtained via the grand coupling (see, e.g., [18, Eq. 2.10]
in the context of the Ising model, as well as [10] in the context of the FK model).

Fact 2.4. Consider a set E and a monotone Markov chain (Xt)t≥0 on Ω = {0, 1}E
with extremal configurations {0, 1}. For every t ≥ 0,

dtv(t) ≤ |E|‖P1(Xt ∈ ·)− P0(Xt ∈ ·)‖tv .

Combined with the triangle inequality one obtains for the sub-multiplicative quantity

d̄tv(t) = max
ω1,ω2∈Ω

‖Pω1(Xt ∈ ·)− Pω2(Xt ∈ ·)‖tv ,

that, in the FK setting,

dtv(t) ≤ d̄tv(t) ≤ 2|E(G)‖P1(Xt ∈ ·)− P0(Xt ∈ ·)‖tv . (2.1)

Censoring. Key to our proof will be the Peres–Winkler [19] censoring inequality for
monotone spin systems (its formulation in continuous-time follows from the same proof
of [19, Theorem 1.1]; see [18, Theorem 2.5]).

Theorem 2.5 ([19]). Let µT be the law of continuous-time Glauber dynamics at time
T of a monotone spin system on Λ with invariant measure π, whose initial distribution
µ0 is such that µ0/π is increasing. Set 0 = t0 < t1 < . . . < tk = T for some k, let
(Bi)

k
i=1 be subsets of Λ, and let µ̄T be the law at time T of the censored dynamics,

started at µ0, where only updates within Bi are kept in the time interval [ti−1, ti). Then
‖µT −π‖tv ≤ ‖µ̄T −π‖tv and µT � µ̄T ; moreover, µT /π and µ̄T /π are both increasing.

Boundary modifications. Let ξ, ξ′ be a pair of boundary conditions on Λ with corre-
sponding mixing times tmix, t

′
mix; define

Mξ,ξ′ = ‖πξΛ/π
ξ′

Λ ‖∞ ∨ ‖π
ξ′

Λ /π
ξ
Λ‖∞ .

It is well-known (see, e.g., [18, Lemma 2.8]) that for some c independent of n, ξ, ξ′,

tmix ≤ cM3
ξ,ξ′ |E(Λ)|t′mix (2.2)

(this follows from first bounding tmix via its spectral gap, then using the variational
characterization of the spectral gap: the Dirichlet form, expressed in terms of local
variances, gives a factor of M2

ξ,ξ′ , and the variance produces another factor of Mξ,ξ′).

3. Equilibrium estimates

In what follows, fix q ∈ (1, 4], let p = pc(q) and drop p, q from the notation henceforth.

3.1. Crossing probabilities. In this subsection we present estimates on crossing
probabilities that will be used to prove the desired mixing time bounds. The following
is a slight extension of [10, Theorem 3.4].

Proposition 3.1. Let q ∈ (1, 4] and fix α ∈ (0, 1]. Consider the critical FK model on
Λ = Λn,n′ with bαnc ≤ n′ ≤ dα−1ne. For every ε > 0, there exists c?(α, ε, q) > 0 such
that for every x ∈ Jεn, 1− εnK, and every boundary condition ξ on ∂Λ, one has

πξΛ
(
(x, 0)←→ (x, bn′c)

)
& n−c? .
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Proof. The proposition was proved in the case n′ = bαnc in [10, Theorem 3.4] by
stitching together crossings of rectangles and using the RSW estimates of Theorem 2.1.
Since the crossing probabilities of Theorem 2.1 are monotone in the aspect ratio, each is
bounded away from zero for aspect ratios in [α, α−1], yielding the desired extension. �

The next two results are for q = 4 (Proposition 2.3 implies both for 1 < q < 4).

Lemma 3.2. Let q = 4 and fix α ∈ (0, 1]. Consider the critical FK model on Λ = Λn,n′

with bαnc ≤ n′ ≤ dα−1ne and (1, 0) boundary conditions denoting wired on ∂sΛ and
free elsewhere. For every ε > 0, there exists p(α, ε) > 0 such that

π1,0
Λ

(
Cv(J0, nK× J0, (1− ε)n′K)

)
≥ p(ε).

Proof. Note that for an n×n square with wired boundary conditions on the n, s sides,
and free boundary conditions elsewhere, the probability of a vertical crossing is, by
self-duality, 1/2. By bounding the Radon–Nikodym derivative, it is easy to see that
under the same boundary conditions but with the north and south sides disconnected
from each other, the same probability is bounded below by some p0(q) > 0.

Moreover, by Theorem 2.1 and monotonicity in boundary conditions, there exists
p1(ε) > 0 such that

π1,0
Λ

(
Ch
(
J ε4n, (1−

ε
4)nK× J(1− ε)αn, (1− ε

2)αnK
))
≥ p1 .

The measure on J(ε/4)n, (1− ε/4)nK× J0, (1− ε)nK conditioned on the above crossing
event stochastically dominates the measure induced on it by wired on the n, s sides
and free on the e,w sides of J(1 − α + εα

2 )n2 , (1 + α − εα
2 )n2 K × J0, (1 − ε

2)αnK. By
monotonicity in boundary conditions inequality the probability of a vertical crossing in
J0, nK×J0, (1−ε)αnK is thus bigger than p0p1. Finally, by Corollary 2.2 and monotonicity
of crossing probabilities in aspect ratio, there exists p2(α, q) > 0 such that

π1,0
Λ

(
C0(Λ− J(1− α)n2 , (1 + α)n2 K× J(1− ε)αn, (1− ε)n′K)

)
≥ p2

holds for every bαnc ≤ n′ ≤ dα−1ne. By the FKG inequality, stitching the three
crossings together implies the desired lower bound for p = p0p1p2. �

Corollary 3.3. Let q = 4 and fix α ∈ (0, 1]. Consider the critical FK model on
Λ = Λn,n′ with bαnc ≤ n′ ≤ dα−1ne and boundary conditions, denoted by (1, 0, 1, 0),
that are wired on ∂n,sΛ and free on ∂e,wΛ. Then there exists p(α) > 0 such that

π1,0,1,0
Λ (Cv(Λ)) ≥ p .

Proof. For all n′ ≤ n this follows immediately from self-duality and monotonicity in
boundary conditions. For n ≤ n′ ≤ dα−1ne, by monotonicity in boundary conditions
and Lemma 3.2, for any ε ∈ (0, 1), there is a p(1, ε) > 0 such that,

π1,0,1,0
Λ (Cv(J0, nK× J0, εnK)) ≥ p ,

and by reflection symmetry, π1,0,1,0
Λ (Cv(J0, nK× Jn′ − εn, n′K)) ≥ p. Let

Aε = Λ− Jεn, (1− ε)nK× Jεn, n′ − εnK .

Since Co(Aε) can be lower bounded by four crossings of rectangles, each of whose
probabilities is monotone in the aspect ratio and thus bounded away from 0 uniformly
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hullr(γi)hulll(γi)

γi

γi+1

e

Figure 3. A pair of boundary bridges, γi, γi+1, over e ∈ ∂nR induced
by a configuration on Λ−R, and separated by a dual-bridge over e.

over n ≤ n′ ≤ dα−1ne, we have that π1,0,1,0
Λ (Cv(Aε)) ≥ p′ uniformly over n ≤ n′ ≤

dα−1ne for some p′(α, ε). Now observe that(
Cv(J0, nK× J0, εnK) ∩ Cv(J0, nK× Jn′ − εn, n′K) ∩ Co(Aε)

)
⊂ Cv(Λ) .

After fixing any small ε > 0, by the FKG inequality, there exists some p(α) > 0 such

that for every n ≤ n′ ≤ dα−1ne, one has π1,0,1,0
Λ (Cv(Λ)) ≥ p, as required. �

3.2. Boundary bridges. In this subsection we define boundary bridges of the FK
model and related notation. As explained in detail in §1.1, the presence of boundary
bridges will be the key obstacle to coupling and, in turn, to mixing time bounds.

Definition 3.4. Consider a rectangle Λ = Λn,n′ with boundary conditions ξ, and a
connected segment L = Ja, bK × {n′} ⊂ ∂nΛ. A component γ ⊂ ∂nΛ of ξ is a bridge

over L if there exist v = (v1, v2), w = (w1, w2) ∈ γ such that v
ξ←→ w and

v1 < a and w1 > b .

Note that every two distinct bridges γ1 6= γ2 over L are disjoint in ξ. Denote by
ΓL = ΓL(ξ) the set of all bridges over the segment L. Define bridges on subsets of
∂Λs, ∂Λe, ∂Λw analogously.

Definition 3.5 (hull and length of a bridge). The left and right hulls of a bridge γ
over L = Ja, bK× {n′} are defined as

hulll(γ) = Jmax{x ≤ a : (x, y) ∈ γ}, aK× {n′} ,
hullr(γ) = Jb,min{x ≥ b : (x, y) ∈ γ}K× {n′} ,

so that the hulls of a bridge γ are connected subsets of ∂nΛ (see Fig. 3. The left and
right lengths of γ are defined to be

`l(γ) = |hulll(γ)| , `r(γ) = |hullr(γ)| .
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Given the above convention, for any L and ξ we can define a right-ordering of ΓL(ξ)
as (γ1, γ2, ..., γ|ΓL|) where, for all i < j,

`r(γi) < `r(γj) .

Note that, in this ordering of the bridges, hullr(γi) ( hullr(γj) for all i < j. Define a
left-ordering of ΓL analogously.

Definition 3.6. For a subset R ⊂ Λ, an induced boundary condition on ∂R is one that
can be identified with the component structure of an edge configuration ω�Λ−Ro along
with the boundary condition on Λ.

Using the above definitions, and planarity, one can check the following useful facts
(depicted in Fig. 3). For concreteness we use the right-ordering of ΓL = {γ1, ..., γ|ΓL|}.

Fact 3.7. Let Λ ⊃ R with boundary conditions ξ, and let L ⊂ ∂nR. If γi, for i < |ΓL|,
is the i-th bridge in the right-ordering of ΓL, then either the two connected components
of ∂nR− (hulll(γi)∪L∪hullr(γi)) are connected in Λ−R, or each of these components
is connected to ∂Λ in Λ−R.

Fact 3.8. Let Λ ⊃ R with boundary conditions ξ, and let L ⊂ ∂nR. For every two
induced bridges γ1 6= γ2 over a segment L such that hullr(γ1) ⊂ hullr(γ2), either the
two sets (hulll(γ2)4 hulll(γ1)) and (hullr(γ2)4hullr(γ1)) are dual-connected in Λ−R,
or each of these sets is dual-connected to ∂Λ in Λ−R.

3.3. Estimating the number of boundary bridges. In this subsection, we bound
the number of distinct induced boundary bridges over a segment of ∂R.

When sampling boundary conditions on R ⊂ Λ under πξΛ, the induced bridges over
e and all properties of them, are measurable w.r.t. ω�Λ−Ro . For any configuration ω,
we denote by Γe = Γe(ω�Λ−Ro , ξ) the set of all bridges over e corresponding to that
configuration on Λ, with the above defined left and right orderings.

The main estimate on |Γe|, that will be key to the proof of Theorem 1, is the following.

Proposition 3.9. Let q ∈ (1, 4] and fix α ∈ (0, 1]. Consider the critical FK model on
Λ = Λn,n′ with n′ ≥ bαnc, along with the subset R = Λn,n′/2. There exists c(α, q) > 0
such that for every e ∈ ∂nR, every boundary condition ξ, and every K > 0,

πξΛ(ω : |Γe(ω�Λ−Ro , ξ)| ≥ K log n) . n−cK . (3.1)

Moreover, there exists c′(α, q) > 0, and for every ε > 0 there is some K0(ε), such that

for every e ∈ Jnε, n− nεK× {bn′2 c}, every boundary condition ξ, and every K < K0,

πξΛ(ω : |Γe(ω�Λ−Ro , ξ)| ≥ K log n) & n−c
′K .

Before proving Proposition 3.9, we present some notation and two lemmas central
to the proposition, whose proofs are deferred until after the proof of the proposition.

For the rest of this subsection, since e is fixed, if e is in the left half of ∂nR then we
will use the right-ordering of Γe and otherwise we will use the left-ordering of Γe. If e
is in the left half of ∂nR define the following subsets of Γe:

Γe1 = Γe1(ω�Λ−Ro , ξ) =
{
γi ∈ Γe : `r(γi−1) ≤ n

6 , `r(γi) ≤ 2`r(γi−1)
}
,

Γe2 = Γe2(ω�Λ−Ro , ξ) =
{
γi ∈ Γe : `r(γi−1) ≥ n

6 , `r(γi) ≤ 1
2 (`r(γi−1) + n− x)

}
.
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For e in the right half of ∂nR, define Γe1 and Γe2 analogously, by replacing `r with `l and
n − x with x. For convenience, let γ0 be the possibly nonexistent bridge given by the
two vertices incident to the edge e, which will allow us to treat γ1 as we would treat
the other γi’s.

Lemma 3.10. There exists c1(α, q) > 0 such that for every e ∈ ∂nR and ξ,

πξΛ
(
ω : |Γe1(ω�Λ−Ro , ξ)| ≥ m

)
≤ e−c1m .

Lemma 3.11. There exists c2(α, q) > 0 such that for every e ∈ ∂nR and ξ,

πξΛ
(
ω : |Γe2(ω�Λ−Ro , ξ)| ≥ m

)
≤ e−c2m .

With these two lemmas in hand the proof of Proposition 3.9 is greatly simplified.

Proof of Proposition 3.9. We begin with the upper bound. Fix an edge e ∈ ∂nR
and a boundary condition ξ on ∂Λ. Without loss of generality suppose that e is in the
left half of ∂nR and use the right-ordering of Γe = {γ1, γ2, ..., γ|Γe|}. Define

Γe0 = {γi ∈ Γe : `r(γi) ≤ 2`r(γi−1) , dr(γi−1, ∂) ≤ 2dr(γi, ∂)} ⊂ Γe1 ∪ Γe2 .

Observe that violating the second condition in Γe1 means that `r(γi) has doubled the
length of its predecessor, whereas violating the second condition in Γe2 means that
n − x − `r(γi) is half the corresponding quantity of its predecessor. Since `r(γi) ≤ n
and n− x− `r(γi) ≤ n for all i, deterministically

|Γ− Γe0| ≤ 2 log2 n ≤ 3 log n .

Using a union bound,

πξΛ (|Γe0| ≥ (K − 3) log n) ≤ πξΛ
(
|Γe1| ≥ K−3

2 log n
)

+ πξΛ
(
|Γe2| ≥ K−3

2 log n
)
.

The bounds on the two terms on the right-hand side are given by Lemmas 3.10–3.11,
respectively. Taking the minimum of c1, c2 in those lemmas and taking m = K−3

2 log n
then implies that there exists c(α, q) > 0 such that

πξΛ(|Γe| ≥ K log n) ≤ 2e−c
K−3

2
logn .

In order to prove the lower bound, for any ε > 0, fix any edge e = (x, bn′2 c) with
x ∈ Jnε, n− nεK. For i ≥ 1, suppressing the dependence on e, define

R̃n
i = Jx− 2i+1, x+ 2i+1K× Jbn′2 c+ 2i, bn′2 c+ 2i+1K ,

R̃e
i = Jx+ 2i, x+ 2i+1K× Jbn′2 c − 2i, bn′2 c+ 2i+1K , (3.2)

R̃w
i = Jx− 2i+1, x− 2iK× Jbn′2 c − 2i, bn′2 c+ 2i+1K ,

and their respective subsets,

Rn
i = Jx− 2i+1 + 2i−1, x+ 2i+1 − 2i−1K× Jbn′2 c+ 2i, bn′2 c+ 2i + 2i−1K ,

Re
i = Jx+ 2i, x+ 2i + 2i−1K× Jbn′2 c, b

n′

2 c+ 2i + 2i−1K .

Rw
i = Jx− 2i − 2i−1, x− 2iK× Jbn′2 c, b

n′

2 c+ 2i + 2i−1K ,
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When K < K0 := ε log 4
4 , for every i ≤ 2K log n, we have R̃w

i , R̃
n
i , R̃

e
i ⊂ Λ. Also define

the following crossing events.

Ai = Cv(Rw
i ) ∩ Ch(Rn

i ) ∩ Cv(Re
i ) ,

A∗i = C∗v(Rw
i ) ∩ C∗h(Rn

i ) ∩ C∗v(Re
i ) .

Then by definition of distinct bridges in Λ−Ro, we observe that for each k,

{|Γe| ≥ K log n} ⊃
K logn⋂
i=1

A2i−1 ∩ A∗2i . (3.3)

By monotonicity in boundary conditions, the FKG inequality, and Theorem 2.1, there
exists p(α, q) > 0 such that for every i ≤ 2K log n,

πξΛ(Ai) ≥ π0
R̃w
i
(Cv(Rw

i ))π0
R̃n
i
(Ch(Rn

i ))π0
R̃e
i
(Cv(Re

i )) ≥ p ,

πξΛ(A∗i ) ≥ π1
R̃w
i
(C∗v(Rw

i ))π1
R̃n
i
(C∗h(Rn

i ))π1
R̃e
i
(C∗v(Re

i )) ≥ p .

Thus, if K < K0, we have πξΛ(|Γe| ≥ K log n) ≥ p2K logn, as required. �

We now prove Lemmas 3.10–3.11, whose proofs constitute the majority of the work
in obtaining Proposition 3.9.

Proof of Lemma 3.10. Assume without loss of generality that e = (x, bn′2 c) is such
that x ≤ n

2 and fix the right-ordering of Γe1 so that Γe1 = {γ1, γ2, ..., γ|Γe1|}. We prove by

induction on m that πξΛ(|Γe1| ≥ m) ≤ pm, for the choice of

p = 1− p1p2p3 , (3.4)

where

• p1 is given by Proposition 2.3 with aspect ratio 1 for 1 < q < 4 and by
Lemma 3.2 with the choice ε = 1/2 and aspect ratio 1/2 for q = 4,
• p2 is the probability given by Theorem 2.1 for ε = 1/4 and aspect ratio 6∨α−1,
• p3 is the probability given by Theorem 2.1 for ε = 1/3 and aspect ratio 1,

so that p ∈ (0, 1) and depends only on α and q. Let m ≥ 1, and suppose by induction

(starting with the trivial case m = 0) that πξΛ(|Γe1| ≥ m− 1) ≤ pm−1. We see that

πξΛ(|Γe1| ≥ m) ≤ pm−1πξΛ(|Γe1| ≥ m | |Γe1| ≥ m− 1)

≤ pm−1

n/6∑
k=1

πξΛ
(
`r(γm−1) = k

∣∣ |Γe1| ≥ m− 1
)
πξΛ
(
|Γe1| ≥ m

∣∣ `r(γm−1) = k
)

where we used the fact that `r(γm−1) > 0 implies that |Γe1| ≥ m − 1. The proof will
therefore follow if we show that, uniformly over 1 ≤ k ≤ n/6,

πξΛ (|Γe1| ≥ m | `r(γm−1) = k) ≤ p . (3.5)

Let F = J0, nK × Jbn′2 c, n
′K (so that ω�F , ξ is the set of connections with respect to

which the existence/properties of bridges are measurable) and fix any 1 ≤ k ≤ n/6.
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n′
2

n′
2 + k

n′

x x+ k x+ 2k x+ 3kz

Λ−R

ζ

R3

R2

γm−1

R1

Figure 4. After conditioning on ζ (via the configuration in the blue
shaded region), the probability of the purple and green dual-crossings is
greater than p1p2p3, bounding the probability of {|Γe1| ≥ m}.

First observe that by Fact 3.8 and the definition of hullr(γm−1), if Ll, Lr are the two
connected subsets of ∂nR− hullr(γm−1), the event

Em =
{
Ll

F ∗←→ Lr or Lr
F ∗←→ ∂Λ

}
satisfies Em ⊃ {|Γe1| ≥ m}. Therefore,

πξΛ (|Γe1| ≥ m | `r(γm−1) = k) ≤ πξΛ (|Γe1| ≥ m | `r(γm−1) = k, Em) , (3.6)

so that it suffices to upper bound the right-hand side. In particular, we can condition
on the first dual-bridge over hullr(γm−1), connecting the segments Ll, Lr in F , or if
there is no such dual-bridge in F then the west-most dual-crossing from Lr to ∂Λ, and
then average over such choice of inner-most dual-bridge/crossing. Namely, conditioned
on Em and `r(γm−1) = k, reveal the component of e+(k− 1

2 , 0) in F ; if it forms a bridge
in F then beyond it is the desired dual-bridge; otherwise, this vertex is connected to
∂Λ, thus we have revealed the west-most dual-crossing east of hullr(γm−1). Denote the

dual-bridge/crossing revealed in this manner by ζ (see Fig. 4) and let (z, bn′2 c) be the
west-most point of ζ ∩ ∂nR. Since `r(γi) ≤ 2`r(γi−1) for all i = 1, . . . , |Γe1|, we see that
if |Γe1| ≥ m then necessarily `r(γm) ≤ 2k and so

(z, bn′2 c) ∈ Jx+ k, x+ 2kK× {bn′2 c} =: I .

We will establish the desired upper bound of p uniformly over all such ζ.
Note that conditional on `r(γm−1) = k, Em, and ζ, by Fact 3.7, the event {|Γe1| ≥ m}

implies the event S, stating that either ζ is a dual-bridge and I is primal-connected in
F ∪ ξ to the left component of ∂nR − hullr(ζ), or alternatively ζ is a dual-crossing to
∂Λ and I is primal-connected to ∂Λ in F . Thus, in this conditional space,

{|Γe1| < m} ⊃
{
ζ

F ∗←→ Jx+ 2k, x+ 3kK× {bn′2 c}
}
, (3.7)

since the right-hand side of Eq. (3.7) implies Sc which implies the left-hand side.
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In order to lower bound the probability of the last event in Eq. (3.7), let D∗ be the
outer (if ζ is a dual-crossing in F , then eastern) connected component of F ∗ − ζ, and
let D be its dual. Define also the following subsets of Λ:

R1 =Jx, x+ kK× Jbn′2 c, b
n′

2 c+ min{k, αn4 }K ,

R2 =Jx, x+ 3kK× Jbn′2 c+ min{k2 ,
αn
8 }, b

n′

2 c+ min{k, αn4 }K ,

R3 =Jx+ 2k, x+ 3kK× Jbn′2 c, b
n′

2 c+ min{k, αn4 }K ,

whereby, the event in the right-hand side of Eq. (3.7) can be written as {ζ F ∗←→ ∂sR3}.
For any i = 1, 2, 3, define the following crossing events (see Fig. 4):

C∗v(Ri ∩D) =
{
∂eRi

Ri∩D←→6 ∂wRi

}
,

C∗h(Ri ∩D) =
{
∂nRi

Ri∩D←→6 ∂sRi

}
.

(3.8)

(observe that implicit in (C∗v(Ri ∩D))c is the event {∂eRi ∩D 6= ∅} ∩ {∂wRi ∩D 6= ∅},
and similarly, implicit in (C∗h(Ri ∩D))c is the event {∂nRi ∩D 6= ∅} ∩ {∂sRi ∩D 6= ∅}).

Claim 3.12. Conditional on `r(γm−1) = k, Em, and ζ,

{|Γe1| < m} ⊃
(
C∗v(R1 ∩D) ∩ C∗h(R2 ∩D) ∩ C∗v(R3 ∩D)

)
.

Proof. Suppose that ω satisfies the events on the right-hand. Recall that ζ is such that
∂eR3 ∩D 6= ∅ and ∂wR3 ∩D 6= ∅, and ∂eR3←→6 ∂wR3 in R3 ∩D since ω ∈ C∗v(R3 ∩D).
Consider R3 ∩ D with boundary conditions wired on ∂e,wR3 ∩ D and free on ζ and
∂n,sR3 ∩D; then the boundary conditions on R3 ∩D alternate between free and wired

on boundary curves ordered clockwise as Lw1 , L
f
1 , L

w
2 , L

f
2 ...; by planarity and the choice

of generalized Dobrushin boundary conditions, for any two wired boundary curves

Lwi , L
w
i+1, either Lwi ←→ Lwi+1, or Lfi

∗←→ Lfj for some j 6= i. Picking the two wired
segments of ∂e,wR3∩D closest to ∂sR3, the aforementioned fact that ∂eR3←→6 ∂wR3 in

R3 ∩D implies that either ∂sR3
∗←→ ζ or ∂sR3

∗←→ ∂nR3. In the former, {|Γe1| < m}
holds by Eq. (3.7), so suppose only the latter holds and call the dual-crossing ζ3.

Since ∂sR3
∗←→ ∂nR3, both ∂sR2 ∩D and ∂nR2 ∩D are nonempty. Clearly, ζ3 splits

R2 ∩ D into the subset to its east, Ue, and that to its west, Uw. Consider the set to
its east, Ue, with boundary conditions that are wired on ∂s,nR2 ∩D and free on ζ and

on ∂e,wR2 ∩D. Since ζ3 and ζ are vertex-disjoint (by our assumption that ∂sR3
∗←→6 ζ

in R3 ∩D), and the wired boundary segments adjacent to ζ3 are disconnected in Ue, it

must be that either ζ3
∗←→ ζ or ζ3

∗←→ ∂eR2 in Ue. Using the same reasoning on Uw,

either ζ3
∗←→ ζ or ζ3

∗←→ ∂wR2 in Uw. Combining these, either ζ
∗←→ ζ3, in which

case ζ
∗←→ ∂sR3, or alternatively ∂eR2

∗←→ ζ3
∗←→ ∂wR2 in R2 ∩ D. In the former

case, by Eq. (3.7), {|Γe1| < m}; assume therefore that only the latter case holds, and
let ζ2 be a dual-crossing between ∂eR2 to ∂wR2 that intersects ζ3.

Finally, we can deduce that ∂eR1 ∩D and ∂wR1 ∩D are nonempty as ζ2 and ζ are

vertex-disjoint (by our assumptions ζ
∗←→6 ζ3 and ζ2

∗←→ ζ3). Considering now Us, the
subset of R1 ∩D south of ζ2 with wired boundary conditions on ∂e,wR1 ∩D and free
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elsewhere, as before we deduce that either ζ2
∗←→ ζ or ζ2

∗←→ ∂sR1 in Us. Since, by

definition of ζ, deterministically ∂sR1 ∩D = ∅, the former must hold, and ζ
∗←→ ∂sR3

through ζ2 and ζ3, and Eq. (3.7) concludes the proof. �

We will next bound the probability of each of the events C∗v(R1∩D), C∗h(R2∩D) and
C∗v(R3 ∩D), which, using the above claim, will translate to a bound on {|Γe1| < m}.

To see this, first note that by planarity, for all i = 1, 2, 3 and every subset D,

C∗v(Ri ∩D) ⊃ (Ch(Ri))
c = C∗v(Ri) , (3.9)

and likewise for horizontal crossing events. Define the rectangle R̃1 ⊃ R1 by

R̃1 = Jx, x+ kK× Jbn′2 c, n
′K ⊂ Λ .

Let the boundary conditions (1, 0) on R̃1 be free on ∂sR̃1 and wired on ∂n,e,wR̃1.
Combining Eq. (3.9), monotonicity in boundary conditions, and the domain Markov
property, we get for p1(α, q) > 0 given by Eq. (3.4),

πξΛ (C∗v(R1 ∩D) | `r(γm−1) = k, Em, ζ) ≥ π1
R̃1

(C∗v(R1 ∩D) | `r(γm−1) = k, Em, ζ)

≥ π1,0

R̃1
(C∗v(R1)) ≥ p1 ,

where the last inequality follows from Proposition 2.3, Lemma 3.2 and self-duality. We
stress that wiring of ∂n,e,wR̃1 allowed us to ignore the information revealed on R1 −D
as far as the configuration in R1∩D is concerned, and the fact that ω�ζ is closed allowed

us to place a free boundary on ∂sR̃1, supporting Lemma 3.2.
Next, consider the rectangle R̃2 ⊃ R2 defined by

R̃2 = Jx− k, x+ 4kK× Jbn′2 c, n
′K ,

so that R̃2 ⊂ Λ since k = `r(γm−1) ≤ n/6. By monotonicity in boundary conditions
and Eq. (3.9), we get that for the choice of p2(α, q) > 0 given by Eq. (3.4),

πξΛ(C∗h(R2 ∩D) | `r(γm−1) = k, Em, ζ) ≥ π1
R̃2

(C∗h(R2 ∩D) | `r(γm−1) = k, Em, ζ)

≥ π1
R̃2

(C∗h(R2)) ≥ p2 .

Similarly, applying the exact same treatment of R̃2 to

R̃3 = Jx+ k, x+ 4kK× Jn
′

4 , n
′K ⊂ Λ ,

(it is possible to encapsulate R3 by a rectangle with wired boundary conditions since ζ
does not intersect ∂sR3 in our conditional space) shows that

πξΛ(C∗v(R3 ∩D) | `r(γm−1) = k, Em, ζ) ≥ π1
R̃3

(C∗v(R3 ∩D) | `r(γm−1) = k, Em, ζ)

≥ π1
R̃3

(C∗v(R3)) ≥ p3 ,

for p3(α, q) > 0 as defined in Eq. (3.4).
Therefore, by the FKG inequality and Claim 3.12, for any 1 ≤ k ≤ n/6,

πξΛ
(
|Γe1| < m

∣∣ `r(γm−1) = k, Em, ζ
)
≥ p1p2p3 ,
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n′
2

n′
2 + l

4

n′

n− 7l
6 n− l n− l

3 n− l
6

ζ

R3

R2

γm−1

R1

Figure 5. After revealing ζ (via the blue shaded region), the existence
of the three dual-crossings depicted precludes {|Γe2| ≥ m}.

Since this bound is uniform over all k, ζ, by Eq. (3.6), for p given by Eq. (3.4), we have

πξΛ
(
|Γe1| ≥ m

∣∣ `r(γm−1) = k
)
≤ p ,

thereby establishing Eq. (3.5), as desired. �

Proof of Lemma 3.11. Without loss of generality suppose e is in the left half of ∂nR
and use the right-ordering of bridges so that Γe2 = {γ1, ..., γ|Γe2|}. For a fixed m let

l = n− (x+ `r(γm−1)) ,

measurable w.r.t. hullr(γm−1).
The proof follows the same argument used to prove Lemma 3.10, applying induction

on m. In what follows we describe the necessary modifications that are needed here.

Our goal is to prove that πξΛ(|Γe2| ≥ m) ≤ pm for the choice of p = 1− p1p2p3 where,

• p1 is given by Proposition 2.3 with aspect ratio α for 1 < q < 4 and by
Lemma 3.2 with the choice ε = 1/2 and aspect ratio α/2 for q = 4 ,
• p2 is the probability given by Theorem 2.1 for ε = 1/8 and aspect ratio 6/α ,
• p3 is the probability given by Theorem 2.1 for ε = 1/3 and aspect ratio α ,

so that p = p(α, q) ∈ (0, 1) as desired.
Let Ll, Lr be the left and right connected components of ∂nR − hullr(γm−1). As in

the proof of Lemma 3.10, condition on `r(γm−1) = k, where now n
6 ≤ k ≤ n, then on

Em =
{
Lr

F ∗←→ Ll or Lr
F ∗←→ ∂Λ

}
,

and finally on ζ (the dual-bridge/crossing for which Em is satisfied), whose west-most

vertex of intersection with ∂nR is marked by (z, bn′2 c). (Recall that this is achieved by

revealing the component of e+(k− 1
2 , 0) in F .) If n−z < l/2, deterministically |Γe2| < m
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(as argued in the proof of Proposition 3.9), hence we may assume that n − z ≥ l/2;
moreover, since k ≥ n

6 , it must be that l
6 ≤ k. Define the following subsets of Λ:

R1 =Jn− l − l
6 , n− lK× Jbn′2 c, b

n′

2 c+ αl
6 K ,

R2 =Jn− l − l
6 , n−

l
6K× Jbn′2 c, b

n′

2 c+ αl
6 K ,

R3 =Jn− l
3 , n−

l
6K× Jbn′2 c, b

n′

2 c+ αl
6 K .

Define C∗v(R1 ∩D), C∗h(R2 ∩D), C∗v(R3 ∩D) as in Eq. (3.8). As in Claim 3.12,

{|Γe2| < m} ⊃
(
C∗v(R1 ∩D) ∩ C∗h(R2 ∩D) ∩ C∗v(R3 ∩D)

)
.

Finally, for R̃i, i = 1, 2, 3 given by

R̃1 =Jn− l − l
6 , n− lK× Jbn′2 c, b

n′

2 c+ αl
3 K ,

R̃2 =Jn− l − l
3 , nK× Jbn′2 c −

αl
6 , b

n′

2 c+ αl
3 K ,

R̃3 =Jn− l
2 , n,

l
2K× Jbn′2 c −

αl
6 , b

n′

2 c+ αl
3 K ,

(note that all three are subsets of Λ, by the fact that l ≤ n and n′ ≥ bαnc), the same
monotonicity argument used in the proof of Lemma 3.10 now implies (see Fig. 5) that

πξΛ
(
|Γe2| < m

∣∣ `r(γm−1) = k, Em, ζ
)
≥ p1p2p3 .

Since this bound is uniform in ζ and Em ⊃ {|Γe2| ≥ m}, we see that for every n
6 ≤ k ≤ n,

πξΛ
(
|Γe2| ≥ m

∣∣ `r(γm−1) = k
)
≤ p . �

The following estimate proves that boundary conditions induced by the FK measure
will, with high probability, have edges with order log n bridges over them; when p 6= pc,
the typical maximum number of bridges over an edge is actually o(log n).

Corollary 3.13. Let q ∈ (1, 4] and α ∈ (0, 1]. Consider a rectangle Λ = Λn,n′ with
n′ ≥ bαnc, along with the subset R = Λn,n′/2. There exist K ′ > K > 0 and c(α, q) > 0
such that for every boundary condition ξ,

πξΛ

(
max
e∈∂nR

|Γe| /∈ JK log n,K ′ log nK
)
. n−cK

′
.

Proof. By a union bound, the upper bound on maxe∈∂nR |Γe| follows from the choice of
K ′ > 1/c for c given by Eq. (3.1) of Proposition 3.9.

Fix any ε > 0 and consider the edges ek = (bknεc + 1
2 , b

n′

2 c) for k = 1, ..., n1−ε − 1.
It suffices to prove that for some K(ε) > 0,

πξΛ

(
n1−ε−1
max
k=1

|Γek | ≤ K log n

)
. n−cK

′
.

In order to prove the above, for fixed K, let χe = {|Γe| ≥ K log n} so that

πξΛ

(
n1−ε−1
max
k=1

|Γek | ≤ K log n

)
≥ πξΛ

n1−ε−1∑
k=1

1{χek} = 0

 .
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Recall for each ek the definitions of the rectangles R̃n
i , R̃

e
i , R̃

w
i given by (3.2). Also,

denote by χ′e the event on the right-hand side of (3.3), so that 1{χek} ≥ 1{χ′ek}.
Observe that for each k = 1, ..., n1−ε−1, the event χ′ek is measurable w.r.t. the rectangle

Rek =
⋃K logn
i=1 R̃n

i ∪ R̃e
i ∪ R̃w

i . By similar considerations as before, there exists some
p = p(α, q) > 0 such that, for every i = 1, ..., 2K log n, every ek, and every η,

πξΛ(Ai | ω�Λ−R̃n,e,w
i

= η) ≥ π0
R̃w
i
(Cv(Rw

i ))π0
R̃e
i
(Cv(Re

i ))π
0
R̃n
i
(Ch(Rn

i )) ≥ p ,

πξΛ(A∗i | ω�Λ−R̃n,e,w
i

= η) ≥ π1
R̃w
i
(C∗v(Rw

i ))π1
R̃e
i
(C∗v(Re

i ))π
1
R̃n
i
(C∗h(Rn

i )) ≥ p .

Observe that for i 6= j, the interiors of R̃n,e,w
i and R̃n,e,w

j are disjoint and therefore

1{χ′ek} � Bernoulli(pK logn). Combined with Rej ∩Rek = ∅ when j 6= k, we see that∑
e∈E

1{χe} ≥
∑
e∈E

1{χ′e} � Bin(n1−ε, pK logn) .

Choosing K < K0(ε) ∧ ε/ log(1/p), the right-hand side dominates a Bin(n1−ε, n−ε)
random variable, whose probability of being zero is exponentially small in n1−2ε. �

3.4. Disjoint crossings. To extend our mixing time bound from favorable boundary
conditions (see §5.1) to periodic boundary conditions (which are not in that class)
in §5.3, we need an analogous bound on the number of disjoint crossings of a rectangle.

For a rectangle R and a configuration ω�R, let ΨR = ΨR(ω�R) be the set containing
every component A ⊂ V (R) (connected via the edges of ω�R) that intersects both ∂sR
and ∂nR. We will need the following equilibrium estimate similar to Proposition 3.9.

Proposition 3.14. Let q ∈ (1, 4] and α ∈ (0, 1]. Consider the critical FK model on

Λ = Λn,n′ with n′ ≥ bαnc, and the subset R = J0, nK×Jn
′

3 ,
2n′

3 K. There exists c(α, q) > 0
such that for every boundary condition ξ and every m ≥ 3,

πξΛ (|ΨR| ≥ m) ≤ e−cm .

Proof. We will prove by induction that, for all m ≥ 1,

πξΛ(|ΨR| ≥ m) ≤ (1− p)m−2 , (3.10)

where p > 0 is as given by Proposition 2.3 with aspect ratio 3/α when 1 < q < 4, and
is as given by Corollary 3.3 with aspect ratio α/3 when q = 4.

The cases m = 1, 2 are trivially satisfied for any 0 < p < 1. Now let m ≥ 3, and
suppose that Eq. (3.10) holds for m− 1; the proof will be concluded once we show that

πξΛ
(
|ΨR| ≥ m

∣∣ |ΨR| ≥ m− 1
)
≤ 1− p .

Conditioned on the existence of at least m − 1 distinct components in ΨR, we can
condition on the west-most component in ΨR (by revealing all dual-components of ω�R
incident to ∂wR, then revealing the primal-component of the adjacent primal-crossing).
We can also condition on the m − 2 east-most components in ΨR (by successively
repeating the aforementioned procedure from east to west, i.e., replacing ∂wR above
by ∂eR to reveal some component C ∈ ΨR, then by its western boundary ∂wC, etc.).

Through this process, we can find two disjoint vertical dual-crossings ζ1, ζ2 of R,
each one a simple dual-path; the set (R∗− ζ1− ζ2)∗ consists of three connected subsets
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of R; let D denote the middle one. There are exactly m− 1 elements of ΨR in R−D,
thus its m-th element, if one exists, must belong to D. Since every edge in ζ1 ∪ ζ2 is
dual-open, for any such choice of ζ1, ζ2, we then have

πξΛ
(
|ΨR| ≥ m

∣∣ |ΨR| ≥ m− 1, ζ1, ζ2

)
= πξΛ

(
Cv(D)

∣∣ ζ1, ζ2

)
,

Using the domain Markov property and monotonicity of boundary conditions,

πξΛ
(
Cv(D)

∣∣ ζ1, ζ2

)
≤ π1,0,1,0

D (Cv(D)) ,

where (1, 0, 1, 0) boundary conditions on D denote those that are free on ζ1, ζ2 and
wired on ∂R∩D. Again by monotonicity (in boundary conditions and crossing events),

π1,0,1,0
D (Cv(D)) ≤ π1,0,1,0

R

(
Cv(D)

∣∣ ωζ1 = 0, ωζ2 = 0
)
≤ 1− π1,0,1,0

R (C∗h(R)) ,

where, following the notation of Corollary 3.3, (1, 0, 1, 0) boundary conditions on a
rectangle R are wired on ∂n,sR and free on ∂e,wR. By monotonicity in boundary
conditions and the definition of p, the right-hand side is bounded above by

1− π(1,0,1,0)
R

(
C∗h(J0, nK× Jn

′

3 ,
n′

3 + αn
3 K)
)
≤ 1− p . �

4. Dynamical tools

In this section, we introduce the main techniques we use to control the total variation
distance from stationarity for the random cluster heat-bath Glauber dynamics.

4.1. Modifications of boundary conditions. Crucial to the proof of Theorem 1 is
the modification of boundary bridges so that we can couple beyond FK interfaces as
done in [16]; in this subsection we define boundary condition modifications and control
the effect such modifications can have on the mixing time.

Definition 4.1 (segment modification). Let ξ be a boundary condition on a rectangle
∂Λ which corresponds to a partition {P1, ...,Pk} of ∂Λ, and let ∆ ⊂ ∂Λ. The segment
modification on ∆, denoted by ξ∆, is the boundary condition that corresponds to the
partition {P1 − V (∆), ...,Pk − V (∆), V (∆)} of ∂Λ.

Definition 4.2 (bridge modification). Let ξ be a boundary condition on ∂Λ, corre-
sponding to a partition {P1, . . . ,Pk} of ∂Λ. Let Γe be the set of disjoint bridges in
ξ�∂nΛ over the edge e = (x, y) ∈ ∂nΛ, corresponding to the components {Pij}`j=1, as
per Definition 3.4. The bridge modification of ξ over e, denoted ξe, is the boundary
condition associated to the partition where every Pij is split into two components,

Pw
ij = {(v1, v2) ∈ Pij : v1 − x < 0} and Pe

ij = {(v1, v2) ∈ Pij : v1 − x > 0} .

(Observe that, in particular, ξe has no bridges over e.) Define the bridge modification
w.r.t. the other sides of ∂Λ analogously.

Definition 4.3 (side modification). Let ξ be a boundary condition on ∂Λ, correspond-
ing to a partition {P1, . . . ,Pk} of ∂Λ. The side modification ξs is defined as follows.
Split every Pj into its four sides, that is, for i = n, s,e,w, let

P ij = {v ∈ Pj : v ∈ ∂iΛ} ,
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where for the corner vertices the choice is arbitrary (for concreteness, associate the
corner with the side that follows it clockwise). Then for every ξ, the modified ξs has
no components that contain vertices in more than one side of ∂Λ.

It will be useful to have a notion of distance between boundary conditions.

Definition 4.4. For any pair of boundary conditions, ξ, ξ′ define the symmetric dis-
tance function d(ξ, ξ′) as follows: if ξ′′ is the unique smallest (in the previously de-
fined partial ordering) boundary condition with ξ′′ ≥ ξ and ξ′′ ≥ ξ′, define d(ξ, ξ′) =
k(ξ′′)− k(ξ) + k(ξ′′)− k(ξ′).

If ξ is a boundary condition on Λ and ξ′ is a any of the above boundary modifications
of ξ, then ξ′ ≤ ξ and the partition associated to it is a refinement of ξ; this implies that
d(ξ, ξ′) = k(ξ)− k(ξ′). One can easily verify the following.

Fact 4.5. For a segment ∆, we have d(ξ, ξ∆) ≤ |V (∆)|; for an edge e, we have
d(ξ, ξe) = |Γe|; for the side modification ξs, we have that d(ξ, ξs) is bounded above
by three times the number of components in ξ with vertices in multiple sides of ∂Λ.

We now present a lemma bounding the effect on total variation mixing from modi-
fying the boundary conditions. Recall that for two boundary conditions ξ, ξ′ on Λ, we

defined in the preliminaries the quantity Mξ,ξ′ = ‖ π
ξ
Λ

πξ
′

Λ

‖∞ ∨ ‖
πξ
′

Λ

πξΛ
‖∞, and we have from

Eq. (2.2), that tmix . M3
ξ,ξ′ |E(Λ)|t′mix. Moreover, using the notation of [18] and [15],

for an initial configuration ω0, and boundary condition ξ, let

d
(ω0,ξ)
tv (t) = ‖Pξω0

(Xt ∈ ·)− πξΛ‖tv ,

where here and throughout the paper, for any Markov chain (Xt)t≥0, Pξω0(Xt ∈ ·) =
P(Xt ∈ · | X0 = ω0) with boundary conditions ξ; when clear from the context we may
drop the boundary condition superscript from the notation.

Lemma 4.6. Let ξ, ξ′ be a pair of boundary conditions on ∂Λ. Then,

Mξ,ξ′ ≤ qd(ξ′,ξ) , (4.1)

and consequently, there exists an absolute c > 0 such that for every t > 0,

max
ω0∈{0,1}

d
(ω0,ξ)
tv (t) ≤ 8 max

ω0∈{0,1}
d

(ω0,ξ′)
tv

(
c|E(Λ)|−2q−4d(ξ′,ξ) t

)
+ exp

(
−qd(ξ′,ξ)

)
. (4.2)

Proof. Adapting an argument of [18] to the FK setting, Lemma 5.4 of [10] proves a
version of this lemma for two coupled probability measures P,P∆ over pairs ξ, ξ∆.
The proof for arbitrary pairs of boundary conditions, ξ, ξ′, is identical; letting P be a
point mass at ξ completes the proof. �

4.2. Censored block dynamics. We next define the censored and systematic block
dynamics whose coupling is the core of the dynamical analysis used to prove Theorem 1.
This coupling may be of general interest in the study of mixing times of monotone
Markov chains, where one only has control on mixing times in the presence of favorable
boundary conditions. We therefore present it in more generality than necessary for
the proof of Theorem 1: consider the heat-bath dynamics for a monotone spin or edge
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system on a graph G with boundary ∂G that satisfies the domain Markov property and

has extremal configurations {0, 1} and invariant measure πξG.

Definition 4.7 (systematic and censored block dynamics). Let B0, . . . , Bs−1 denote a
finite cover of E(G) (or V (G) for a spin system), and for k ≥ 1 let ik := (k− 1) mod s.
Further, consider a set Γi of permissible boundary conditions for Bi, and fix ε > 0.

The systematic block dynamics (Yk)k≥0 is a discrete-time flavor of the block dynamics
w.r.t. {Bi}, with blocks that are updated in a sequential deterministic order: at time k,

the chain updates Bik by resampling ω�Boik
∼ πξG(· | ω�G−(Boik

)). As in the standard

block dynamics [17], Yk is clearly reversible w.r.t. πG.
The censored block dynamics (X̄t)t≥0 is the continuous-time single-bond (single-site)

heat-bath dynamics that simulates Yk as follows. For a given ε > 0, define

T = T (ε) = max
i

max
ξ∈Γi

tξ,Bimix (ε) , (4.3)

where tξ,Bimix is the mixing time of standard heat-bath dynamics on the block Bi with
boundary conditions ξ. Let the chain X̄t be obtained from the standard heat-bath
dynamics by censoring, as in Theorem 2.5, for every integer k ≥ 1, along the interval
((k − 1)T, kT ], all updates except those in Bik .

Proposition 4.8 (comparison of censored / systematic block dynamics). Let (X̄t)t≥0

and (Yk)k≥0 be the censored and systematic block dynamics, respectively, w.r.t. some
blocks B0, . . . Bs−1 and permissible boundary conditions Γi on G with boundary condi-
tions ξ and initial state ω0, as per Definition 4.7. Let

ρ := max
k≥1

max
i∈J0,s−1K

Pω0

(
Yk�∂Bi /∈ Γi

)
, (4.4)

where Yk�∂Bi is the boundary condition induced on ∂Bi by Yk. Then for every ε > 0,
every integer k ≥ 0, and T as in (4.3),∥∥Pω0

(
X̄kT ∈ ·

)
− Pω0 (Yk ∈ ·)

∥∥
tv
≤ k(ρ+ ε) . (4.5)

Remark 4.9. Although we defined the systematic and censored block dynamics for
deterministic block updates, one could easily formulate the same bound for the usual
block dynamics with random updates, where the s sub-blocks are each assigned i.i.d.
Poisson clocks (cf. [17]), by also randomizing the order in which the censored block
dynamics updates sub-blocks, using the identity coupling on the corresponding clocks.

Proof of Proposition 4.8. We now prove Eq. (4.5) by induction on k. Fix any ω0

and let δk =
∥∥Pω0

(
X̄kT ∈ ·

)
− Pω0 (Yk ∈ ·)

∥∥
tv

denote its left-hand side; observe that
δ0 = 0 by definition, and suppose that δk ≤ k(ρ + ε) for some k. Denote by i = ik+1

the block that is updated at time k+ 1 by the systematic block dynamics, and let X̄
(i)
t

and Y
(i)
k be the censored and systematic chains corresponding to the block sequence

(B(i+`) mod s)`≥0 (where the blockBi is the first to be updated). By the Markov property
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and the triangle inequality,

δk+1 ≤
1

2

∑
ω,ω′

(∣∣∣Pω0(X̄kT = ω′)− Pω0(Yk = ω′)
∣∣∣Pω′(X̄(i)

T = ω)

+
∣∣∣Pω′(X̄(i)

T = ω)− Pω′(Y
(i)

1 = ω)
∣∣∣Pω0(Yk = ω′)

)
= δk +

∑
ω′

Pω0(Yk = ω′)
∥∥∥Pω′(X̄(i)

T ∈ ·)− Pω′(Y
(i)

1 ∈ ·)
∥∥∥
tv
. (4.6)

The last summand in (4.6) satisfies∑
ω

Pω0(Yk = ω)
∥∥∥Pω(X̄

(i)
T ∈ ·)− Pω(Y

(i)
1 ∈ ·)

∥∥∥
tv

≤ Pω0(Yk�∂Bi ∈ Γi) max
ω:ω�∂Bi∈Γi

∥∥∥Pω(X̄
(i)
T ∈ ·)− Pω(Y

(i)
1 ∈ ·)

∥∥∥
tv

+ Pω0(Yk�∂Bi /∈ Γi)

≤ (1− ρ)ε+ ρ ,

by the definition of T = T1(ε) and ρ; here we identified the configuration on G − Bo
i

with the boundary it induces on ∂Bi. Combined with Eq. (4.6), this completes the
proof of Eq. (4.5). �

Remark 4.10. In the setting of Proposition 4.8, when the initial state is ω0 ∈ {0, 1}
(either minimal or maximal), one can obtain the following improved bound. Set

T = max
i

max
ξ∈Γi

tξ,Bimix (ω0�Bi , ε) , (4.7)

where tξ,Bimix (ω0, ε) = inf{t : d
(ω0,ξ)
tv (t) ≤ ε}, relaxing the previous definition (4.3) of T to

only consider the initial state ω0. Let (X̄t) be the censored block dynamics w.r.t. this
new value of T , and denote by (X̄ ′t) the modification of (X̄t) where, for every k ≥ 1,
the configuration of the block Bik (i.e., the block that is to be updated in the interval
((k − 1)T, kT ]) is reset at time (k − 1)T to the original value of ω0 on that block.
We claim that (4.5) holds1 for the relaxed value of T in (4.7) if we replace X̄t by X̄ ′t.
Indeed, all the steps in the above proof of Proposition 4.8 remain valid up to the final
inequality, at which point the fact that we consider X̄ ′t (as opposed to X̄t) implies that

max
ω:ω�∂Bi∈Γi

∥∥∥Pω(X̄
(i)
T ∈ ·)− Pω(Y

(i)
1 ∈ ·)

∥∥∥
tv

= max
ξ∈Γi

∥∥∥Pω0�Bi
(X̄

(i)
T ∈ ·)− π

ξ
Bi

∥∥∥
tv
,

which is at most ε when T is as defined in (4.7).

5. Proof of main result

In this section, we prove Theorem 1 by combining the equilibrium estimates of §3
with the dynamical tools provided in §4. We first establish an analog of Theorem 1
(Theorem 5.4) for “typical” boundary conditions (defined in §5.1 below), and then,
using Proposition 3.14, derive from it the case of periodic boundary conditions in §5.3.

1In fact, (4.5) is valid for X̄ ′t with the relaxed T in (4.7) for every ω0, not just for the maximal and
minimal configurations; however, it is when ω0 ∈ {0, 1} that the modified dynamics X̄ ′t can easily be
compared to X̄t, and thereafter to Xt, via the censoring inequality of Theorem 2.5.



QUASI-POLYNOMIAL MIXING OF CRITICAL 2D RANDOM CLUSTER MODELS 25

The effect of boundary bridges (which may foil the multiscale coupling approach, as
described in §1.1) is controlled by restricting the analysis to those boundary conditions
that have O(log n) bridges, and applying Proposition 4.8 to bound the mixing time
under such boundary conditions. We now define the favorable boundary conditions for
which we prove a mixing time upper bound of nO(logn).

5.1. Typical boundary conditions. We first define the class of “typical” boundary
conditions on a segment (e.g., ∂nΛ).

Definition 5.1 (typical boundary conditions on a segment). For K > 0, N ≥ 1, and
a segment L, let ΞK,N be the set of boundary conditions ξ on L such that

|Γe(ξ)| ≤ K logN for every e ∈ L .

We will later see (as a consequence of Lemma 5.7 below) that the boundary conditions
on each of the sides of a box Λ induced by the infinite-volume FK measure πZ2 belong
to the class of “typical” boundary conditions with high probability.

Next, we define the global property we require of typical boundary conditions.

Definition 5.2 (typical boundary conditions on ∂Λ). Let ΥK1,K2,N = ΥΛ
K1,K2,N

be the
set of boundary conditions ξ on ∂Λ such that ξ�∂iΛ ∈ ΞK1,N for every i = n, s,e,w,
and ξ has at most K2 logN distinct components with vertices on different sides of ∂Λ.

Remark 5.3. The wired and free boundary conditions on a side ∂iΛ are always in
ΥK1,K2,N whenever K1 logN ≥ 1 and K2 logN ≥ 1 (in the former all vertices are in
just one component and in the latter no two vertices are in the same component).

5.2. Mixing under typical boundary conditions. Since periodic boundary condi-
tions are not in ΥK1,K2,N for any K2 > 0, we first bound the mixing time on rectangles
ΛN,N ′ where N ′ = bᾱNc for ᾱ ∈ (0, 1], with boundary conditions ξ ∈ ΥK1,K2,N .

Theorem 5.4. Let q ∈ (1, 4] and fix ᾱ ∈ (0, 1] and K1,K2 > 0. Consider the Glauber
dynamics for the critical FK model on ΛN,N ′ with ᾱN ≤ N ′ ≤ N and boundary condi-
tions ξ ∈ ΥK1,K2,N . Then there exists c = c(ᾱ, q,K1,K2) > 0 such that

tmix . N
c logN .

Observe that if we define
ΥK,N := ΥK,2K,N , (5.1)

clearly ΥK1,K2,N ⊂ Υmax{K1,K2},N , so it suffices to consider ΥK,N for general K > 0.
The proof of Theorem 5.4 proceeds by analyzing the censored and systematic block

dynamics on Λ, obtaining good control on the systematic block dynamics using the
RSW estimates of [8], then comparing it to the censored block dynamics. The choice
of parameters for which we will apply Proposition 4.8 is the following.

Definition 5.5 (block choice for censored / systematic block dynamics). Let q ∈ (1, 4]
and for any n′ ≤ n ≤ N , consider the critical FK Glauber dynamics on Λn,n′ . Let

Be = Jn4 , nK× J0, n′K ,

Bw = J0, 3n
4 K× J0, n′K ,
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ordered as B0 = Be, B1 = Bw as in the setup of Proposition 4.8. For K = max{K1,K2}
given by Theorem 5.4, let Γi = ΥK,N be the set of permissible boundary conditions for
the block Bi in Λn,n′ .

Before proving Theorem 5.4 we will prove two lemmas that will be necessary for the
application of Proposition 4.8. We first introduce some preliminary notation.

For any n ≤ N , label the following edges in ∂Λn,n′ :

e?s = (bn2 c+ 1
2 , 0) , and e?n = (bn2 c+ 1

2 , n
′) .

Recall the definitions of the bridge modification ξe and the side modification ξs from
Definitions 4.2–4.3. We will, throughout the proof of Theorem 5.4, for any boundary
condition ξ on ∂Λn,n′ , let the modification ξ′ ≤ ξ be given by

ξ′ := ξe
?
s ∧ ξe?n ∧ ξs , (5.2)

i.e., the bridge modification of ξ on e?s and e?n, combined with the side modification ξs.
If ΞK,N ,ΥK,N are the sets of boundary conditions defined in Definition 5.5, we let

Ξ′K,N ,Υ
′
K,N be the sets corresponding to the modification ξ 7→ ξ′ of every element in

the original sets. Observe that Υ′K,N ⊂ ΥK,N and likewise, Ξ′K,N ⊂ ΞK,N .

Lemma 5.6. Let α ∈ (0, 1] and consider the systematic block dynamics {Yk}k∈N on
Λn,n′ with bαnc ≤ n′ ≤ n and blocks given by Definition 5.5. There exist cY , c?(α, q) > 0
such that for every two initial configurations ω1, ω2, and every boundary condition ξ on
∂Λn,n′, modified to ξ′ by Eq. (5.2), for all k ≥ 2,

‖Pξ′ω1
(Yk ∈ ·)− Pξ

′
ω2

(Yk ∈ ·)‖tv ≤ exp(−cY kn−c?) .

In particular, for all k ≥ 2,

max
ω0

‖Pξ′ω0
(Yk ∈ ·)− πξ

′

Λn,n′
‖tv ≤ exp(−cY kn−c?) .

Proof. We construct a coupling between the two systematic block dynamics chains,
starting from two arbitrary initial configurations ω1, ω2, as follows. The systematic

block dynamics first samples a configuration on Bo
e according to πξ

′,ωi
Be

for i = 1, 2, where

(ξ′, ωi) is the boundary condition induced by ωi�Bw−Boe ∪ξ
′ on ∂Be. By Proposition 3.1,

applied to the box

R∗ = B∗w ∩B∗e ,
and monotonicity in boundary conditions,

π1
Be

(e?s
R∗←→ e?n) & n−c? ,

where c?(min{1
2 , α}, ε = 1

4 , q) > 0 is given by that proposition.
We can condition on the west-most vertical dual-crossing between e?s and e?n (if such

a dual-crossing exists) as follows: reveal the open components of ∂Be∩J0, bn2 cK×J0, n′K
as in [16] or [10], so that no edges in other components are revealed. If the open
components do not connect to the eastern half of ∂Λn,n′ then it must be the case
that the desired open dual-crossing exists and can be exposed without revealing any
information about edges east of it.
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n
4

n
2

3n
4

ξ′

1/0 Be

Figure 6. If the depicted dual-crossing exists under any (ξ′, ωi), and
the bridges over e∗s , e

∗
n are disconnected, one can couple the two chains

on the green shaded region, and in particular on Be −Bo
w.

By monotonicity in boundary conditions, if under π1
Be

such a vertical dual-connection

from e?s to e?n exists, the grand coupling (see §2.2) ensures that the same under πξ
′,ωi
Be

for any ωi�Λn,n′−Boe . By definition of the modification ξ′, there are no bridges over e?s ,

no bridges over e?n, and no components of ξ′ with vertices in multiple sides of ∂Λn,n′ ;
thus, conditional on this vertical dual-crossing, the following event holds:⋂{

v
ξ′←→6 w :

v ∈ ∂Λn,n′ ∩ J0, n2 K× J0, n′K

w ∈ ∂Λn,n′ ∩ Jn2 , nK× J0, n′K

}
.

By the domain Markov property (see Fig. 6), for any pair ω1�Bw−Boe and ω2�Bw−Boe ,

πξ
′,ω1

Be

(
ω�J 3n

4
,nK×J0,n′K

∣∣ e?s R∗←→ e?n

)
d
= πξ

′,ω2

Be

(
ω�J 3n

4
,nK×J0,n′K

∣∣ e?s R∗←→ e?n

)
,

using that the boundary conditions to the east of the vertical dual-crossing are the same
under both measures. (In the presence of bridges over e?s or e?n the above distributional
equality does not hold; different configurations west of such a dual-crossing could still
induce different boundary conditions east of the dual-crossing, preventing coupling (as
illustrated in Fig. 2)—cf. the case of integer q where this problem does not arise.)

This implies that, on the event e?s
R∗←→ e?n, the grand coupling couples the two

systematic block dynamics chains so that they agree on Λn,n′ −Bo
w with probability 1.

In this case, let η be the resulting configuration on Be −Bo
w, so that

η = Y1�Be−Bow .
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If the two chains were coupled onBe−Bo
w, the boundary conditions (ξ′, η) on ∂Bw would

be the same for any pair of systematic block dynamics chains with initial configurations
ω1, ω2; in particular the identity coupling would couple them on all of Λn,n′ in the next

step when Bw is resampled from πξ
′,η
Bw

. Thus, for some c > 0,

‖Pξ′ω1
(Y2 ∈ ·)− Pξ

′
ω2

(Y2 ∈ ·)‖tv ≤ 1− cn−c? .
Since the systematic block dynamics is Markovian and all of the above estimates

were uniform in ω1 and ω2, the probability of not having coupled in time k under the
grand coupling is bounded above by

(1− cn−c?)bk/2c ≤ exp(−cbk/2cn−c?) . �

The next lemma will be key to obtaining the desired upper bound on ρ as defined
in (4.4); it shows that with high probability, the boundary conditions induced by the FK
measure on a segment will be in ΞK,N , hence the term “typical” boundary conditions.

Lemma 5.7. Fix q ∈ (1, 4]. There exists cΥ(q) > 0 so that, for every ΞK,N given by
Definition 5.1 on Λn,n′ with n′ ≤ n ≤ N and K > 0, and every boundary condition ξ,

πξBe
(ω�∂eBw

/∈ ΞK,N ) . N−cΥK ,

where ω�∂eBw
denotes the boundary conditions induced on ∂eBw by ω�Be−Bow ∪ ξ. The

same statement holds when exchanging e and w.

Proof. By symmetry, it suffices to prove the bound for the boundary conditions on
∂eBw. Consider the rectangle

R = Jn2 , nK× J0, n′K .

By Proposition 3.9 with aspect ratio 1
2 , there exists c(q) = c(α = 1

2 , q) > 0 such that,
for every edge e ∈ ∂eBw and every boundary condition η on ∂R,

πηR(|Γe| ≥ K logN) . N−cK ,

where, for a configuration ωR on R, we recall that |Γe| is the number of disjoint bridges
in ωR�R−Bow ∪ ξR over e. A union bound over all n′ edges on ∂eBw implies that

max
η

πηR(ω�∂eBw
/∈ ΞK,N ) . n′N−cK . N−cK+1 ,

using n ≤ N . Consequently,

πξBe
(ω�∂eBw

/∈ ΞK,N ) = E
πξBe

[
πξRR (ω�∂eBw

/∈ ΞK,N )
]
. N−cK+1 ,

where the expectation is w.r.t. πξBe
over the boundary conditions ξR induced on R by

ξ and the configuration on Be −Ro. This concludes the proof of the lemma. �

Corollary 5.8. Fix q ∈ (1, 4], and consider the systematic block dynamics on Λn,n′ for
n′ ≤ n ≤ N with block choices as given in Definition 5.5. There exists cΥ(q) > 0 so
that, for every fixed K > 0 and every boundary condition ξ′ ∈ Υ′K,N on ∂Λn,n′,

ρ . N−cΥK ,

where ρ is as defined as in (4.4) w.r.t. the initial configuration ω0 ∈ {0, 1} and the
permissible boundary conditions ΥK,N .
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Proof. Let Yk be the systematic block dynamics on Λn,n′ where n ≤ N . Recall the
definition of ρ in Eq. (4.4), so that in the present setting,

ρ = max
ω0∈{0,1}

max
k≥1

max
i∈{e,w}

Pξ
′
ω0

(Yk�∂Bi /∈ ΥK,N ) .

In the first time step, ω0�Be
induces wired or free boundary conditions on ∂wBe and

so, by Remark 5.3, the boundary condition on ∂wBe is trivially in ΞK,N . Furthermore,
the boundary conditions on ∂n,e,sBe also belong to ΞK,N by the hypothesis ξ′ ∈ ΥK,N .
Finally, there cannot be more than 2K logN components in the boundary condition
on ∂Be consisting of vertices on multiple sides for the following reason: as a result of
the side modification on ξ′, such components can only arise from connections between
∂wBe and the bridges in Γ(n/4,0) and Γ(n/4,n′); however, there are at most K logN
bridges in each set under any configuration on Λ−Bo

e (summing to at most 2K logN
components, as claimed). Altogether, Y1�∂Be

∈ ΥK,N deterministically.
To address all subsequent time steps, by reflection symmetry and the definition of

the systematic block dynamics, is suffices to consider Y2�∂Bw
. By Lemma 5.7, the

probability that a boundary condition on ∂eBw induced by the systematic dynamics
will not be in ΞK,N is O(N−cΥK), with cΥ > 0 from that lemma. The fact that,
deterministically, the boundary conditions on ∂n,s,wBw are in ΞK,N , and there are at
most 2K logN components of the boundary condition on ∂Bw containing vertices of
multiple sides of ∂Bw, follows by the same reasoning argued for the first time step. �

We are now in a position to prove Theorem 5.4.

Proof of Theorem 5.4. Consider Λ = ΛN,N ′ with aspect ratio ᾱ ∈ (0, 1] and bound-
ary conditions ξ ∈ ΥK,N for a fixed

K ≥ K0 := 6(c? + 1) max{c−1
Υ , 1} , (5.3)

where c? = c?(min{ᾱ, 1
2},

1
4 , q) is the constant given by Proposition 3.1, and cΥ = cΥ(q)

is given by Corollary 5.8. It suffices to prove the proposition for all K sufficiently large,
as ΥK,N ⊂ ΥK′,N for every K ≤ K ′.

We prove the following inductively in n ∈ J1, NK: for every K > K0 as above, every
(ᾱ ∧ 1

2)n ≤ n′ ≤ n, and every ξ ∈ ΥK,N , if

tn = N2(c?+λ+1) log4/3 n where λ := 32K log q + 5 ,

then Glauber dynamics for the critical FK model on Λn,n′ has

‖Pξ1(Xtn ∈ ·)− Pξ0(Xtn ∈ ·)‖tv ≤ N−3 . (5.4)

To see that Eq. (5.4) implies Theorem 5.4, note that (2.1), with the choice n = N ,

implies that d̄tv(N c(ᾱ,q) logn) = O(1/N) = o(1) for some c(ᾱ, q) > 0.
For the base case, fix a large constant M , where clearly tmix = O(1) for all n ≤ M .

Next, let m ∈ JM,NK, and assume (5.4) holds for all n ∈ J1,m − 1K. Consider the
censored and systematic block dynamics, (X̄t)t≥0 and {Yk}k≥0, respectively, on the
blocks defined in Definition 5.5 on Λm = Λm,m′ for some (ᾱ ∧ 1

2)m ≤ m′ ≤ m and
boundary conditions ξ ∈ ΥK,N .



30 REZA GHEISSARI AND EYAL LUBETZKY

Recall that ξ ∈ ΥK,N has at most K logN bridges over any edge and at most
2K logN components spanning multiple sides of ∂Λm; thus, by Fact 4.5, the boundary
modification ξ′ defined in (5.2) satisfies

d(ξ′, ξ) ≤ 8K logN .

By the definition of λ, we have |E|2q4d(ξ′,ξ) = o(Nλ). Hence, by Lemma 4.6 (Eq. (4.2),
where we increased the time on the right-hand to Nλ, for large enough N , by the
monotonicity of dtv) and the above bound on d(ξ′, ξ), we have that for all k, T ≥ 0,

‖Pξ1(XNλkT ∈ ·)− Pξ0(XNλkT ∈ ·)‖tv ≤ 2 max
ω0∈{0,1}

‖Pξω0
(XNλkT ∈ ·)− π

ξ
Λm
‖tv

≤ 16 max
ω0∈{0,1}

‖Pξ′ω0
(XkT ∈ ·)− πξ

′

Λm
‖tv + 2e−N

λ/4
,

and subsequently, by Theorem 2.5,

‖Pξ1(XNλkT ∈ ·)− Pξ0(XNλkT ∈ ·)‖tv ≤ 16 max
ω0∈{0,1}

‖Pξ′ω0
(X̄kT ∈ ·)− πξ

′

Λm
‖tv + 2e−N

λ/4
.

(5.5)
We will next show that the first term in the right-hand above satisfies

max
ω0∈{0,1}

‖Pξ′ω0
(X̄kT ∈ ·)− πξ

′

Λm
‖tv = o(N−3) , (5.6)

which will imply (5.4) (and conclude the proof) if we choose k, T such that NλkT ≤ tm.
By the triangle inequality,

max
ω0∈{0,1}

‖Pξ′ω0
(X̄kT ∈ ·)− πξ

′

Λm
‖tv

≤ max
ω0∈{0,1}

‖Pξ′ω0
(X̄kT ∈ ·)− Pξ

′
ω0

(Yk ∈ ·)‖tv + max
ω0∈{0,1}

‖Pξ′ω0
(Yk ∈ ·)− πξ

′

Λm
‖tv

≤ max
ω0∈{0,1}

‖Pξ′ω0
(X̄kT ∈ ·)− Pξ

′
ω0

(Yk ∈ ·)‖tv + e−cY km
−c?

,

where the last inequality is valid for every k ≥ 2 by Lemma 5.6. Using Υ′K,N ⊂ ΥK,N

and Proposition 4.8,

max
ω0∈{0,1}

‖Pξ′ω0
(X̄kT ∈ ·)− πξ

′

Λm
‖tv ≤ k(ρ+ ε(T )) + e−cY km

−c?
,

where ρ and ε were given in (4.3)–(4.4), that is, in our context,

ε(T ) = max
ω′∈Ω

max
i∈{e,w}

max
ζ∈Υ

Bi
K,N

‖Pζ,Biω′ (XT ∈ ·)− πζBi‖tv ,

ρ = max
k≥1

max
i∈{e,w}

Pω0

(
Yk�∂Bi /∈ ΥBi

K,N

)
.

We will bound ε(T ) by the inductive assumption for the choice of

k := c−1
Y (c? + 6)N c? logN and T := ktb3m/4cN

λK logN . (5.7)

In order to apply the induction hypothesis for a box whose side lengths are smaller by
a constant factor vs. the original dimensions of m ×m′, we repeat the above analysis
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for the sub-block Bi (whose dimensions are b3
4mc×m

′), and get from Fact 2.4 and the
above arguments that

ε(T ) . N2 max
i∈{e,w}

max
ζ∈Υ

Bi
K,N

‖Pζ,Bi0 (XT ∈ ·)− Pζ,Bi1 (XT ∈ ·)‖tv

. N2k
(
ρ′ + ε′( T

kNλ )
)

+N2e−cY km
−c?

+N2e−N
λ/4

,

where ε′(T ) and ρ′ are the counterparts of ε(T ) and ρ w.r.t. the sub-blocks of Bi, as
per Definition 5.5, rotated by π/4. This yields the following new bound on (5.6):

max
ω0∈{0,1}

‖Pξ′ω0
(X̄kT ∈ ·)− πξ

′

Λm
‖tv . N2k2

(
ρ+ ρ′ + ε′( T

kNλ )
)

+ kN2e−cY km
−c?

+ o(N−3).

Note that the dimensions of the sub-blocks of Bi (those under consideration in ε′(T ))
are b3

4mc × b
3
4m
′c. Hence, by the inductive assumption at scale b3

4mc and Fact 2.4,

ε′
(
tb3m/4c

)
= O(1/N) ,

which, along with (2.1) and the submultiplicativity of d̄tv(t), yields that for T from (5.7),

ε′( T
kNλ ) = ε′

(
tb3m/4cK logN

)
. N−K ≤ N−6(c?+1) .

By Corollary 5.8, we have ρ . N−cΥK ≤ N−6(c?+1) by our choice of K0, and similarly
for ρ′. So, for k = N c?+o(1) as in (5.7), k2ρ . N−4c?−6+o(1) = o(N−5), and similarly,
k2ρ′ = o(N−5). Finally, this choice of k guarantees that kN2 exp(−cY km−c?) is at most
kN−c?−4 = o(N−3). Combining the last three displays with these bounds yields (5.6).

The proof is concluded by noting that indeed NλkT ≤ N2c?+2λ+o(1)tb3m/4c ≤ tm. �

5.3. Mixing on the torus. In this section we extend Theorem 5.4 to the n×n torus,
proving Theorem 1. Observe that the periodic FK boundary conditions identified with
(Z/nZ)2 in fact have order n components with vertices on multiple sides of ∂Λ. We
thus have to extend the bound of Theorem 5.4 to periodic boundary conditions using
the topological structure of (Z/nZ)2. The proof draws from the extension of mixing
time bounds in [16] and [10] from fixed boundary conditions to (Z/nZ)2. In the present
setting, having to deal with a specific class of boundary conditions forces us to reapply
the bridge modification and the censored and systematic block dynamics techniques.

We first bound the mixing time on a cylinder with typical boundary conditions on
its non-periodic sides. In what follows, for any Λn,n′ , label the following edges:

e?sw = (0, bn′2 c+ 1
2) , e?se = (n, bn′2 c+ 1

2) ,

e?nw = (0, b3n′

4 c+ 1
2) , e?ne = (n, b3n′

4 c+ 1
2) .

Then define the modification ξ′ of boundary conditions ξ by

ξ′ = ξe
?
sw ∧ ξe?se ∧ ξe?nw ∧ ξe?ne ∧ ξs (5.8)

and define Ξ′K,N ,Υ
′
K,N as before, for the new modification. We say that a boundary

condition on ∂n,sΛ is in ΥK,N if its restriction to each side is in ΞK,N and there are fewer
than 2K logN distinct components with vertices in ∂nΛ and ∂sΛ, and analogously for
boundary conditions on ∂e,wΛ.
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Theorem 5.9 (Mixing time on a cylinder). Fix q ∈ (1, 4], α ∈ (0, 1] and K > 0.
There exists some c(α, q,K) > 0 such that the critical FK model on Λ = ΛN,N ′ with
αN ≤ N ′ ≤ α−1N and boundary conditions, denoted by (p, ξ), that are periodic on
∂n,sΛ and ξ ∈ ΥK,N on ∂e,wΛ, satisfies tmix . N c logN .

Proof. We will use a similar modification and censoring approximation as in the proof
of Theorem 5.4 to reduce the cylinder to rectangles with “typical” boundary conditions.
As before, it suffices to prove the theorem for large enough K, since ΥK,N ⊂ ΥK′,N for
K ≤ K ′. We will establish it for any fixed

K ≥ K0 +K ′0 where K0 = 4(c? + 1)(c−1
Υ ∨ 1) and K ′0 = K0(c−1

Ψ ∨ 1) ,

in which c? = c?(
α
5 ,

1
4 , q) > 0 is given by Proposition 3.1, the constant cΥ is c(2α

5 , q) > 0

from Proposition 3.9, and cΨ = cΨ(3α
5 , q) > 0 is given by Proposition 3.14.

Define, as in Definition 4.7, the censored and systematic block dynamics on

B1 := J0, NK× J0, N
′

5 K ∪ J0, NK× J2N ′

5 , N ′K ,

B2 := J0, NK× J0, 3N ′

5 K ∪ J0, NK× J4N ′

5 , N ′K .

The choice of boundary class on Bi for i = 1, 2 is Γi = Υ3K,N . (Observe that B1 and

B2 are, by construction, N × 4
5N
′ rectangles with non-periodic boundary conditions.)

As in the proof of Theorem 5.4, it suffices, by Fact 2.4, to show that there exists
some c(α, q,K) > 0 such that

‖Pp,ξ1 (XNc logN ∈ ·)− Pp,ξ0 (XNc logN ∈ ·)‖tv ≤ N−3 . (5.9)

In the setting of the cylinder, the side modification (p, ξs) of (p, ξ) only disconnects
∂eΛ from ∂wΛ, and so, if ξ′ is as in (5.8), then d(ξ′, ξ) ≤ 6K logN . Thus, by (4.2), the
triangle inequality and Theorem 2.5 (as explained in the derivation of (5.5)), if

tN = NλkT for λ := 24K + 5

(so that |E|2q4d(ξ′,ξ) = o(Nλ)), then for every k, T ≥ 0,

‖Pp,ξ1 (XtN ∈ ·)− Pp,ξ0 (XtN ∈ ·)‖tv ≤ 16 max
ω0∈{0,1}

‖Pp,ξ′ω0
(X̄kT ∈ ·)− πp,ξ

′

Λ ‖tv + 2e−N
λ/4

,

which, by Proposition 4.8, is at most

16 max
ω0∈{0,1}

‖Pp,ξ′ω0
(Yk ∈ ·)− πp,ξ

′

Λ ‖tv + 16k(ρ+ ε(T )) + 2e−N
λ/4

, (5.10)

where ε(T ) and ρ are given by (4.3) and (4.4), respectively, w.r.t. the blocks B1, B2,
the permissible boundary conditions Υ3K,N , and the initial configuration ω0 ∈ {0, 1}.

We next bound the first term in the right-hand side of Eq. (5.10) by the probability
of not coupling the systematic block dynamics chains started from two arbitrary initial
configurations under the grand coupling (cf. Lemma 5.6). In the first time step, we try
to couple the chains started from ω1, ω2 on

R := J0, NK× J3N ′

5 , 4N ′

5 K

so that in the second step the identity coupling couples them on all of Λ. It suffices
to couple the systematic chains started from ω1 = 0 and ω2 = 1 under the grand
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coupling. In order to couple samples from the (0, ξ′) and (1, ξ′) boundary conditions
on R (induced by ω1 = 0 and ω2 = 1 resp.), define the following two sub-blocks of B1:

Rs := J0, NK× J2N ′

5 , 3N ′

5 K , Rn := J0, NK× J4N ′

5 , N ′K .

By Proposition 3.1, monotonicity in boundary conditions, and the FKG inequality,

min
η
πη,ξ

′

B1

(
e?sw

R∗s←→ e?se , e
?
nw

R∗n←→ e?ne

)
& N−2c? .

By the Domain Markov property, and the definition of the boundary modification ξ′,

π1,ξ′

B1

(
ω�R

∣∣ e?sw R∗s←→ e?se , e
?
nw

R∗n←→ e?ne

)
d
= π0,ξ′

B1

(
ω�R

∣∣ e?sw R∗s←→ e?se , e
?
nw

R∗n←→ e?ne

)
.

As before, using the grand coupling and revealing edges from ∂sRs and ∂nRn until we

reveal a pair of such horizontal dual-crossings, by monotonicity, we can couple πω1,ξ′

B1
and

πω2,ξ′

B1
on R with probability at least cN−2c? . On that event, the two chains are coupled

in the next step (and thereafter) on all of Λ with probability 1. By the definition of
the systematic block dynamics, we conclude that, for some cY > 0 and every k ≥ 2,

max
ω0∈{0,1}

‖Pp,ξ′ω0
(Yk ∈ ·)− πp,ξ

′

Λ ‖tv ≤ exp(−cY kN−2c?) .

To bound ρ, first note that, for ω0 ∈ {0, 1}, the block B1 has boundary conditions
(0, ξ′) or (1, ξ′), both of which are in Υ3K,N by Remark 5.3. Thereafter, the uniformity
of Proposition 3.9 in boundary conditions implies that for every η,

πη,ξ
′

B1
(ω�∂B2

/∈ ΞK,N ) . N−cΥK ,

and likewise when exchanging B1 and B2. In order to obtain a corresponding bound
on ρ, we note that in addition to connections between ∂n,sBi and ∂e,wBi (for i = 1, 2),
which we bound deterministically by 4K logN as in the proof of Corollary 5.8, in the
present setting there could also be (multiple) open components connecting ∂sBi to ∂nBi
in Λ−Bi. By Proposition 3.14 and monotonicity in boundary conditions, for every η,

πη,ξB1
(|ΨΛ−B2 | ≥ K logN) . N−cΨK ,

where, as in that proposition, |ΨΛ−B2 | is the number of distinct vertical crossings of
Λ−B2. By the choices of K0 and K ′0, a union bound yields

ρ . max
η

πη,ξ
′

B1
(ω�∂B2

/∈ Υ3K,N ) . N−4c?−4 .

Observe that on their respective translates, B1 and B2 are N × 4
5N
′ rectangles, so

we can bound maxi maxξ∈Υ3K,N
tξ,Bimix using Theorem 5.4; by that theorem, rotational

symmetry, and the sub-multiplicativity of d̄tv, we have that for some cB(α, q,K) > 0,

ε(T ) . exp(−c−1
B TN−cB logN ) ,

uniformly over αN ≤ N ′ ≤ α−1N . Altogether, combining the bounds on ρ, ε, and the
systematic block dynamics distance from stationarity, in Eq. (5.10), we see that for

k = N2c?+1 and T = N (cB+1) logN
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one has
‖Pp,ξ1 (XtN ∈ ·)− Pp,ξ0 (XtN ∈ ·)‖tv = o(N−3) ,

implying Eq. (5.9) and concluding the proof. �

Proof of Theorem 1. The theorem is obtained by reducing the mixing time on the
torus to that on a cylinder and then applying Theorem 5.9. Fix ᾱ ∈ (0, 1] and consider
Λ = Λn,n′ with ᾱn ≤ n′ ≤ ᾱ−1n and periodic boundary conditions, denoted by (p),
identified with (Z/nZ)× (Z/n′Z) (the special case n′ = n is formulated in Theorem 1).

Let c? = c?(
ᾱ
5 ,

1
4 , q) > 0 be given by Proposition 3.1 and let cΥ,cΨ, K0 and K ′0 be

given as in the proof of Theorem 5.9. Define K = K0 +K ′0. We consider the censored
and systematic block dynamics with the block choices,

B1 := J0, nK× J0, n
′

5 K ∪ J0, nK× J2n′

5 , n
′K ,

B2 := J0, nK× J0, 3n′

5 K ∪ J0, nK× J4n′

5 , n
′K .

and boundary class

Υp
3K,n :=

{
ξ : ξ�∂n,sΛ = p, ξ�∂e,wΛ ∈ Υ3K,n

}
.

By Theorem 2.5, the triangle inequality and Proposition 4.8, for every k, T ≥ 0,

‖Pp1(XkT ∈ ·)− Pp0(XkT ∈ ·)‖tv ≤ 2 max
ω0∈{0,1}

‖Ppω0
(Yk ∈ ·)− πpΛ‖tv + 2k(ρ+ ε(T )) ,

where ρ and ε(T ) are w.r.t. the class Υp
3K,n of permissible boundary conditions. It

suffices, as before, to prove that the right-hand side is o(n−3) and then use (2.1) and
the sub-multiplicativity of d̄tv(t) to obtain the desired result.

Recall the edges e?sw, e
?
nw, e

?
se and e?ne on Λn,n′ . As in the proof of Theorem 5.9, if

Rs := J0, nK× J2n′

5 ,
3n′

5 K , Rn := J0, nK× J4n′

5 , n
′K ,

then by Proposition 3.1 and the FKG inequality, we have

π1,p
B1

(
e?sw

R∗s←→ e?se , e
?
nw

R∗n←→ e?ne

)
& n−2c? .

Crucially, while no boundary modification was done in this case, the periodic sides of B1

have no bridges over the four designated edges, and the two horizontal dual-crossings,
from the event above, disconnect its non-periodic sides (∂nB1 and ∂sB1) from ∂nB2

and ∂sB2. Therefore, if that event occurs for the systematic block dynamics chain
started from ω0 = 1, the grand coupling carries it to the chains started from all other
initial states, and yields a coupling of all these chains on J3n

5 ,
4n
5 K× J0, n′K ⊃ ∂B2. By

definition of the systematic block dynamics and submultiplicativity of d̄tv(t), for k ≥ 2,

max
ω0∈{0,1}

‖Ppω0
(Yk ∈ ·)− πpΛ‖tv ≤ exp(−cY kn−2c?) . (5.11)

Observe that at every time step of the systematic block dynamics, the block Bi (i = 1, 2)
is an n × 4

5n
′ rectangle with periodic boundary conditions on ∂e,wBi and boundary

conditions η induced by the chain on ∂n,sBi. By Theorem 5.9, for some c(ᾱ, q,K) > 0,

max
i

max
(p,η)∈Υp3K,n

t
(p,η),Bi
mix . nc logn ,
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and by submultiplicativity of d̄tv(t),

ε(T ) . exp(−c−1Tnc logn) .

As in the proof of Theorem 5.9, since the estimate on ρ was uniform in the boundary
conditions, we again have ρ . n−4c?−4 (using Propositions 3.9 and 3.14). Combining
the bounds on ρ and ε with (5.11), there exists some c(ᾱ, q,K) > 0 such that

‖Pp1(Xnc logn ∈ ·)− Pp0(Xnc logn ∈ ·)‖tv = o(n−3) ,

as required. �
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